Supporting Information

Ferrocene as a Novel Additive to Enhance the Lithium-Ion Storage Capability of SnO₂/Graphene Composite

Siyu Zhang^a, Beirong Liang^a, Yu Fan^a, Junjie Wang^a, Xianqing Liang^{a,b,*}, Haifu

Huang ^{a,b}, Dan Huang ^{a,b}, Wenzheng Zhou ^{a,b}, Jin Guo ^{a,b}

^a Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China

^b Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China

*Email: lxq@gxu.edu.cn (Xianqing Liang).

Figure S1. EDS spectrum of the fresh 10%Fc-SnO₂/G electrode.

The C, O, F, Sn and Fe peaks can be seen in the EDS spectrum of 10%Fc-SnO₂/G electrode.

Figure S2. The CVs of (a) 20%Fc-SnO₂/G and (b) ferrocene electrodes scanned at 0.1 mV s⁻¹.

Compared to SnO_2/G electrode, the 20%Fc-SnO₂/G electrode shows two additional peaks at ~1.60 and 0.73 V. According to the references, the peak at ~1.60 V is ascribed to the formation of SEI, which disappears in the following cycles. This peak can also be found in the first discharge scan of the ferrocene electrode. Another peak at ~0.73 V could refer to the electrochemical reaction of ferrocene with Li⁺.

Figure S3. (a) Cyclic performance of ferrocene electrode at 0.1 A g⁻¹; (b) Selected discharge and charge voltage curves of ferrocene electrode.

The cycling performance of ferrocene was also conducted. It delivers a reversible capacity of 193.2 mAh g^{-1} after 100 cycles, which is much lower than that of the SnO₂/G composite. The first charge and discharge capacities of ferrocene are merely 186.1 and 359.3 mAh g^{-1} .

Figure S4. EIS spectra of the SnO₂/G and 10%Fc-SnO₂/G electrodes after 10 cycles. As seen from the Nyquist plots, 10%Fc-SnO₂/G electrode shows a smaller diameter of the semicircle at high frequencies compared to SnO₂/G electrode. Besides, the slope of the straight line for 10%Fc-SnO₂/G electrode at low frequencies is larger than that for SnO₂/G electrode.

Figure S5. Sn $M_{5,4}$ -edge XAS spectra of the 10%Fc-SnO₂/G electrode before cycling and after 150 cycles.

It can be seen that the spectral profile of the 10%Fc-SnO₂/G electrode after 150 cycles is similar to that of the fresh 10%Fc-SnO₂/G electrode, revealing the good reoxidation of Sn to SnO₂ in the 10%Fc-SnO₂/G electrode.

reported SnO ₂ -containing composites.								
Materials	Voltage range (V)	Current density (mA g ⁻¹)	Cycle number	Capacity (mAh g ⁻¹)	Ref			
10%Fc-SnO ₂ /G	0.01-3.0	100	150	1084.5	This			
		500	220	787.2	work			
SnO ₂ /NC submicrobox	0.01-2.0	500	100	491	1			
SnO _{2-x} : RGO	0.01-3.0	200	100	950	2			
H-SnO ₂ @rGO	0.01-3.0	100	100	1107	3			
		1000	500	552				
Pd-doped graphene- based SnO ₂ nanocomposite	0.01-3.0	100	100	900	4			
Reduced GO/SnO ₂ nanocomposite	0.01–2.0	100	200	718	5			
SnO ₂ -RGO composite	0.005-3.0	100	70	776	6			
		1000	1000	531				
Porous micron-SnO ₂ /C	0.01-3.0	200	100	954	7			
composite	0.01 0.0	1000	800	406				
SnO ₂ NC@GG	0.05-3.0	200	200	1090	8			
SnO ₂ /carbon nanotube	0.01-2.0	500	200	596	9			
Bow-like SnO ₂ @C particles	0.005-3.0	400	100	963	10			
SnO ₂ -QDs/N-GNs	0.005-2.5	100	80	803	11			
SnO _x /Carbon Nanohybrids	0.005-3.0	500	200	608	12			

Table S1. Comparison of lithium storage performance of 10%Fc-SnO₂/G with some

SnO ₂ Quantum Dots@GO	0.01-3.0	100	100	1121	13
SnO ₂ -Fe-graphite composite	0.01-3.0	200	400	1338	14
SnO ₂ @C nanocomposite	0.01-3.0	100	220	597.3	15
SnO ₂ -Mn-graphite composite	0.01-3.0	200 2000	200 1200	850 700	16
F-SnO ₂ @RGO	0.005-3.0	100	100	1277	17
SnO ₂ -Co-graphite	0.01-3.0	200 2000	250 1000	875 610	18
W-doped SnO ₂ /graphene	0.005-3.0	100 1000	100 2000	1100 776	19
Graphene-based Pt/SnO ₂ nanocomposite	0.01-3.0	78.2	100	950	20
Porous SnO ₂ -C composite	0.02-3.0	200 1000	600 800	1400 930	21
SnO ₂ /Cu/GNS	0.01-3.0	100	200	890.6	22
SnO2NC@N-RGO	0.005-3.0	500	500	1346	23
SnO ₂ @rGO	0.01-3.0	200	130	1149	24
3D SnO ₂ /graphene composite sphere	0.01-3.0	100	120	1140	25
SnO ₂ @C@VO ₂ Composite	0.01-3.0	100 500	100 500	765.1 424.1	26

REFERENCES

Zhou, X.; Yu, L.; Lou, X. W. Formation of Uniform N-doped Carbon-Coated SnO₂
 Submicroboxes with Enhanced Lithium Storage Properties. *Adv. Energy Mater.* 2016,

6, 1600451.

 Dong, W.; Xu, J.; Wang, C.; Lu, Y.; Liu, X.; Wang, X.; Yuan, X.; Wang, Z.; Lin, T.;
 Sui, M.; Chen, I. W.; Huang, F. A Robust and Conductive Black Tin Oxide Nanostructure Makes Efficient Lithium-Ion Batteries Possible. *Adv. Mater.* 2017, 29, 1700136.

 Hu, X.; Zeng, G.; Chen, J.; Lu, C.; Wen, Z. 3D Graphene Network Encapsulating SnO₂ Hollow Spheres as a High-Performance Anode Material for Lithium-Ion Batteries.
 J. Mater. Chem. A 2017, *5*, 4535-4542.

 Zhao, P.; Yue, W.; Yuan, X.; Bao, H. Exceptional Lithium Anodic Performance of Pd-Doped Graphene-Based SnO₂ Nanocomposite. *Electrochim. Acta* 2017, *225*, 322-329.

5. Wang, L.; Wang, D.; Dong, Z.; Zhang, F.; Jin, J. Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO₂ Nanocomposites for Lithium Ion Battery. *Nano Lett.* **2013**, *13*, 1711-1716.

6. Li, W.; Yoon, D.; Hwang, J.; Chang, W.; Kim, J. One-Pot Route to Synthesize SnO₂-Reduced Graphene Oxide Composites and Their Enhanced Electrochemical Performance as Anodes in Lithium-Ion Batteries. *J. Power Sources* **2015**, *293*, 1024-1031.

Wang, M. S.; Lei, M.; Wang, Z. Q.; Zhao, X.; Xu, J.; Yang, W.; Huang, Y.; Li, X.
 Scalable Preparation of Porous Micron-SnO₂/C Composites as High Performance
 Anode Material for Lithium Ion Battery. *J. Power Sources* 2016, *309*, 238-244.

8. Wan, Y.; Sha, Y.; Luo, S.; Deng, W.; Wang, X.; Xue, G.; Zhou, D. Facile Synthesis

of Tin Dioxide-Based High Performance Anodes for Lithium Ion Batteries Assisted by Graphene Gel. J. Power Sources 2015, 295, 41-46.

 Zhou, X.; Yu, L.; Lou, X. W. Nanowire-Templated Formation of SnO₂/Carbon Nanotubes with Enhanced Lithium Storage Properties. *Nanoscale* 2016, *8*, 8384-8389.
 Liang, J.; Yu, X. Y.; Zhou, H.; Wu, H. B.; Ding, S.; Lou, X. W. Bowl-Like SnO₂@Carbon Hollow Particles as an Advanced Anode Material for Lithium-Ion Batteries. *Angew. Chem., Int. Ed.* 2014, *53*, 12803-12807.

Li, Z.; Wu, G.; Deng, S.; Wang, S.; Wang, Y.; Zhou, J.; Liu, S.; Wu, W.; Wu, M.
 Combination of Uniform SnO₂ Nanocrystals with Nitrogen Doped Graphene for High Performance Lithium-Ion Batteries Anode. *Chem. Eng. J.* 2016, 283, 1435-1442.

12. Zhou, X.; Dai, Z.; Liu, S.; Bao, J.; Guo, Y. G. Ultra-Uniform SnO_x/Carbon Nanohybrids toward Advanced Lithium-Ion Battery Anodes. *Adv. Mater.* **2014**, *26*, 3943-3949.

Zhao, K.; Zhang, L.; Xia, R.; Dong, Y.; Xu, W.; Niu, C.; He, L.; Yan, M.; Qu, L.;
 Mai, L. SnO₂ Quantum Dots@Graphene Oxide as a High-Rate and Long-Life Anode
 Material for Lithium-Ion Batteries. *Small* 2016, *12*, 588-594.

Hu, R.; Ouyang, Y.; Liang, T.; Wang, H.; Liu, J.; Chen, J.; Yang, C.; Yang, L.; Zhu,
M. Stabilizing the Nanostructure of SnO₂ Anodes by Transition Metals: A Route to
Achieve High Initial Coulombic Efficiency and Stable Capacities for Lithium Storage. *Adv. Mater.* 2017, 29, 1605006.

15. Wang, F.; Jiao, H.; He, E.; Yang, S.; Chen, Y.; Zhao, M.; Song, X. Facile Synthesis of Ultrafine SnO₂ Nanoparticles Embedded in Carbon Networks as a High-Performance

Anode for Lithium-Ion Batteries. J. Power Sources 2016, 326, 78-83.

Hu, R.; Ouyang, Y.; Liang, T.; Tang, X.; Yuan, B.; Liu, J.; Zhang, L.; Yang, L.; Zhu,
M. Inhibiting Grain Coarsening and Inducing Oxygen Vacancies: the Roles of Mn in
Achieving a Highly Reversible Conversion Reaction and a Long Life SnO₂–Mn–
Graphite Ternary Anode. *Energy Environ. Sci.* 2017, *10*, 2017-2029.

 Sun, J.; Xiao, L.; Jiang, S.; Li, G.; Huang, Y.; Geng, J. Fluorine-Doped SnO₂@Graphene Porous Composite for High Capacity Lithium-Ion Batteries. *Chem. Mater.* 2015, 27, 4594-4603.

Liang, T.; Hu, R.; Zhang, H.; Zhang, H.; Wang, H.; Ouyang, Y.; Liu, J.; Yang, L.;
 Zhu, M. A Scalable Ternary SnO₂–Co–C Composite as a High Initial Coulombic
 Efficiency, Large Capacity and Long Lifetime Anode for Lithium Ion Batteries. *J. Mater. Chem. A* 2018, 6, 7206-7220.

19. Wang, S.; Shi, L.; Chen, G.; Ba, C.; Wang, Z.; Zhu, J.; Zhao, Y.; Zhang, M.; Yuan, S. In Situ Synthesis of Tungsten-Doped SnO₂ and Graphene Nanocomposites for High-Performance Anode Materials of Lithium-Ion Batteries. *ACS Appl. Mater. Interfaces* **2017**, *9*, 17163-17171.

Zhao, P.; Yue, W.; Xu, Z.; Sun, S.; Bao, H. Graphene-Based Pt/SnO₂
 Nanocomposite with Superior Electrochemical Performance for Lithium-Ion Batteries.
 J. Alloy. Compd. 2017, 704, 51-57.

21. Shen, L.; Liu, F.; Chen, G.; Zhou, H.; Le, Z.; Wu, H. B.; Wang, G.; Lu, Y. Encapsulation of SnO₂ Nanocrystals into Hierarchically Porous Carbon by Melt Infiltration for High-Performance Lithium Storage. *J. Mater. Chem. A* **2016**, *4*, 18706-

18710.

22. Jiang, Y.; Wan, Y.; Jiang, W.; Tao, H.; Li, W.; Huang, S.; Chen, Z.; Zhao, B. Stabilizing the Reversible Capacity of SnO₂/Graphene Composites by Cu Nanoparticles. *Chem. Eng. J.* **2019**, *367*, 45-54.

23. Zhou, X.; Wan, L. J.; Guo, Y. G. Binding SnO₂ Nanocrystals in Nitrogen-Doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries. *Adv. Mater.* **2013**, *25*, 2152-2157.

24. Gao, L.; Gu, C.; Ren, H.; Song, X.; Huang, J. Synthesis of Tin(IV) Oxide@Reduced Graphene Oxide Nanocomposites with Superior Electrochemical Behaviors for Lithium-Ions Batteries. *Electrochim. Acta* **2018**, *290*, 72-81.

Liu, D.; Kong, Z.; Liu, X.; Fu, A.; Wang, Y.; Guo, Y. G.; Guo, P.; Li, H.; Zhao, X.
 Spray-Drying-Induced Assembly of Skeleton-Structured SnO₂/Graphene Composite
 Spheres as Superior Anode Materials for High-Performance Lithium-Ion Batteries.
 ACS Appl. Mater. Interfaces 2018, 10, 2515-2525.

26. Guo, W.; Wang, Y.; Li, Q.; Wang, D.; Zhang, F.; Yang, Y.; Yu, Y. SnO₂@C@VO₂
Composite Hollow Nanospheres as an Anode Material for Lithium-Ion Batteries. *ACS Appl. Mater. Interfaces* 2018, *10*, 14993-15000.