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S1 Macroscopic properties of PEO solutions

S1.1 Intrinsic viscosity and Flory exponent

The PEO macromolecules for micro- and macrorheological investigations were pur-
chased from Polymer Standards Service GmbH, Mainz, Germany. Certificates of the
molar mass distribution (GPC/SEC) and derived weight averages were provided by
the supplier. The characteristic properties of weight average molar mass Mw, num-
ber average molar mass Mn, molar mass at peak maximum Mp, polydispersity index
PDI = Mw/Mn and the order number are summarized in Table S1.

Table S1: Characteristic properties of PEO polymers: polymer ID, weight average
molar mass Mw, number average molar mass Mn, molar mass at peak maximum Mp,
polydispersity index PDI = Mw/Mn and the order number.

ID Mw Mn Mp PDI = Order No.
[kg/mol] [kg/mol] [kg/mol] Mw/Mn

PEO-50k 53 49.5 54 1.07 PSS-peo50k
PEO-110k 106 101 106 1.05 PSS-peo110k
PEO-220k 220 197 222 1.11 PSS-peo220k
PEO-500k 480 398 450 1.21 PSS-peo500k
PEO-1M 1020 884 969 1.15 PSS-peo1m

The viscosity at T = 23.00 ± 0.02 ◦C of the solvent (water) and dilute polymer
solutions were determined using a rolling ball viscometer. The relative viscosities
ηr = η/ηs and the specific viscosities ηsp = (η − ηs)/ηs were calculated and analyzed
according to the Huggins equation [1],

ηsp
c

= [η] + kH [η]2c , (S1)

and the Kraemer equation [2],

ln(ηr)

c
= [η] +

(
kH −

1

2

)
[η]2c . (S2)
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Figure S1: Calculated values of ηsp/c and ln(ηr)/c from rolling ball viscometer mea-
surements of dilute PEO solutions (symbols) with fits, using Equation S1 (line) and
S2 (dashed line), to determine the mean intrinsic viscosities [η] based on both method.

Table S2: Fitting results of intrinsic viscosity [η] and Huggins constant kH using
Huggins equation S1 and Kraemer equation S2.

ID Huggins Kraemer
[η] kH [η] kH

[cm3/g] [cm3/g]
PEO-50k 77(1) 0.22(3) 76(1) 0.29(2)
PEO-110k 113(1) 0.33(1) 113(1) 0.34(1)
PEO-220k 202(2) 0.35(2) 201(1) 0.31(1)
PEO-500k 358(4) 0.29(4) 357(3) 0.31(2)
PEO-1M 591(3) 0.27(2) 589(1) 0.30(1)
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Figure S2: Log-Log-plot of the mean intrinsic viscosity [η] (Table S2) as function
of molecular mass Mw with linear fit to derive the parameters α = 0.71(2) and
K = 0.032(7) (cm3/g)(mol/g)0.71(2) in the Mark-Houwink equation, [η] = KMα

w .
Based on the parameter α we calculated the Flory exponent ν = (α+1)/3 = 0.570(7).
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S1.2 Intrinsic length scales

The primary intrinsic length scale is the size of the macromolecules in solution. The
radius of gyration is often used mainly for practical reasons as it can be determined
by scattering experiments. We use the empirical relationship, RLS

g = 0.202M0.58
w Å,

derived from light scattering by Kawaguchi et al. [3]. Another characteristic measure
for the size of the polymer chain is the root-mean-square end-to-end distance Ree =
〈R2〉1/2 = bN ν , where b is the size of a Kuhn monomer and N = Mw/M0 the number
of monomers, with molar mass M0, per chain. Because of inconsistent results when
using values, tabulated for the melt, we used as Kuhn monomer size in solution
b = 8.7 Å and corresponding M0 = 108 g/mol ∼ b, which were obtained by fitting the
radius of gyration [4] Rg = bN ν/((2ν + 1)(2ν + 2))1/2 to the empirical relationship,
RLS
g = 0.202M0.58

w Å [3]. The same segment length b was also derived in the latter
reference.

In dilute solutions, the radius of gyration Rg0 of the molecules and the correlation
length ξ0 = Rg0/

√
3, e.g. determined from the light scattering structure factor, are

independent of concentration c. At the overlap volume fraction φ∗, the polymer coils
are space filling and Rg as well as ξ are concentration dependent [5] for φ > φ∗. The
radius of gyration decreases weakly as Rg(φ) ≈ Rg0(φ/φ

∗)−(2ν−1)/(6ν−2) ∼ (φ/φ∗)−0.1

due to the screening of excluded volume interaction and approaches the ideal chain
value Rg,m = bN1/2/

√
6 in the melt. In the semi-dilute regime, the correlation length

decreases due to coil interpenetration, ξ ≈ ξ0(φ/φ
∗)−ν/(3ν−1) ∼ (φ/φ∗)−0.8 and is

independent of the polymer molar mass. The volume fraction Φ∗∗, at which ξ =
b marks the upper limit of the semi-dilute and the transition to the concentrated
solution regime [4].

Solutions of large macromolecules above the entanglement concentration ce exhibit
a strong increase in viscosity ∼M3.4

w , transient network elasticity with a plateau mod-
ulus G0, and crossover, G′(ωc) = G′′(ωc). The mechanism behind these features were
disclosed in the reptation theory by de Gennes [6] and Doi and Edwards [7]. En-
tanglements with other chains confine the lateral motion of a macromolecule into
an effective tube such that stress relaxation relies on the evacuation of this tube by
curvilinear diffusion. With two major corrections of the theory to account for contour
length fluctuations (CLF) and constraint release (CR), the characteristic tube size
at and relaxation time constants can be obtained by quantitative analysis of experi-
mental data [8]. Contour length fluctuations are the result of higher than zero-order
Rouse modes and can be incorporated into the classical reptation model by introduc-
ing a renormalized plateau modulus and reptation time, represented by a polynomal
function of the number of entanglements per chain, Z = M/Me, with molar mass Me

of the chain segment between entanglements (entanglement strand) [9]. Constraint
release (tube renewal) takes the dynamic nature of entanglements caused by moving
chains into account [10]. In the Likhtman-McLeish (L-ML) model, the coefficients
of the CLF correction were obtained by fitting simulated stress relaxation functions
for given values of Z. Furthermore, an additional parameter cv was introduced to
adjust the jump distance of a chain segment after constraint release in relation to
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Figure S3: Dynamic modulus of 5.29 wt.% PEO-1M solution measured by small am-
plitude oscillatory shear with constant shear strain amplitude of 10 % over the angular
frequency range ω = 1−600 rad/s. The modulus, predicted by the Likhtman-McLeish
model with all parameters fixed at Ge = 1306 Pa, Me = 116500 g/mol, cv = 0.1 and
τe = 1.5×10−6 s (red) is shifted to high frequencies. A fit with τe as variable parameter
(black lines) resulted in a good agreement in the accessible frequency range.

the tube diameter at. This model has been incorporated in the analysis tool box of
the open-source package RepTate, provided by J. Ramirez and V. Boudara [11].
Model parameters are the entanglement modulus Ge (please notice the difference to
G0 as discussed in [8]), the molar mass Me and Rouse equilibration time constant
τe of an entanglement strand, and the CR parameter cv. For given polymer molar
mass M and temperature T , these parameters could be retrieved by fitting G′ and
G′′ spectra and further characteristic quantities such as Z, at, the disengagement τD
and the Rouse time of the whole chain derived. In principle, the same approach could
be applied to semi-dilute polymer solutions if the incomplete screening of excluded
volume- and hydrodynamic interactions is taken into account.

The macroscopic dynamic modulus of 5.29 wt% PEO-1M-solution is shown in
Figure S3. The storage and loss modulus exhibit the expected power law relations,
G′ ∼ ω2 andG′′ ∼ ω in the terminal region and a crossing point at ωc = 91 rad/s which
translates into a characteristic time constant τc = 1/ωc = 11 × 10−3 s. However, the
SAOS data represent only a minor fraction of the entire dynamic modulus spectrum,
which is insufficient for reasonable model fitting. In contrast to polymer melts, the
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number Z of entanglements per chain can be small and their contribution to the
dynamic modulus rather weak even at large molar mass. For lack of this approach to
determine the characteristic parameters directly from experiment, we used tabulated
values for the PEO melt (a(1) = 37 Å, entanglement strand molar mass Me(1) =
1700 g/mol, and entanglement modulus Ge(1) = 1.8 × 106 Pa) and the appropriate
scaling relations for extrapolation to semi-dilute solutions [5]. Model calculation based
on these parameter are compared with experimental results as a test for plausibility.

For the particular 5.29 wt% PEO-1M solution, the entanglement modulus is Ge ≈
Ge(1)φ3ν/(3ν−1) ≈ 1306 Pa and the molar mass per entanglement strand
Me ≈ Me(1)φ−1/(3ν−1) ≈ 116500 g/mol. In contrast to these two parameters, compu-
tation of the characteristic time constants is more involved. The disengagement time
in the uncorrected Doi-Edwards model τd = 3Z3τe, where τe is the Rouse rotational
relaxation time of an entanglement strand [7, 12]. In semi-dilute solution, however,
hydrodynamic and excluded volume interactions are effective below their characteris-
tic screening length, which is of the same order of magnitude as the correlation length
ξ [5]. The macromolecule chain is a random walk of correlation blobs [5,13] with size
ξ, each containing g ≈ ρmξ

3 monomers, where ρm = (cNNA)/Mw is the monomer
density [4]. Due to hydrodynamic interaction, relaxation within the correlation blobs
is fast and determined by their Zimm time τξ = (2

√
3π)−1(ηs/(kBT ))ξ3. The rota-

tional relaxation time of the entire molecule τch = (3π2)−1τξ(N/g)2 is twice the Rouse
time for a chain of N/g effective segments, each with relaxation time τξ. The equi-
libration time of an entanglement strand is τe = τch/Z

2. For the 5.29 wt% PEO-1M
solution, this calculation results in τe ≈ 1.5 × 10−6 s. The last model parameter, cv,
cannot be evaluated independently so we used values between cv = 0 as the lower and
cv = 1, i.e. jump distance at, as physically plausible upper limit.

The result of the Likhtman-McLeish model calculation for the given parameters,
shown in Figure S3 (red color), apparently reflects the overall shape of the dynamic
modulus in the measured range, but the plateau region is located at too high frequen-
cies. Please notice that any variation in τe merely shifts the modulus along frequency
axis whereas the shape remains unaltered. Keeping the values for all model param-
eters fixed except for the equilibration time constant, a fitting procedure provided
τe = 3.2 × 10−5 s (cv = 0) and τe = 9.8 × 10−5 s (cv = 1). The static parameters
Ge and Me of the entanglements network, that were extrapolated from the tabulated
values of the PEO melt, provided a good agreement with the experimental data in
the measured frequency range. Hence, the extrapolated tube diameter at is also a
reasonable estimate for the semi-dilute PEO solutions. The limited descriptive power
with respect to absolute time constants is not surprising since the treatment of hy-
drodynamic screening in the blob model is approximate only and not intended for
quantitative modelling.
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S2 Ni nanorods

S2.1 TEM images of the nanorods N2 - N5

(a) (b)

(c) (d)

Figure S4: TEM images of the nanorod samples (a) N2 (b) N3 (b) N4 and (c) N5.
The result for sample N1 is shown in the main text.

S2.2 Static field-dependent optical transmission (SFOT) mea-
surements

This methods takes advantage of the collinear uniaxial ferromagnetic and optical
anisotropy, with different optical extinction cross sections 〈Cext,L〉 and 〈Cext,T1,2〉
for longitudinal and the two transversal polarization directions relative to the rod
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axis. The optical transmittance along a path s through a dilute dispersion of Nr

nanorods per unit volume in a transparent matrix follows the Beer-Lambert law,
I/I0 = exp (−sNr〈Cext〉), with the incident and transmitted intensities I0 and I, re-
spectively. In zero field, i.e. at isotropic orientation distribution, the mean extinction
cross section 〈Cext〉x = (Cext,L + Cext,T1 + Cext,T2)/3. With increasing external field
H, alignment of the nanorods against thermal energy results in a characteristic field-
dependent transmittance. In the transmittance of linearly polarized light, normalized
to the zero-field transmittance,

I(H)⊥,‖/I× = exp
(
−Ns(〈Cext〉⊥,‖(H)− 〈Cext〉×)

)
, (S3)

the field-dependent mean optical cross sections 〈Cext〉⊥,‖(H) are different for field di-
rection perpendicular and parallel to the optical polarization direction, respectively.
The ensemble average is determined by the second moment 〈cos2 β〉 of the distribu-
tion function of the angle β between the magnetic moment (rod axis) and the field
direction, and is given by

〈cos2 β〉 = 1 + 2/ζ2 − 2 coth (ζ)/ζ. (S4)

The mean magnetic moment is obtained by fitting the Langevin parameter ζ. Further
details can be found in Ref. [14].

As shown in Figure S5 for the nanorod sample N1 in water, the transmitted
intensity I⊥, normalized to the zero field intensity Ix, increased with magnetic field
and decreased for I‖, as expected for the lower electrical polarizability of the nanorods
along the short as compared to the long rod axis. The measurements were analyzed
as described in Reference [14] to obtain the mean magnetic moment per particle m
and the particle density N in the colloid.

With increasing magnetic field, the transmission saturates until all nanorods in
the colloid are aligned along the field. At a sufficiently large value of the Langevin
parameter, e.g. ζ > 30, the transmitted intensity depends on the orientation angle
of the rod axis with respect to polarization direction and vice versa, ϑ = sin−1((I −
I||)/(I⊥−I||))1/2, Figure S5. SFOT data for all nanorods used in the microrheological
measurements are presented in Figure S6.
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Figure S5: SFOT measurement of sample N1 with normalized optical transmission
I⊥/Ix (upper branch) and I‖/Ix (lower branch) as function of field H. The regression
analysis (lines) (see Ref. [14]) provided the mean magnetic moment m = 3.84(1) ×
10−17 Am2. The intensity of the sample with nanorods aligned under saturation field
depends on the angle ϑ between the rod axis and the polarization direction.
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Figure S6: SFOT measurements of sample N2-5 with normalized optical transmissions
I⊥/Ix (upper branches) and I‖/Ix (lower branches). Because the magnetic moment
m increases with the length of the nanorods, magnetic saturation was reached at
lower fields H for the larger nanorods. The splitting of the two branches depends on
the aspect ratio of the nanorods and their concentration in the colloid. Solid lines
represent fit results (lines) based on eq. S3 and model calculations as described in
Ref. [14].
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S3 Oscillating field-dependent optical transmission

(OFOT) measurements

S3.1 Dynamic modulus G∗ and optical response function X∗

We assume the polymer solution to be isotropic, homogeneous, incompressible and to
exhibit linear viscoelastic behavior at the applied strain. The general expression for
the time-dependent simple shear stress τ and strain γ is a linear differential equation
with constant coefficients an and bm [15],∑

n

anτ
(n) =

∑
m

bmγ
(m), (S5)

where (·)(i) denotes the time derivative di(·)/dti. Inserting complex harmonic func-
tions τ ∗(t) = τ ∗0 exp iωt and γ∗(t) = γ∗0 exp iωt leads to

τ ∗0
∑
n

an(iω)n = γ∗0
∑
m

bm(iω)m. (S6)

The dynamic modulus,

G∗(ω) =
τ ∗0
γ∗0

=

∑
m bm(iω)m∑
n an(iω)n

, (S7)

is completely determined by the coefficients an and bm.

The instrumental quantities measured in macrorheology, e.g. the mechanical
torque applied onto the shaft of a cone-plate system and the shaft rotation angle, are
translated into geometry-independent variables, i.e. shear strain and stress. In active
microrheology, the force and torque applied to the probe particles and the geometry-
dependent deformation of the matrix have to be included explicitly in the model. The
mechanical interaction between the rotating nanoparticle and the suspension medium
includes viscous torque Tv = Kvηθ̇ and elastic restoring torque Te = KvGθ

1. The ge-
ometry factor Kv is determined by the shape and hydrodynamic size of the inclusion
and is related to the rotational diffusion constant Dr = ξr/kBT = Kvη/kBT .

1At the viscosity of pure water, the contribution of inertial torque at the maximum frequency
(f=3 kHz) is approximately 10% of the frictional torque. Such low viscosities are considered as lower
resolution limit. For all measurements of zero-shear rate viscosity (low frequency) in semi-dilute
solutions and of the dynamic modulus in the entanglement regime, inertial effects can be neglected.
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Figure S7: Schematic diagram to illustrate the oscillating motion of an unaxial mag-
netic particle with magnetic moment m exposed to a magnetic field of constant
magnitude H0 and direction β(t) oscillating within an angular range of ±β0. The
OFOT response function is determined by the time-dependent orientation angles of
the magnetic moment, θ(t) = θ∗0 sin (ωt) with respect to the direction of the field,
β(t) = β0 sin (ωt).

The relationship between the OFOT response function X∗(ω) and the complex
dynamical modulus G∗(ω) can be derived for general linear viscoelastic matter. The
equation of rotational motion for a torque-driven particle is given as∑

n

anT
(n) = Kv

∑
m

bmθ
(m) (S8)

with the same coefficients an and bm of the linear differential equation describing
the properties of the viscoelastic matrix, eq S5. Substituting the torque, T =
mµ0H0 sin (β − θ) ≈ mµ0H0(β − θ), results in∑

n

an(β − θ)(n) = K
∑
m

bmθ
(m), (S9)

with K = Kv/mµ0H0. Inserting complex exponential harmonic functions (see above)
and using the linearity of the differential equation,

β0
∑
n

an(iω)n − θ∗0
∑
n

an(iω)n = Kθ∗0
∑
m

bm(iω)m. (S10)

With the dynamic modulus, eq S7, we obtain β0 − θ∗0 = Kθ∗0G
∗ from which

X∗(ω) =
θ∗0
β0

=
1

1 +KG∗(ω)
(S11)

follows immediately.
This identity enables the computation of the complex modulus directly from

the OFOT response function [16] provided the particle factor K is a single valued
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constant. However, microrheological measurements based on ensembles of magnetic
nanoparticles are severely affected by their polydispersity, which we take into account
by introducing a distribution function P (K), i.e.

X∗(ω) =

∫ ∞
0

P (K)(1 +KG∗(ω))−1dK. (S12)

The distribution function P (K) represents the polydispersity of the nanorods re-
garding their hydrodynamic rotational friction factor ξr as well as their magnetic
moment m. P (K) is assumed to be characteristic for a given nanorod colloid. Hence,
the distribution function can be calibrated by a reference measurement using a matrix
phase with well defined dynamic modulus, e.g. G∗(ω) = iη0ω for a Newtonian fluid
with constant viscosity η0. The task of retrieving P (K) from the measured optical re-
sponse function X∗(ω) is solved by numerical inversion with Tikononov regularization
and Bayesian inference (see following section for details).
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Figure S8: The OFOT spectrum of nanorods (N3) in water is slightly broadened as
compared to a single Debye function (dashed) due to polydispersity. The distribution
function P (K) (insert) is retrieved by numerical inversion of the OFOT spectrum
with the shown fit result.

The OFOT spectrum for Ni nanorods in water is shown in Figure S8. The re-
laxation peak in the imaginary part is slightly broadened as compared to a single
Debye function indicating a moderate polydispersity of the nanorods. The distri-
bution function P (K) (insert) is retrieved by numerical inversion and is used in the
following analysis of OFOT measurements of the same nanorod colloid in polymer so-
lutions. Starting from an initial guess for the dynamic modulus, the optical response
function is computed using eq. S12 with calibrated P (K) followed by iterative re-
finement of G′ and G′′ until the best agreement with the measured data is obtained,
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Figure S9: Example for the analysis of an OFOT-spectrum (log-log plot) of nanorods
(N3) in 1.60 wt% PEO-1M (left). Fitting of experimental data using eq S12 and
P (K), obtained by numerical inversion of a calibration measurement, provided the
corresponding dynamic modulus G′ and G′′ (right). The zero-shear rate viscosity η0
is obtained from the prefactor in the linear regime.

Figure S9. The zero-shear rate viscosity is calculated from the loss modulus in the
terminal region.
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S3.2 Determination of P (K) from a calibration measurement

The distribution function P (K) represents the polydispersity of the nanorods re-
garding their hydrodynamic rotational friction factor ξr and their particle magnetic
moment m. P (K) is assumed to be characteristic for a given nanorod colloid and can
be determined by a calibration measurement using a matrix phase with well defined
dynamic modulus, e.g. G∗(ω) = iη0ω for a Newtonian fluid with constant viscosity
η0. With Eq. S12,

X∗(ω) =

∫ ∞
0

P (K)
1

1 + iKη0ω
dK. (S13)

The task of retrieving P (K) from the measured optical response function X∗(ω) is
solved by numerical inversion with Tikononov regularization.. The measured optical
response function is a vector with M complex valued data points. At each measured
angular frequency ωj, the value of X∗ can be approximated by a weighted sum of
model functions,

X∗(ωj) =
N∑
i=1

P (Ki)
1

1 + iKiη0ωj
∆Ki, (S14)

where the distribution function P (K) is also discretised into N bins of width ∆Ki

being equally large on a logarithmic scale. Equation S14, can be written as X∗ =
A∗p, where A∗i,j = (1 + iKiη0ωj)

−1 are the elements of the transfer matrix and
pi = P (Ki)∆Ki the elements of the coefficient vector to be determined. Assum-
ing measurement uncertainties governed by gaussian noise with standard deviation
σ, the best interpolant minimizes χ2 = (1/σ2)||A∗p−X∗||2. In order to suppress high
frequency fluctuations, typically encountered with ill-conditioned inversion problems,
exhaustive fitting of noise and also negative values of pj, the coefficient vector p is
obtained as the non-negative least square solution of the Tikhonov functional

T (p) =
1

2σ2
||A∗p− X∗||22 + α||Lp||22. (S15)

Here, α is the regularization parameter and L is the second order finite difference
operator, modified for fixed end points p0 = pN = 0 [17],

L =
1

2



2 0
−1 2 −1

−1 2 −1
. . .
−1 2 −1

−1 2 −1
0 2


(S16)

There are several variants of this specific regularizer L with different values for L1,1 =
LN,N [18–20], but for the present problem, the choice of the boundary conditions has
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marginal effect on the result. With this regularizer,

S = ||Lp||22 =
N−1∑
i=2

[
pi − (pi−1 + pi+1)/2

]2
+ p21 + p2N . (S17)

The additional prefactor 1/2 to the first term in equation S15 (χ2/2) is introduced
in anticipation of the Bayesian analysis further below. For practical reasons, the
complex optical response function and the transfer matrix are separated into real and
imaginary parts, combined with the regularization term,∣∣∣∣∣∣

∣∣∣∣∣∣
 σ−1ARe

σ−1AIm
√

2αL

 p−

 σ−1XRe

σ−1XIm

0N,1

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(S18)

and minimized using the MATLAB nonnegative linear least-square solver to provide
pα for the given value of α.

The regularization parameter was varied in a range covering three orders of mag-
nitude with equal spacing on a logarithmic scale and the corresponding distribution
functions pα determined. There are several possible strategies for selecting the best
choice for α [21,22]. We first applied the L-curve method [23,24] which is a graphical
display of the balance between accurate data representation at small α and a smooth
and regular solution at large α. For Tikhonov regularization, the L-curve is obtained
by plotting the regularization penalty, r̂ = log ||Lp||2, vs. the model fit residual,
ŝ = log ||A∗p−X∗||2, parameterized by the regularization parameter α, figure S10.
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Figure S10: Close-up of the corner in the L-curve with point of maximum curvature
and point of maximum evidence.
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Suggested by Hansen et al., the corner of the L-curve represents a well-balanced com-
promize and can be determined as the point of maximum curvature κ, [23]. Com-
putation of the curvature using κ = (r̂′ŝ′′ − r̂′′ŝ′)/((r̂′)2 + (ŝ′)2)3/2 involves the first
and second derivatives of the discrete data r̂(α) and ŝ(α), respectively, and requires
preliminary smoothing (2nd order Sawitzky-Golay), figure S11. The resulting point
of maximum curvature is marked in figure S10.
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Figure S11: Curvature κ as function of regularization parameter α after 2nd order
Sawatzky-Golay smoothing with different number of interpolation points. The max-
imum curvature was obtained by fitting a 2nd order polynomial.

An alternative approach for optimizing the regulatization parameter is provided
by Bayesian probability theory. In the Bayesian framework, the Tikhonov regular-
ization can be regarded as the first level of inference [25]. Given the hypothesis H
that equation S14 is valid, the posterior propability of model parameter p after mea-
surement X is the product of likelihood for the data and prior assumption for p,
normalized by the evidence, i.e.

P (p|X,H) =
P (X|p, H)P (p|Hi)

P (X|H)
(S19)

=
exp(−χ2/2)exp(−αS)

P (X|H)
, (S20)

The maximum a posteriori estimator (MAP) coincides with the minimum of the
Tikhonov functional. Beyond this analogy, second level Bayesian inference also allows
to evaluate the choice of α by comparing their evidence. The evidence, or marginal
likelihood, serves as renormalization constant and is obtained by integrating the pos-
terior probabilities. Taking advantage of the Laplace approximation for gaussian
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posterior, as expected in the case of the Tikhononv regularization, the evidence for
the regularization parameter α is [26]

P (α) = CN exp (−χ2/2− αS) · det−1/2(H/α). (S21)

with CN = ((1/2)N(N + 1))1/2. The argument in the exponential is the Tikhonov
functional evaluated at the MAP vector pα. With the Hessian H, computed as second
derivative of T (p) [20],

∇pT (p) = ∇p

( 1

2σ2
(Ap− X)T (Ap− X) + α(Lp)T (Lp)

)
, (S22)

=
1

2σ2
(2ATAp− 2AX) + α(2LTLp), (S23)

H ≡ ∇2
pT (p), (S24)

=
1

σ2
ATA + 2αLTL, (S25)

the final posterior p̄ was obtained by summation of the subsolutions pα, weighted by
their evidence P (α), i.e.

p̄ =
αmax∑
αmin

P (α)pα∆α. (S26)
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P(
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Figure S12: Density function P(K) obtained by Tikhonov regularization. The varying
results for different α are represented by the gray area. Their sum, weighted by the
evidence (equations S21 and S26) is well approximated by the particular density
function for α with maximum evidence.
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For the present inversion problem, the resulting weighted average solution p̄ was found
to be well approximated by the singular solution for maximum evidence αME. Fur-
thermore, the value of αME was rather close to the point of maximum curvature in the
L-curve, figure S10. The deviation in the distribution functions P (K) was marginal
as indicated by a difference in the expected mean EK of less than 0.2%, figure S13.
In conclusion, Tikhonov regulariation combined with parameter selection for maxi-
mum Bayesian evidence provides a convenient and reproducible method to retrieve
the particle factor distribution function P (K) from a calibration measurement.
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Figure S13: Comparison of the density function P(K) obtained by Tikhonov regu-
larization for α at maximum curvature κ of the L-curve with the result for α with
maximum evindence in the Bayesian inference.

S19



101 102 103
10-2

10-1

100

X'
, -

X'
'

w [rad/s]

Figure S14: Fit of the real and imaginary part of the optical response function ob-
tained by numerical inversion using Tikhonov regularization and optimized parameter
αME.
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S3.3 Linearity, resolution limit and viscosity range

We consider some experimental aspects of OFOT measurements which are relevant
for the application in microrheology. The magnetic nanorods are actively driven
to oscillatory rotation by the external field. Hence, the particle are not equilibrated
with the polymer solution. In analogy to SAOS measurements, we check for the linear
response regime by varying the oscillation angle amplitude β0. As shown in Figure
S15 using an example, the OFOT spectra are indentical within the experimental
uncertainty when the oscillation amplitude is reduced from 12◦ to 1◦. All OFOT
measurements are routinely repeated using two angular amplitudes of (12◦ and 6◦,
respectively, and examples for all nanorods, used in the present study are shown in
Figure S16.
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   9°
   6°
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Figure S15: OFOT response functions of nanorods (Lh = 240 nm) in a 2.91 wt.%
PEO-1M solution. Variation of the oscillation angle amplitude β0 shows no significant
effect on the result which confirms the measurements to be in the linear regime.

Another important figure is the lower resolution limit of the method. In Figure
S17 we compare results obtained from different methods applied to 0.198 wt.% PEO-
1M solution. The rolling ball viscometer provided η0 = 2.365(6) mPa · s, i.e. slightly
more than twice the viscosity of the solvent water. Shear rate-dependent viscosity
measurements exhibit a slightly lower constant value at low shear rates and the on-
set of shear thinning a γ̇ > 2000 1/s. The dynamic modulus, obtained by SAOS
or OFOT measurements can only be compared with shear rheometry on the basis
of the Cox-Merz rule. The magnitude of the complex viscosity, derived from SAOS
measurements, is in agreement with the shear viscosity. Shear thinning could not be
revealed due to the limited frequency range. In contrast, the complex viscosity, calcu-
lated from OFOT spectra, clearly showed the decrease at high frequencies. However,
we also observe some modulation in the data, which are presumably caused by small
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Figure S16: OFOT spectra of 2.91 wt.% PEO-1M solution measured with different
nanorods (a) N2 (b) N3 (c) N4 (d) N5. All samples are measured at two oscillation
angle amplitudes β0 to verify the linear regime.
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changes in the hydrodynamic profile P (K) of the nanorod colloid. The standard de-
viation in the frequency range below 1000 rad/s is σeta0 = 0.08 mPa · s and represents
the resolution limit of the method at very low viscosities.
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Figure S17: Shear Viscosity (CP) of 0.198 wt.% PEO-1M exhibits Newtonian regime
at low shear rates, slightly lower than the result obtained from rolling ball viscosime-
try, 2.365(6) mPas (horizontal line). The onset of shear thinning is observed at
γ̇ > 103 1/s. The results are compared with the complex viscosity, derived from
SAOS and OFOT measurements based on the Cox-Merz rule. The SAOS results
agree with the zero shear rate viscosity but are restricted in the accessible frequency
range. The viscosity derived from OFOT measurements agree in the low frequency
range and also exhibit a decrease at ω > 103 rad/s. The uncertainty, associated with
the modulation of the signal, determines the resolution limit of the method.

The upper limit of OFOT measurement is apparent from the dynamic modulus
measurements at high polymer concentrations, e.g. in Figure S23. For |G∗| > 3 kPa,
the optical signal reaches the noise level of the present experimental setup so that the
phase shift cannot be determined accurately.
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S4 Additional evaluations according to alternative

approaches

S4.1 Size-dependent viscosity according to Wisniewska et al.

Wisniewska et al. [27] analyzed a collection of literature data and provided a semi-
empirical equation for the viscosity of PEO solutions,

η0 = ηs exp

(
∆E

RT

(
Rh

Rg(c/c∗)β

)α)
(S27)

with the model parameters ∆E = 4 kJ/mol, α = 0.78 and β = 0.75 for entan-
gled solutions. Other quantities in eq S27 are the solvent viscosity ηs, gas constant
R, temperature T , overlap concentration c∗, hydrodynamic radius Rh and radius of
gyration Rg of the PEO molecules. For further details, we refer to the original publi-
cation [27]. When applied to the macroscopic zero-shear rate viscosity data, we find
excellent agreement without further adjustment of the model parameters, figures S18
and S19 (black markers).

The model has been generalized to also describe the size-dependent viscosity, de-
rived from the motion of small spherical particles with size Rp. Keeping all parameters
fixed, only the hydrodynamic radius of the polymer Rh in the numerator is replaced
by Reff with R−2eff = R−2h + R−2p . The results for the viscosity, derived from OFOT
measurements of the same solutions using Ni nanorods of different hydrodynamic
length, are analyzed using Eq.S27 and the best approximate values for Reff obtained
by minimizing the mean square deviation are summarized in Table S3. The results are
significantly smaller than the hydrodynamic length of the nanorods, however, they are
rather close to values calculated using a modified relation R̃−2eff = R−2h + (LhDh/4)−1,
which takes the cylindrical shape with hydrodynamic length Lh and diameter Dh of
the nanorods into account. Despite this apparently good agreement, the concentra-
tion dependence of the nanoviscosity is not reproduced very well. The measurements
show a much stronger increase with c, comparable to the macroscopic viscosity, so
that the ratio ηOFOT0 /ηmacro0 is nearly constant.
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Table S3: Analysis of zero-shear rate viscosity obtained from OFOT measurements
using eq S27: PEO molar mass Mw, hydrodynamic radius Rh, radius of gyration Rg

and overlap concentration c∗ (see reference [27]), hydrodynamic length of nanorods
Lh (Dh = 50 nm for all nanorods), effective hydrodynamic size Reff , obtained by
minimization of mean square deviation, and R̃eff , calculated using the hydrodynamic
size of the nanorods.

Mw Rh Rg c∗ Lh Reff R̃eff

[g/mol] [nm] [nm] [g/cm3] [nm] [nm] [nm]
1M 39.1 68.5 0.0013 170 30.4 33.5

298 33.3 35.5
460 36.0 36.7

220k 16.3 28.0 0.0040 170 14.7 15.8
298 15.5 16.0
460 16.0 16.1
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Figure S18: Zero-shear rate viscosity of PEO-1M solutions in the entanglement regime
as function of concentration. The semi-empirical relationship (eq S27 shows excellent
agreement with macroscopic viscosity (black markers) without adjusting parameters.
The results obtained from OFOT measurements can be approximated by the size-
dependent viscosity model by variation of Reff , however, the predicted concentration
dependence is weaker than observed in the experimental results.
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Figure S19: Zero-shear rate viscosity of PEO-220k solutions in the entanglement
regime as function of concentration. The semi-empirical relationship (eq S27 shows
excellent agreement with macroscopic viscosity (black markers) without adjusting
parameters. The results obtained from OFOT measurements can be approximated
by the size-dependent viscosity model by variation of Reff , however, the predicted
concentration dependence is weaker than observed in the experimental results.
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S4.2 Correlation length as scaling parameter for the relative
viscosity
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Figure S20: The ratio of zero-shear rate viscosities, retrieved from OFOT spectra,
divided by the macroscopic values and plotted as function of ξ/Lh do not fall on a
common master curve. For comparison, see Figure 8 in the main paper.
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S4.3 Mathematical approximation of size scaling

The reduced zero-shear rate viscosities ηOFOT0 /ηmacro0 of PEO solutions with different
molecular weight and concentration, and measured using nanorods with different
hydrodynamic length, collapse on a master curve when plotted as function of Rg/Lh.
A first attempt to identify an empirical relation is a log-log plot, shown in Figure
S21. The data exhibit continuous curvature instead of a constant slope which rules
out a simple power law dependence.

0.01 0.1
0.1

1

             50k  220k  1M
740 nm   
460 nm   
289 nm   
170 nm    

 

 

O
FO

T /
m

ac
ro

0
 

Rg/Lh

Figure S21: Log-log plot of reduced zero-shear rate viscosity as function of ratio
Rg/Lh. The continuous curvature rules out a simple power law relation.

We further compare the least-square fit of the reduced zero-shear rate viscosity
as function of Rg/Lh, shown in Figure S22, by (i) an exponential function and (ii)
a linear relation. The residuum of the linear regression clearly exhibits a systematic
deviation whereas that of the exponential fit a more homogeneous scatter.

S4.4 Constraint release by nanorod translational diffusion

Dispersed rigid particles contribute a geometric constraint to the lateral motion of
macromolecules in addition to molecular entanglement. Consequently, stress release
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Figure S22: Comparison of linear and exponential fit of reduced zero-shear rate vis-
cosity as function of ratio Rg/Lh. Upper pane Fit and lower pane, residuum.

may occur by particle diffusion addition to reptation and is dominated by the faster
of the two processes. For comparison of the characteristic time constants, we first
calculate the disengagement time τd = 3Z3τe from the analysis of SAOS data using
the Likthman-McLeish model (Table ). The particle escape time is calculated using
τp = L2

h/D with diffusion constant D = kBT ln (Lh/Dh)/(nπLhηeff ) for translation
parallel (n = 2) or perpendicular (n = 4) to the nanorod axis. Since the hydrody-
namic diameter of the nanorods is close to the tube diameter, the particles are at the
border between the large and intermediate size regime. With the low number of en-
tanglements, the effective viscosity in the intermediate size regime, ηeff ≈ ηs(Dh/ξ)

2,
is similar to the macroscopic viscosity. Therefore, we estimate ηeff ≈ ηs(Rh/ξ)

2 with
the hydrodynamic radius Rh = Dh/2 as measure of particle size as a lower bound. The
obtained particle escape times are all significantly larger than the reptation time, Ta-
ble S4. Reptation, being the faster process in all solutions, determines the viscoelastic
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behavior and constraint release by translational diffusion can be neglected.

Table S4: Analysis of characteristic times for stress relaxation by reptation or particle
diffusion for PEO-1M solutions with concentration c: correlation length ξ, tube di-
ameter at, effective viscosity in the intermediate regime ηeff , disengagement time by
reptation τd and escape times of nanorods by diffusion parallel (τp,||) or perpendicular
(τp,⊥) to the cylinder axis for particles with given hydrodynamic length.

c [g/cm3] 1.60 2.91 5.29
ξ [nm] 5.9 3.4 2.0
at [nm] 108 67 57
ηeff [Pa · s] 0.067 0.201 0.581

τd [s] 0.002 0.058 0.108

τp,|| (460 nm) [s] 6.5 19.6 56.7
τp,|| (289 nm) [s] 2.3 7.0 20.2
τp,|| (170 nm) [s] 0.9 2.9 8.2

τp,⊥ (460 nm) [s] 0.3 1.1 3.3
τp,⊥ (289 nm) [s] 0.3 0.8 2.4
τp,⊥ (170 nm) [s] 0.3 1.0 2.8
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S5 Dynamic modulus of PEO-220k solutions
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Figure S23: Dynamic modulus of PEO-220k solutions with three different concentra-
tions (rows) determined from OFOT measurements using nanorods of different hydro-
dynamic size (columns). The macroscopic dynamic modulus (SAOS, black markers) is
shown for comparison and the results from the Likhtman-McLeish model calculations
(black lines) are also included in the left column.
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Table S5: Parameters, used in Likhtman-McLeish model calculations: molar mass
Mw and concentration c of the PEO-220k solutions, entanglement modulus Ge and
molar mass Me of an entanglement strand, number of entanglements per chain Z,
and equilibration time constant τe.

Mw c Ge Me Z τe
[g/mol] [g/cm3] [Pa] [g/mol] [1] ×10−6 s

220k 15.59 17636 25400 8.7 3.8
220k 8.58 4185 59000 3.7 33
220k 4.72 992 136800 1.6 17
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