Supporting Information

Palladium(0)-Lithium lodide-Cocatalyzed Asymmetric Hydroalkylation of Conjugated Enynes with Pronucleophiles Leading to 1,3-Disubstituted Allenes

Hirokazu Tsukamoto, ${ }^{* a, b}$ Tatsuya Konno, ${ }^{a}$ Kazuya Ito, ${ }^{a}$ and Takayuki Doi ${ }^{a}$
${ }^{\text {a }}$ Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
${ }^{\mathrm{b}}$ Department of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
E-mail: hirokazu.tsukamoto@hamayaku.ac.jp

Table of Contents

Experimental Procedures $\quad \mathrm{S} 2-\mathrm{S} 29$
References S30
NMR spectra \quad S31 - S90

Experimental Procedures

General Techniques. All commercially available reagents and anhydrous solvents including tetrahydrofuran (THF), dichloromethane (DCM), and xylene were purchased and used without further purification. Anhydrous N, N-dimethylformamide (DMF), methanol, and toluene were obtained by distillation from calcium hydride, magnesium, and sodium, respectively. All reactions were monitored by thin layer chromatography (TLC) performed on 0.25 mm silica gel glassplates ($60 \mathrm{~F}_{254}$) using UV light and ethanolic p-anisaldehyde-sulfuric acid, ethanolic molybdatophosphoric acid, aqueous cerium sulfate-hexaammonium heptamolybdate-sulfuric acid, or aqueous potassium permanganate-potassium carbonate-sodium hydroxide solutions as visualizing agents. Flash column chromatography was carried out with silica gel (spherical, neutral, 63-210 $\mu \mathrm{m}$ grade). Preparative thin layer chromatography was performed on 0.75 mm Wakogel ${ }^{\circledR} \mathrm{B}-5 F$ PLC plates. Yields refer to chromatographically and spectroscopically homogenous materials. Melting points were measured on a melting point apparatus and were uncorrected. Only the strongest and/or structurally important absorptions of infrared (IR) spectra are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz and 600 MHz) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra (100 MHz and 151 MHz) were recorded in the indicated solvent. Chemical shifts (δ) are reported in delta (δ) units, parts per million (ppm). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are given relative to signals for internal tetramethylsilane (0 ppm) or residual nondeuterated solvents, i.e., chloroform (7.26 ppm). Chemical shifts for ${ }^{13} \mathrm{C}$ NMR spectra are given relative to the signal for chloroform- d (77.0 ppm). Chemical shifts for ${ }^{31} \mathrm{P}$ NMR spectra are given relative to the signal for external 85% phosphoric acid (0 ppm). Multiplicities are reported by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). Coupling constants (J) are represented in hertz $(\mathrm{Hz}) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts were assigned using a combination of COSY, NOESY, HMQC, and HMBC. Low and high-resolution mass spectra were measured on TOF-MS with EI, FAB, or ESI probe. Analytical HPLC was performed using Daicel Chiralpak Daicel Chiralpak AD-H, OD-H or AS-H. Optical rotations ([$\alpha]_{D}$) were measured on JASCO P-1010 polarimeter.

Enynes 7a-d were prepared according to the literature procedures. ${ }^{1}$
General procedure for optimization of the hydroalkylation of 7a with 5A (Table S1)

Scheme S1. Optimization of the reaction conditions.

To a test tube containing enyne 7 a (1 equiv), (η^{3}-allyl) $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}(10 \mathrm{~mol} \%)$, and diphosphine ligand (15 mol \%) were added anhydrous $\mathrm{MeOH}(0.25 \mathrm{M})$ and dimethyl malonate ($5 \mathrm{~A}, 3$ equiv) under argon. The resulting mixture was sealed with a screw cap and stirred at $65{ }^{\circ} \mathrm{C}$ for the time described in Table S 1 . The reaction mixture was cooled to room temperature and concentrated in vacuo. NMR yield of $\mathbf{6 a A}$ was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard. The residue was purified by preparative TLC eluting with 20% EtOAc/hexane to give $\mathbf{6 a A}$. The enantiomeric ratio (er) of 6 aA was determined by HPLC analysis with chiral stationary phase column (Daicel Chiralpak OD-H, hexane/i-propanol $=$ $\left.397 / 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, t_{R}(S)=13.9 \mathrm{~min}, t_{R}(R)=14.7 \mathrm{~min}\right)$. Since it was reported that (R) - 6 aA exhibited levorotatory, the retention time of each enantiomer was assigned by that of a dextrorotatory $85: 15$ mixture of (S) - and (R)-6aA obtained in Table S2, Entry 12.

Table S1. Optimization of the reaction conditions.

Entry	Diphosphine ligand (mg)	$\begin{aligned} & \left(\eta^{3}-a l l y l\right)\left(\eta^{5}-\right. \\ & C p) \operatorname{Pd}(m g)^{[b]]} \end{aligned}$	7 a (mg)	Time (h)	$6 \mathrm{aA}(\%)^{\text {a }}$	$E r(S: R)$
1	$\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}, 7.2$	3.3	19.7	19	0	-
2	$\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{PPh}_{2}, 7.8$	3.0	19.9	19	11	-
3	$\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}, 8.0$	2.5	20.2	19	52	-
4	$\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PPh}_{2}, 7.8$	2.8	20.4	9.5	42	-
5	$\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{PPh}_{2}, 8.5$	2.8	19.9	9.5	59	-
6	$\mathrm{Cy}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{PCy} 2,8.8$	2.8	19.6	1.5	61	-
7	Xantphos ${ }^{\text {b }}$, 10.8	2.8	19.7	24	34	-
8	DPEphos ${ }^{\text {c }}$, 10.3	2.8	19.8	24	57	-
9	dppfd ${ }^{\text {d }} 10.0$	2.5	20.1	9.5	52	-
10^{e}	dppf ${ }^{\text {d }}$, 8.4	2.1	16.5	24	5	-
11	(S)-BINAP, 11.4	2.7	19.8	5	69	45:55
12	(S)-H8-BINAP, 11.6	2.6	20.0	2.5	63	42:58
13	(S)-MeO-BIPHEP, 8.7	2.1	16.5	12	80 (75)	54:46
14	(S)-SEGPHOS, 11.6	2.7	19.8	18.5	74	56:44
15	(S)-Tol-BINAP, 12.8	2.7	19.9	1.5	71	49:51
16	(S)-DTBM-BINAP, 21.8	2.5	19.8	0.67	(90)	36:64
17	(S)-DTBM-MeO-BIPHEP, 21.0	2.6	20.0	0.67	(92)	32:68
18	(S)-DTBM-SEGPHOS, 22.4	2.6	20.0	0.83	(81)	29:71

${ }^{a}$ NMR yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yields are shown in parentheses. ${ }^{b}$ 4,5-Bis(diphenylphophino)-9,9-dimethylxanthene. ${ }^{c}$ Bis[2-(diphenylphosphino)phenyl] ether. ${ }^{d} 1,1^{\prime}$-Bis(diphenylphosphino)ferrocene. ${ }^{e}$ Reaction in THF instead of MeOH .

General procedure for optimization of the asymmetric hydroalkylation of 7a with 5A (Table 1 and S2)

Scheme S2. Optimization of the asymmetric hydroalkylation of 7a with 5A.

To a test tube containing enyne $\mathbf{7 a}$ (1 equiv), Pd catalyst ($\mathrm{X} \mathrm{mol} \%$), ((S)-DTBM-SEGPHOS(1.5X mol\%), and additive (Y mol\%) were added anhydrous $\mathrm{MeOH}(0.25 \mathrm{M})$ and dimethyl malonate ($5 \mathrm{~A}, 3$ equiv) under argon. The resulting mixture was sealed with a screw cap and stirred at $65^{\circ} \mathrm{C}$ (entries $1-8$), $50^{\circ} \mathrm{C}$ (entries 9-11, 13) or rt (entry 12) for the time described in Table S2. The reaction mixture was cooled to room temperature and concentrated in vacuo. NMR yield of 6 aA was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard. The residue was purified by preparative TLC eluting with $20 \% \mathrm{EtOAc} / \mathrm{hexane}$ to give 6aA. The enantiomeric ratio (er) of $\mathbf{6 a A}$ was determined by HPLC analysis with chiral stationary phase column (Daicel Chiralpak OD-H, hexane $/ i-$ propanol $=397 / 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, t_{R}(S)=13.9 \mathrm{~min}$, $\left.t_{\mathrm{R}}(R)=14.7 \mathrm{~min}\right)$.

Table S2. Optimization of the asymmetric hydroalkylation of 7a with 5A.

Entry	Pd catalyst (mg, mol\%)	Additive (mg, mol\%)	7a (mg)	(S)-DTBM-SEGPHOS (mg, mol\%)	Temp (${ }^{\circ} \mathrm{C}$)	Time (h)	$\mathbf{6 a A}(\%)^{\text {a }}$	$\operatorname{Er}(\mathrm{S}: R \mathrm{R})$
1	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 2.6,10$	none	20.0	22.4, 15	65	0.83	(81)	29:71
2	$\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}, 6.9,5$	none	19.9	21.4, 15	65	24	(83)	33:67
3	$\mathrm{Pd}(\mathrm{dba})_{2}, 7.0,10$	none	20.2	21.8, 15	65	0.83	(quant)	28:72
4	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 2.1,10$	LiOAc, 2.7, 30	16.5	17.6, 15	65	0.25	94 (78)	28:72
5	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 2.2,10$	KOAc, 4.5, 30	16.5	17.6, 15	65	0.25	100 (78)	25:75
6	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 2.0,10$	LiCl, 1.7, 30	16.5	17.3, 15	65	0.25	95 (77)	68:32
7	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 2.1,10$	$\mathrm{LiBr}, 3.2,30$	16.5	18.2, 15	65	0.25	93 (81)	76:24
8	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 2.8,10$	Lil, 5.3, 30	20.2	21.8, 15	65	4.7	(90)	78:22
9	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 2.2,10$	Lil, 5.5, 30	16.6	17.5, 15	50	0.67	94	83:17
10	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 1.1,5$	Lil, 4.0, 30	16.5	8.9, 7.5	50	0.5	99	86:14
11	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 1.1,5$	Lil, 2.0, 15	16.3	8.9, 7.5	50	0.5	quant	84:16
12	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 1.0,5$	Lil, 2.1, 15	16.4	8.9, 7.5	rt	1	quant	86:14
13	$\left(\eta^{3}\right.$-allyl)($\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}, 1.2,5$	Lil, 1.0, 5	16.6	8.9, 7.5	50	0.5	98 (84)	85:15

${ }^{a}$ NMR yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yields are shown in parentheses.

Dimethyl (S)-2-(5-oxododeca-2,3-dien-1-yl)malonate (6aA) 2, 3

Yellow oil. Rf = 0.49 (17\% EtOAc/hexane). $[\alpha]^{22} \mathrm{D}+43$ (c 0.76 in hexane) (Table 2, Entry 11). IR (neat): 2954, 2926, 2855, 1964, $1756,1739,1436,1262,1231,1152,1042 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.20-5.04(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.58 (ddd, $J=7.6,6.1,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.95 (ddt, $J=3.0,6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.15(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 203.9,169.4,169.3,93.0,87.3,52.5,51.2,31.8,29.4,29.2,29.1,29.0,28.8,28.0,22.6,14.0$ (one carbon is missing due to overlap). LRMS m/z (relative intensity) 296 [M] ${ }^{+}$(6), 233 (7), 198 (41), 166 (33), 138 (100). HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}$ 296.1988, found 296.1982 [M] .

HPLC chromatograms of $\mathbf{6 a A}$

$(\pm)-6 a A$

6aA (Table 2, Entry 11)

$\mathrm{H}-\mathrm{Nu}$ (5A-G, 3 equiv) $\left(\eta^{3}-\mathrm{allyl}\right)\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}$ (5 mol\%)
 $\xrightarrow[\text { Lil (} 5 \mathrm{~mol} \%), \mathrm{MeOH}(0.25 \mathrm{M})]{\text { (S)-DTBM-SEGPHOS }(7.5 \mathrm{~mol} \%)}$

$(S)-\mathbf{6 (b - f})(\mathbf{A - G})$
$(R)-6(b-f)(A-G)$
7b: R = Cy
5A: $\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$
7c: $\mathrm{R}=\mathrm{Ph}$
5B: $\mathrm{CHMe}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$
5E: $\mathrm{CH}_{2}\left(\mathrm{SO}_{2} \mathrm{Ph}\right)_{2}$
5F: $\mathrm{CH}_{2}(\mathrm{COMe})_{2}$
$7 \mathrm{~d}: \mathrm{R}={ }^{\mathrm{t}} \mathrm{Bu}$
5C: $\mathrm{CHPh}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$
5G: $\mathrm{CH}_{2}(\mathrm{CN})_{2}$
5D: $\mathrm{CH}(\mathrm{NHAc})\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$

Scheme S3. The scope of conjugated enynes 7b-d and pronucleophiles 5A-G investigated in the hydroalkylation reaction.

To a test tube containing enyne 7b-d (1 equiv), (η^{3}-allyl)($\left.\eta^{5}-\mathrm{Cp}\right)$ Pd ($5 \mathrm{~mol} \%$), ((S)-DTBM-SEGPHOS ($7.5 \mathrm{~mol} \%$) and Lil ($5 \mathrm{~mol} \%$) were added anhydrous $\mathrm{MeOH}(0.25 \mathrm{M}$) and pronucleophile ($5 \mathrm{~A}-\mathrm{G}, 3$ equiv) under argon. The resulting mixture was sealed with a screw cap and stirred at the temperature and for the time described in Table S3. The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by preparative TLC or silica gel column chromatography to give $\mathbf{6 (b - d)}(\mathbf{A}-\mathrm{G})$. The authentic racemic mixture was obtained by the similar procedure using rac-MeO-BIPHEP instead of (S)-DTBM-SEGPHOS without Lil. The absolute configuration of $\mathbf{6}(\mathbf{b}-\mathbf{d})(\mathbf{A}-\mathbf{G})$ were determined by the sign of the optical rotation of literature known compounds or deduced by the Lowe-Brewster rule. ${ }^{[4]}$

Table S3. The scope of conjugated enynes 7b-d and pronucleophiles 5A-G investigated in the hydroalkylation reaction.

Entry	$\mathbf{7}(\mathrm{mg})$	$\mathbf{5}(\mathrm{mg}$ or $\mu \mathrm{L})$	$\left(\eta^{3}\right.$-allyl)(η^{5} - $\mathrm{Cp}) \mathrm{Pd}(\mathrm{mg})$	(S)-DTBM-SEG- PHOS (mg)	Lil (mg)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$ Time (h)	Isolated yield of $\mathbf{6}(\mathrm{mg}, \%)$	Er $(\mathrm{S}: R)$

[^0]Dimethyl (S)-2-(4-cyclohexylbuta-2,3-dien-1-yl)malonate (6bA) ${ }^{5}$

Isolated by preparative TLC eluting with 20% EtOAc/hexane. Yellow oil. Rf $=0.29$ (17% EtOAc/hexane). $[\alpha]^{21} \mathrm{~d}+50$ (c 1.04 in CHCl_{3}). IR (neat): 2925, 2850, 1962, 1755, 1738, 1435, 1342, 1250, 1154, $1036 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.19-5.09$
$(\mathrm{m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.45-0.96(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.8,169.4,169.3,99.0,88.3,52.50,52.48,51.2,37.2,32.9,32.8,28.1,26.1,26.0$. LRMS m / z (relative intensity) $266[M]^{+}$(15), 203 (26), 174 (15), 147 (27), 134 (100). HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} 266.1518$, found 266.1506 [M] $^{+}$.

Chiral HPLC: (Daicel Chiralpak OD-H, hexane $/ i$-propanol $=397 / 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$): $t_{R}(S)=18.5$ min (major enantiomer), $t_{R}(R)=20.2 \mathrm{~min}$ (minor enantiomer).

HPLC chromatograms of $\mathbf{6 b A}$
$(\pm)-6 \mathrm{bA}$

6bA

Isolated by preparative TLC eluting with 20\% EtOAc/hexane. Yellow oil. Rf $=0.34$ (17% EtOAc/hexane). $[\alpha]^{22}{ }^{\mathrm{D}}+118$ (c 0.97 in CHCl_{3}). IR (neat): 2954, 2360, 2341, 1952, 1736, 1437, 1235, 1155, 1029, $695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 7.34-7.15$ (m, $5 \mathrm{H}), 6.20(\mathrm{dt}, J=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dt}, J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.62(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: ठ 205.1, 169.3, 169.1, 134.0, 128.5, 127.1, 126.8, 96.5, 91.7, 52.6, 52.5, 50.9, 27.8. LRMS m/z (relative intensity) 260 [M] (42), 201 (14), 169 (23), 160 (48), 128 (100). HRMS (El) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4} 260.1049$, found $260.1051[\mathrm{M}]^{+}$.

Chiral HPLC: (Daicel Chiralpak AD-H, hexane/i-propanol $=50 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{R}(S)=30.9$ min (major enantiomer), $t_{R}(R)=42.8 \mathrm{~min}$ (minor enantiomer).

HPLC chromatograms of $\mathbf{6 c A}$

(\pm)-6cA

6cA

Dimethyl (S)-2-(5,5-dimethylhexa-2,3-dien-1-yl)malonate (6dA) ${ }^{6,7}$

Isolated by silica gel column chromatography eluting with $3 \% \mathrm{EtOAc} /$ hexane. Colorless oil. $\mathrm{Rf}=0.40$ ($17 \% \mathrm{EtOAc} / \mathrm{hexane}$). $[\mathrm{d}]^{26} \mathrm{D}$ +68.6 (c 0.51 in CHCl_{3}). IR (neat): 2959, 1964, 1737, 1457, 1246, 1201, 1111, $877 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.21-5.11$ (m, 2H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=7.4,5.9,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 201.2,169.41,169.37,104.9,89.2,52.6,52.5,51.3,31.7,30.0,28.3$. LRMS m/z (relative intensity) $240[\mathrm{M}]^{+}(52), 225$ (7), 177 (32), 165 (18), 132 (100). HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4} 240.1362$, found 240.1372 [M] ${ }^{+}$.

Chiral HPLC: (Daicel Chiralpak OD-H, hexane $/$ i-propanol $=397 / 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}(\mathrm{S})=15.3 \mathrm{~min}$ (major enantiomer), $t_{R}(R)=16.8 \mathrm{~min}$ (minor enantiomer).

HPLC chromatograms of $\mathbf{6 d A}$

$(\pm)-6 d A$

6dA

Dimethyl (S)-2-(5,5-dimethylhexa-2,3-dien-1-yl)-2-methylmalonate ($\mathbf{6 d B})^{6-8}$

Isolated by silica gel column chromatography eluting with $3 \% \mathrm{EtOAc} /$ hexane. Yellow oil. $\mathrm{Rf}=0.55(17 \% \mathrm{EtOAc} / \mathrm{hexane}) .[\alpha]^{18} \mathrm{D}$ +30.3 (c 0.23 in CHCl_{3}). IR (neat): 2959, 1964, 1737, 1457, 1246, 1201, 1111, $877 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 5.10(\mathrm{dt}, J$ $=6.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dt}, \mathrm{J}=6.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): δ 203.2, 172.4, 172.3, 102.9, 86.9, 53.8, $52.52,52.47,36.3,31.7,30.1,19.9$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4} 255.1596$, found $255.1587[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral HPLC: (Daicel Chiralpak AD-H, hexane/i-propanol $=397 / 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm})$: $t_{R}(R)=11.4$ min (minor enantiomer), $t_{R}(S)=12.1 \mathrm{~min}$ (major enantiomer).

HPLC chromatograms of $\mathbf{6 d B}$
$(\pm)-6 d B$

6dB

Dimethyl (S)-2-(5,5-dimethylhexa-2,3-dien-1-yl)-2-phenylmalonate (6dC) ${ }^{6}$

Isolated by preparative TLC eluting with 20% EtOAc/hexane. Yellow oil. Rf $=0.47$ (17% EtOAc/hexane). $[\alpha]^{19} \mathrm{D}+40.8$ (c 0.79 in CHCl_{3}). IR (neat): 2956, 2864, 1961, 1737, 1499, 1435, 1362, 1233, 1175, 1074, 878, 730, $696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: б $7.46-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.23(\mathrm{~m}, 3 \mathrm{H}), 5.12-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.07-3.03(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 202.9,170.8,170.7,136.5,128.2,128.1,127.6,102.9,87.4,62.9,52.7,36.4,31.6,30.1$ (one carbon is missing due to overlap). HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4} 317.1753$, found $317.1741[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral HPLC: (Daicel Chiralpak AD-H, hexane/i-propanol $=397 / 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}): t_{\mathrm{R}}(R)=23.2$ min (minor enantiomer), $t_{R}(S)=27.1 \mathrm{~min}$ (major enantiomer).

HPLC chromatograms of 6dC

$(\pm)-6 d C$

6dC

Dimethyl（S）－2－acetamido－2－（5，5－dimethylhexa－2，3－dien－1－yl）malonate（6dD）

Isolated by silica gel column chromatography eluting with 33% EtOAc／hexane．Colorless oil． $\mathrm{Rf}=0.41$（ $50 \% \mathrm{EtOAc} / \mathrm{hexane}$ ）． $[\alpha]^{20}{ }_{\mathrm{D}}+24.1$（c 0.66 in CHCl_{3} ）．IR（neat）：3297，2959，1961，1748，1683，1506，1437，1305，1214，1065，979， $886 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{dt}, J=7.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dt}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.03(\mathrm{dd}, J=7.6,2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 203.2,169.0,168.2,168.1,103.2,85.5,66.3,53.5,53.4,33.2$ ， 31．5，30．0，23．0．HRMS（ESI）calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5} 298.1654$ ，found $298.1642[\mathrm{M}+\mathrm{H}]^{+}$．

Chiral HPLC：（Daicel Chiralpak AD－H，hexane $/$ i－propanol $=19 / 1,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$ ）：$t_{R}(R)=29.9 \mathrm{~min}$（minor enantiomer）， $t_{R}(S)=32.8 \mathrm{~min}$（major enantiomer）．

HPLC chromatograms of 6dD
（ \pm ）－6dD

番号	保持時閣	ビーク名	高を	面眚	相対面掏	含有量	タイフ
	分		mV	$\mathrm{mv} \times$ 分	8	n．a．	
1	29.41	n．${ }^{\text {a }}$	83.307	71.121	58.14	n．a	BME＊
2	32.49	n．a	73.376	51.201	41.86	n．a	BMB＊
合計：			156.683	122.322	100.00	0.000	

6dD

(S)-(5-Cyclohexylpenta-3,4-diene-1,1-diyldisulfonyl)dibenzene (6bE)

Isolated by preparative TLC eluting with 40% EtOAc/hexane. Yellow oil. Rf $=0.13$ (17\% EtOAc/hexane). [a] ${ }^{25} \mathrm{D}+71.8$ (c 1.80 in CHCl_{3}). IR (neat): $3065,2924,2850,2358,2343,1961,1583,1447,1331,1312,1156,1079,1023,999,892,738,724,687 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.75-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.52(\mathrm{~m}, 4 \mathrm{H}), 5.19(\mathrm{ddt}, J=6.2,3.0,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{ddt}, J=6.2,6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dddd}, J=6.2,6.2,3.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.74-$ $1.58(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.99-0.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.7,138.2,138.0,134.6,134.5,129.6$, 129.5, 129.1, 100.5, 87.9, 83.0, 37.0, 32.92, 32.89, 25.95, 25.87, 25.86, 25.3. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~S}_{2} 431.1351$, found $431.1334[\mathrm{M}+\mathrm{H}]^{+}$.

Chiral HPLC: (Daicel Chiralpak AD-H, hexane $/ i$-propanol $=9 / 1,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $t_{\mathrm{R}}(R)=47.0$ min (minor enantiomer), $t_{R}(S)=77.2 \mathrm{~min}$ (major enantiomer).

HPLC chromatograms of $\mathbf{6 b E}$

$(\pm)-6 b E$

6bE

番号	保持時園	ヒーク名	高え	面㗯	相対面栍	含有量	タイナ
	分		mV	$\mathrm{mV} \times$ 分	$\mathbf{8}$	n．a．	
1	47.52	n．a．	6.537	6.347	11.98	n．a	BMB＊
2	77.70	n．a．	24.439	46.626	88.02	n．a	BMB＊
合計：			30.976	52.973	100.00	0.000	

（S）－（6，6－Dimethylhepta－3，4－diene－1，1－diyldisulfonyl）dibenzene（6dE）

Isolated by preparative TLC eluting with 50% EtOAc／hexane．Yellow oil．Rf $=0.17$（17\％EtOAc／hexane）．［a］${ }^{24} \mathrm{D}+74.8$（c 0.75 in CHCl_{3} ）．IR（neat）：3066，2959，2866，1962，1584，1447，1332，1156，1079，743，724， $687 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $8.02-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.75-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 4 \mathrm{H}), 5.23(\mathrm{dt}, J=6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dt}, J=6.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{t}, \mathrm{J}=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$（ddd，J＝6．1，6．1，3．0 Hz，2H）， $0.97(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.2,139.0,138.3,137.9,134.6$ ， $134.5,129.7,129.5,129.1,106.4,88.9,83.1,31.9,30.0,25.5$ ．HRMS（ESI）calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~S}_{2} 405.1194$ ，found 405.1180 $[\mathrm{M}+\mathrm{H}]^{+}$．

Chiral HPLC：（Daicel Chiralpak OD－H，hexane／i－propanol $=9 / 1,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): t_{\mathrm{R}}(S)=31.6$ min（major enantiomer）， $t_{\mathrm{R}}(R)=35.2 \mathrm{~min}$（minor enantiomer）．

HPLC chromatograms of $\mathbf{6 d E}$

（ \pm ）－6dE

番号	保持時周	ビーク名	高を	面掅	相対面棈	含有量	タイナ
	分		mV	$m \vee \times$ 分	8	n．a．	
1	31.64	n．a．	49.717	49.564	93.65	n．a	BMB＊
2	35.20	n．a	3.330	3.360	6.35	n．a．	BMB＊
合計：			53.047	52.924	100.00	0.000	

（S）－3－（4－Cyclohexylbuta－2，3－dien－1－yl）pentane－2，4－dione（6bF）

Isolated by silica gel column chromatography eluting with $3 \% \mathrm{EtOAc} /$ hexane．Yellow oil． $\mathrm{Rf}=0.50$（ $17 \% \mathrm{EtOAc} / \mathrm{hexane}$ ）．［ $\alpha]^{24} \mathrm{D}$ ＋81．4（c 0.57 in CHCl_{3} ）．IR（neat）：2925，2851，1961，1755，1738，1437，1341，1258，1231，1152，1034， $891 \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.24-5.02(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.02(\mathrm{~m}, 7 \mathrm{H}), 2.02-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.51$ （m，4H），1．36－0．91（m，6H）．${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.8,203.7,202.9,202.8,191.3,99.33,99.25,90.5,88.5,67.9,37.4$ ， $37.2,33.1,33.03,33.00,32.8,29.2,29.1,27.3,27.0,26.14,26.08,26.07,26.01,25.99,25.96,25.94,22.8$（as a tautomeric mixture of the keto and enol forms）．LRMS m／z（relative intensity） 234 ［M］${ }^{+}$（9）， 191 （81）， 134 （47）， 121 （100）．HRMS（EI）calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} 234.1620$ ，found $234.1615[\mathrm{M}]^{+}$．

Chiral HPLC：（Daicel Chiralpak AD－H，hexane／i－propanol $=397 / 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=190 \mathrm{~nm}): t_{R}(R)=11.2$ min（minor enantiomer）， $t_{R}(S)=12.0 \mathrm{~min}$（minor enantiomer）．

HPLC chromatograms of $\mathbf{6 b F}$

$(\pm)-6 b F$

6bF

番号	保持時閣	ビーク名	高を	面皘	相対面皘	宫有量	タイフ
	分		mV	$\mathrm{mV} \times$ 分	8	n．a．	
1	11.22	n．a．	8.934	1.904	22.47	n．a．	BMB＊
2	12.04	n．a	28.158	6.570	77.53	n．a．	BMB＊
合計：			37.092	8.474	100.00	0.000	

(S)-2-(4-Cyclohexylbuta-2,3-dien-1-yl)malononitrile (6bG) ${ }^{9}$

Isolated by silica gel column chromatography eluting with 3% EtOAc/hexane. Yellow solid. $\mathrm{Mp}=48.3-49.9{ }^{\circ} \mathrm{C} . \mathrm{Rf}=0.50(17 \%$ EtOAc/hexane). $[\alpha]^{25}{ }_{\mathrm{D}}+45.3$ (c 0.28 in CHCl_{3}). IR (neat): 2925, 2851, 2256, 1963, 1962, 1725, 1448, 1260, 891, 868, 722 cm^{-1}. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.40(\mathrm{ddt}, J=6.4,6.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{ddt}, J=3.0,6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73-2.64 (m, 2H), 2.13-1.99 (m, 1H), 1.85-1.60 (m, 4H), 1.38-1.02 (m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.8,112.38$, $112.35,101.5,85.0,37.1,32.9,32.8,30.5,26.0,25.9,22.4$. LRMS m/z (relative intensity) 200 [M] (10), 135 (100), 93 (85), 81 (86). HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} 200.1313$, found 200.1311 [M] ${ }^{+}$.

Chiral HPLC: (Daicel Chiralpak OD-H, hexane/i-propanol $=50 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}): t_{R}(S)=18.3$ min (major enantiomer), $t_{R}(R)=20.4$ min (minor enantiomer).

HPLC chromatograms of 6bG

(\pm)-6bG

6bG

Preparation of 7b-d

Preparation of (E)-(4-cyclohexylbut-1-en-3-yn-1-yl)trimethylsilane

Scheme S4. Preparation of (E)-(4-cyclohexylbut-1-en-3-yn-1-yl)trimethylsilane.

To a mixture of ethynylcyclohexane ($4.13 \mathrm{~g}, 38.2 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.02 \mathrm{~g}, 0.882 \mathrm{mmol})$, and $\mathrm{Cul}(336 \mathrm{mg}, 1.76 \mathrm{mmol})$ in anhydrous THF (29 mL) were added piperidine ($14.5 \mathrm{~mL}, 147 \mathrm{mmol}$) and a solution of alkenyl iodide ${ }^{10}$ ($6.64 \mathrm{~g}, 29.4 \mathrm{mmol}$) in anhydrous THF (30 mL) at $0^{\circ} \mathrm{C}$ under argon. The mixture was allowed to warm up to room temperature, stirred at $50{ }^{\circ} \mathrm{C}$ for 12 h , and then treated with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was diluted with hexane, filtered through a pad of SiO_{2} and concentrated in vacuo to give (E)-(4-cyclohexylbut-1-en-3-yn-1-yl)trimethylsilane ($5.62 \mathrm{~g}, 93 \%$) as a red-black oil. The oil was pure enough for analysis.

$R f=0.51$ (hexane). IR (neat): 2931, 2854, 2359, 2342, 2208, 1574, 1448, 1249, 975, 865, $839 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 6.32(\mathrm{~d}, \mathrm{~J}=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, \mathrm{J}=19.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.21$ (m, 6H), $0.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.4,124.1,95.2,80.9,32.7,29.7,25.9,24.9,-1.6$. LRMS m/z (relative intensity) $206[\mathrm{M}]^{+}(24), 191$ (100), 125 (44), 109 (28). HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{Si} 206.1491$, found 206.1517 [M] ${ }^{+}$.

Preparation of (E)-(but-3-en-1-yn-1-yl-4-d)cyclohexane (7b-d)

Scheme S5. Preparation of (E)-(but-3-en-1-yn-1-yl-4-d)cyclohexane (7b-d).
To a solution of (E)-(4-cyclohexylbut-1-en-3-yn-1-yl)trimethylsilane ($5.62 \mathrm{~g}, 27.2 \mathrm{mmol}$) in anhydrous DCM (109 mL) were added $\mathrm{D}_{2} \mathrm{O}(2.45 \mathrm{~mL}, 136 \mathrm{mmol})$ and TFAA $(18.9 \mathrm{~mL}, 136 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under argon. ${ }^{11}$ The mixture was allowed to warm up to room temperature, stirred for 7 h , and then treated with saturated aqueous NaHCO_{3} slowly at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with DCM three times. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The residue was diluted with hexane and filtered through a pad of SiO_{2} (thoroughly washed with hexane). The filtrate was concentrated in vacuo and then purified by bulb-to-bulb distillation ($120^{\circ} \mathrm{C} / 40 \mathrm{mmHg}$) to give $7 \mathrm{~b}-\mathrm{d}(2.38 \mathrm{~g}, 65 \%)$ as a pale yellow oil.

$\mathrm{Rf}=0.56$ (hexane). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.79(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (dd, $J=10.9,2.0 \mathrm{~Hz}$, $0.08 \mathrm{H}), 2.57-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.06(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 124.9(\mathrm{t}, \mathrm{J}=24.5 \mathrm{~Hz}), 117.6$, $95.1,79.2,32.6,29.6,25.9,24.9$ (additional small peak at 125.2 ppm due to undeuterated olefinic carbon). LRMS m / z (relative intensity) $135\left[\mathrm{M}^{+}(34), 120\right.$ (16), 106 (35), 92 (100). HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{D} 135.1158$, found $135.1159[\mathrm{M}]^{+}$.

Preparation of 8

Preparation of tetraethyl [1,1'-biphenyl]-2,2'-diylbis(phosphonate)

Scheme S6. Preparation of tetraethyl [1,1'-biphenyll-2,2'-diylbis(phosphonate).
To a 200 mL two-necked flask containing $\mathrm{Pd}(\mathrm{OAc})_{2}(397 \mathrm{mg}, 1.77 \mathrm{mmol})$, dppf ($1.07 \mathrm{~g}, 1.93 \mathrm{mmol}$), and KOAc ($172 \mathrm{mg}, 1.75$ mmol) was added anhydrous DMF (9 mL) under argon. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 30 min and cooled to room temperature. Then the mixture was treated with DIPEA $(7.80 \mathrm{~mL}, 45.6 \mathrm{mmol})$ and $\mathrm{HPO}(\mathrm{OEt})_{2}(5.45 \mathrm{~mL}, 42.2 \mathrm{mmol})$ and stirred at room temperature for $15 \mathrm{~min} .{ }^{12} \mathrm{~A}$ solution of [1,1'-biphenyl]-2,2'-diyl bis(trifluoromethanesulfonate) ${ }^{13}(7.92 \mathrm{~g}, 17.6 \mathrm{mmol})$ in anhydrous DMF ($30 \mathrm{~mL}+6 \mathrm{~mL}$) was added to the mixture. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 15 h and cooled to room temperature. Then, the resulting mixture was diluted with EtOAc (180 mL) and filtered through a pad of Celite (thoroughly washed with EtOAc). The filtrate was washed with water ($90 \mathrm{~mL} \times 1,45 \mathrm{~mL} \times 1$) and brine (45 mL), dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel column chromatography eluting with $10 \% \mathrm{EtOH} / \mathrm{EtOAc}$ to give tetraethyl [1,1'-biphenyl]-2,2'-diylbis(phosphonate) ($5.82 \mathrm{~g}, 78 \%$) as a black solid. The analytical sample was obtained as a pale yellow oil after purification using silica gel column chromatography eluting with $3 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$.

$R f=0.64\left(10 \% \mathrm{CHCl}_{3} / \mathrm{MeOH}\right) . \mathrm{IR}$ (neat): 3670-3120 (br), 2983, 1660, 1589, 1430, 1392, 1231, 1141, 1055, 1025, 971, $765 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 4 \mathrm{H}), 4.08-3.87(\mathrm{~m}, 6 \mathrm{H}), 3.85-3.72(\mathrm{~m}$, $1 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.0(\mathrm{dd}, J=9.2,4.2 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=9.8$ $\mathrm{Hz}), 131.7(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 127.7(\mathrm{~d}, J=190 \mathrm{~Hz}), 127.2(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 61.8(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 61.6(\mathrm{dd}, J=$
$6.1 \mathrm{~Hz}), 16.2(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}), 16.1(\mathrm{dd}, J=6.5 \mathrm{~Hz}) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 18.0 . \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NaO}_{6} \mathrm{P}_{2}$ 449.1253 , found $449.1247(\mathrm{M}+\mathrm{Na})^{+}$.

Preparation of [1,1'-biphenyl]-2,2'-diylbis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine oxide)

Scheme S7. Preparation of [1,1'-biphenyl]-2,2'-diylbis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine oxide).
To a 50 mL recovery flask containing tetraethyl [1,1'-biphenyl]-2,2'-diylbis(phosphonate) ($2.03 \mathrm{~g}, 4.76 \mathrm{mmol}$) were added SOCl_{2} $(5.2 \mathrm{~mL}, 72 \mathrm{mmol})$ and anhydrous DMF ($0.55 \mathrm{~mL}, 7.1 \mathrm{mmol}$) under argon. The resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h and cooled to room temperature. Then the mixture was concentrated in vacuo and evaporated with toluene ($10 \mathrm{~mL} \times 3$) azeotropically to give a crude [1,1'-biphenyl]-2,2'-diylbis(phosphonic dichloride), which was used for the next reaction without further purification.
0.63 M Grignard solution in THF prepared from $\mathrm{Mg}(1.15 \mathrm{~g}, 47.3$ matom $)$, bromoarene ${ }^{14}$ ($11.4 \mathrm{~g}, 38.1 \mathrm{mmol}$), anhydrous THF 60 mL , and 1,2 -dibromoethene ($0.33 \mathrm{~mL}, 3.8 \mathrm{mmol}$) was treated with a solution of the crude [1, 1^{\prime}-biphenyl]-2, 2^{\prime}-diylbis(phosphonic dichloride) in THF ($20 \mathrm{~mL}+2 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm up to room temperature over 12 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$ and treated with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc two times. The combined organic layers were washed with brine (40 mL), dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel column chromatography eluting with 16% EtOAc/hexane to give [1, 1^{\prime}-biphenyl]-2,2'-diylbis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine oxide) $(2.22 \mathrm{~g}, 41 \%)$ as a white solid.

$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{2}-3,5-$
di- ${ }^{\text {tBu- }} 4-\mathrm{OMe}$
$\mathrm{Mp}=107-108^{\circ} \mathrm{C} . \mathrm{Rf}=0.40$ (33\% EtOAc/hexane). IR (neat): 3398 (br), 2964, 2871, 1585, 1448, 1411, 1395, 1362, 1265, 1200, 1148, 1118, 1011, 887, 811, 793, 761, 714, $617 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=12.0$ $\mathrm{Hz}, 4 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=7.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}$, 6 H), 1.35 (s, 36H), $1.33(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.92(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 161.89(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 145.7$ (dd, J=6.6, 3.7 Hz), $143.2(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 143.1(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=102.2 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=11.6 \mathrm{~Hz})$, 131.0 (d, $J=9.8 \mathrm{~Hz}$), 130.6 (d, $J=10.8 \mathrm{~Hz}$), 129.19 (d, $J=104.9 \mathrm{~Hz}), 129.18(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=108.2 \mathrm{~Hz}), 126.1(\mathrm{~d}, J$ $=12.5 \mathrm{~Hz}$), 64.4, 64.2, 35.93, 35.87, 31.99, 31.97. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 27.4$. HRMS (ESI) calcd for $\mathrm{C}_{72} \mathrm{H}_{101} \mathrm{O}_{6} \mathrm{P}_{2}$ 1123.7068 , found $1123.7035[\mathrm{M}+\mathrm{H}]^{+}$.

Preparation of 2,2'-bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphaneyl)-1,1'-biphenyl (8)

Scheme S8. Preparation of 2,2'-bis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphaneyl)-1,1'-biphenyl (8).
To a 50 mL recovery flask containing [1,1'-biphenyl]-2,2'-diylbis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine oxide) (1.12 g , $0.997 \mathrm{mmol})$ were added anhydrous xylene (10 mL) and tributylamine ($2.4 \mathrm{~mL}, 10 \mathrm{mmol}$) under argon. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{HSiCl}_{3}(1.0 \mathrm{~mL}, 9.9 \mathrm{mmol}) .{ }^{15}$ The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , refluxed for 8 h , cooled to
$0^{\circ} \mathrm{C}$, and treated with 7.5 M aqueous $\mathrm{NaOH}(15 \mathrm{~mL})$. The immiscible mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h , cooled to room temperature, and extracted with toluene. The organic phase was washed with water (10 mL), 1 M aqueous $\mathrm{HCl}(15 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, and brine (10 mL), dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel column chromatography eluting with 4% EtOAc/hexane to give 8 ($894 \mathrm{mg}, 82 \%$) as a white solid. The analytical sample was obtained by recrystallization from MeOH .

$\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{2}-3,5-$
di- ${ }^{\text {Bu }}$
$\mathrm{Mp}=116-117^{\circ} \mathrm{C} . \mathrm{Rf}=0.50$ (10\% EtOAc/hexane). IR (neat): 2962, 2870, 1578, 1447, 1409, 1361, 1263, 1223, 1140, 1117, 885, $754 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31$ (dd, $J=3.6,3.6 \mathrm{~Hz}, 4 \mathrm{H}$), 7.19 (ddd, $J=7.6,7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06 (dd, $J=7.6,1.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03$ (ddd, $J=7.2,7.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.00 (dd, $J=3.6,3.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 6 \mathrm{H})$, $1.32(\mathrm{~s}, 36 \mathrm{H}), 1.29(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.9,159.4,147.1(\mathrm{t}, \mathrm{J}=17.5 \mathrm{~Hz}), 142.8(\mathrm{t}, J=3.1 \mathrm{~Hz}), 142.6(\mathrm{t}, J=$ $3.8 \mathrm{~Hz}), 139.0(\mathrm{dd}, J=6.1,5.8 \mathrm{~Hz}), 133.0,132.8(\mathrm{t}, J=11.5 \mathrm{~Hz}), 132.3(\mathrm{t}, J=11.5 \mathrm{~Hz}), 132.0(\mathrm{dd}, J=6.8,6.5 \mathrm{~Hz}), 131.4(\mathrm{dd}, J=$ $6.3,5.0 \mathrm{~Hz}$), $130.3(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}), 64.2,64.1,35.8,35.7,32.2,32.0$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-13.9$. HRMS (ESI) calcd for $\mathrm{C}_{72} \mathrm{H}_{101} \mathrm{O}_{4} \mathrm{P}_{2} 1092.7203$, found $1092.7174[\mathrm{M}+\mathrm{H}]^{+}$.

Hydroalkylation of 7b-d with 5A under the catalysis of Pd-achiral diphosphine 8 (Scheme 2)

Scheme S9. Hydroalkylation of 7b-d with 5A under the catalysis of Pd-achiral diphosphine 8.
To a test tube containing enyne $\mathbf{7 b}-d(84.9 \mathrm{mg}, 0.628 \mathrm{mmol})$, (η^{3}-allyl) $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}(6.7 \mathrm{mg}, 0.031 \mathrm{mmol})$, and diphosphine 8 (51.4 $\mathrm{mg}, 0.0471 \mathrm{mmol}$) were added anhydrous $\mathrm{MeOH}(2.5 \mathrm{~mL}$) and dimethyl malonate ($216 \mu \mathrm{~L}, 1.88 \mathrm{mmol}$) under argon. The resulting mixture was sealed with a screw cap and stirred at $50^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by silica gel column chromatography eluting with $3 \% \mathrm{EtOAc} /$ hexane and preparative TLC eluting with 20% EtOAc/hexane to give $\mathbf{6 b A}-d(128 \mathrm{mg}, 76 \%$) as a pale yellow oil. The diastereomeric ratio and stereochemistry of $\mathbf{6 b A}-d$ were determined using NMR analysis of γ-lactone 10-d prepared according to the following procedure.

Dimethyl 2-(4-cyclohexylbuta-2,3-dien-1-yl-1-d)malonate (6bA-d) as a 73:27 diastereomeric mixture

X: 27 atom \% D
Y: 73 atom \% D
$R f=0.29$ (17\% EtOAc/hexane). IR (neat): 2925, 2850, 1962, 1737, 1435, 1250, 1153, 1030, $891 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 5.15-5.12(\mathrm{~m}, 2 \mathrm{H}), 3.740(\mathrm{~s}, 3 \mathrm{H}), 3.737(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79-$ $1.58(\mathrm{~m}, 4 \mathrm{H}), 1.34-0.96(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.8,169.4,169.3,98.9,88.2,52.5,52.4,51.2,37.1,32.9,32.8$, $27.8(\mathrm{t}, \mathrm{J}=20.2 \mathrm{~Hz}$), 26.1, 26.0 (additional small peak at 28.1 ppm due to undeuterated allylic carbon). HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{DO}_{4} 268.1659$, found $268.1649[\mathrm{M}+\mathrm{H}]^{+}$.

Conversion of 6bA-d into stereodefined iodolactone 10-d and 11-d (Scheme 2)

Scheme S10. Conversion of $\mathbf{6 b A}-d$ into stereodefined iodolactone $\mathbf{1 0 - d}$ and $\mathbf{1 0 - d}$.

To a solution of $6 \mathrm{bA}-d(62.9 \mathrm{mg}, 0.235 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(0.9 \mathrm{~mL})$ were added $\mathrm{KOH}(56.7 \mathrm{mg}, 0.940 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}$ $(24 \mu \mathrm{~L}) .{ }^{2}$ The resulting mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 30 min , and then treated with aqueous 3 M HCl . The aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo to give a crude dicarboxylic acid, which was used for the next reaction without further purification.
A solution of the crude dicarboxylic acid in anhydrous DMF (0.5 mL) was sealed with a screw cap and stirred at $80^{\circ} \mathrm{C}$ for $30 \mathrm{~h} .{ }^{16}$ The reaction mixture was cooled to room temperature and concentrated in vacuo to give a crude monocarboxylic acid 9-d, which was used for the next reaction without further purification.
To a solution of the crude acid $9-d$ in anhydrous DCM (2.8 mL) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(115 \mathrm{mg}, 0.323 \mathrm{mmol}$) under argon. The resulting mixture was stirred at room temperature for 1.5 h , cooled to $-60^{\circ} \mathrm{C}$, and then treated with NIS ($159 \mathrm{mg}, 0.705 \mathrm{mmol}$). ${ }^{17}$ The reaction mixture was stirred at the same temperature for 15 h , and then treated with water and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica gel column chromatography eluting with $7-10 \%$ EtOAc/hexane and then HPLC (eluent: hexane/i-propanol $=95 / 5$, flow rate: $2 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=14.5 \mathrm{~min}$ (minor 11-d) and $t_{\mathrm{R}}=16.0$ $\min ($ major $10-d)$) to give $11-d(8.5 \mathrm{mg}, 11 \%)$ and $10-d(30.7 \mathrm{mg}, 41 \%)$ as a white solid and a white solid, respectively.
The stereochemistries of 10-d and 11-d were established by their NOESY spectra. While the methine proton at γ-position in 10-d had NOE with vinyl proton and no NOE with major residual proton as X at β-position, the γ-proton in 11- α had NOE with major residual proton as X and no NOE with vinyl proton. The chemical shifts of geminal protons at β-position in 10-d and 11-d also agreed with those reported for γ-vinyl- γ-butyrolactone, where the vinyl group shielded and deshielded cis- and trans-protons, respectively. ${ }^{18}$ The shielded X and deshielded Y were also observed after reductive deiodination of 10-d (vide infra). The corresponding undeuterated iodolactone 10 was also prepared from 6bA by the same procedure described above and its NOESY spectrum showed a strong NOE between the methine δ-proton and β-proton located trans to the adjacent alkenyl group at 2.40 ppm .

10-d

11-d

10
$\left(4 R^{*}, 5 R^{*}\right)-5-((Z)-2-C y c l o h e x y l-1-i o d o v i n y l) d i h y d r o f u r a n-2(3 H)$-one-4-d (10-d)

10-d
X: 27 atom \% D
Y: 73 atom \% D
White solid. $\mathrm{Mp}=101^{\circ} \mathrm{C} . \mathrm{Rf}=0.24$ (17\% EtOAc/hexane). IR (neat): 2924, 2849, 1781, 1635, 1447, 1317, 1258, 1165, 1006, 965, $896,661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ (dd, $\left.J=18.0,10.0,1 \mathrm{H}\right), 2.53$ (dd, $J=10.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 0.27 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 0.73 \mathrm{H}), 1.82-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.04(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 176.4,143.0,104.3,84.2,44.6,31.31,31.29,28.4(\mathrm{t}, J=13.9 \mathrm{~Hz}), 28.0,25.8,25.5$ (additional small peak at 28.7 ppm due to undeuterated homoallylic carbon). LRMS m/z (relative intensity) 321 [M] ${ }^{+}$(46), 240 (49), 194 (100), 152 (65). HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{DIO}_{2} 321.0336$ found 321.0333 [M] ${ }^{+}$.
$\left(4 R^{*}, 5 S^{*}\right)$-5-((E)-2-Cyclohexyl-1-iodovinyl)dihydrofuran-2(3H)-one-4-d (11-d)

11-d
X: 28 atom \% D
Y: 72 atom \% D
White solid. $\mathrm{Rf}=0.24$ (17\% EtOAc/hexane). IR (neat): 2924, 2850, 1783, 1541, 1448, 1418, 1363, 1318, 1263, 1197, 1156, 1010, 961, 899, 802, 740, 697, $657 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.33(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.71(\mathrm{~m}$, $1 \mathrm{H}), 2.59(\mathrm{dd}, \mathrm{J}=18.6,10.2,1 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 0.72 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 0.28 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.12$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 176.2,151.8,101.5,77.2,41.1,33.1,32.7,28.5(\mathrm{t}, \mathrm{J}=20.9 \mathrm{~Hz}), 28.3,25.53,25.50,25.38$ (additional small peak at 28.8 ppm due to undeuterated homoallylic carbon). HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{DIO}_{2} 322.0414$ found $322.0409[\mathrm{M}+\mathrm{H}]^{+}$.

Reductive Deiodination of 10-d

Scheme S11. Conversion of 6bA-d into stereodefined iodolactone 10-d and 10-d.
To a solution of $10-d(22.0 \mathrm{mg}, 0.0687 \mathrm{mmol})$ in anhydrous $\mathrm{PhMe}(1.3 \mathrm{~mL})$ were added $\mathrm{Bu} \mathrm{S}_{3} \mathrm{SnH}(66.7 \mu \mathrm{~L}, 0.412 \mathrm{mmol})$ and AIBN $(4.3 \mathrm{mg}, 0.026 \mathrm{mmol})$ under argon. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 8.5 h . The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by silica gel column chromatography eluting with $7-10 \%$ EtOAc/hexane and then HPLC (eluent: 5% i-PrOH/hexane, flow rate: $2 \mathrm{~mL} / \mathrm{min}$) to give $12(6.1 \mathrm{mg}, 45 \%$) as a colorless oil.
$\left(4 R^{*}, 5 R^{*}\right)-5-((E)-2-C y c l o h e x y l v i n y l)$ dihydrofuran-2(3H)-one-4-d

X: 27 atom \% D
Y: 73 atom \% D
$\mathrm{Rf}=0.44(25 \% \mathrm{EtOAc} / \mathrm{PhMe}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.75(\mathrm{dd}, \mathrm{J}=15.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, \mathrm{J}=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (dd, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57-2.46 (m, 2H), 2.37-2.31 (m, 0.3H), 2.02-1.91 (1.7H), 1.78-1.59 (m, 4H), 1.37-1.00 (m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 177.1,141.3,125.0,81.3,40.3,32.6,32.6,29.8,29.4,29.0,28.8,28.7,28.7,28.5,26.1,26.0$. LRMS m/z (relative intensity) 195 [M] ${ }^{+}$(27), 135 (48), 121 (39), 112 (100). HRMS (El) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{DO}_{2} 195.1370$ found 195.1375 [M] ${ }^{+}$.

Preparation of (Sa, S)-2b-d

(1R, 2R)-4-Cyclohexylbut-3-yne-1-d-1,2-diol was prepared by asymmetric dihydroxylation of $7 \mathbf{b}$-d according to the literature procedure. ${ }^{19}$

White solid. $\mathrm{Mp}=42.6^{\circ} \mathrm{C} . \mathrm{Rf}=0.53$ ($67 \% \mathrm{EtOAc} /$ hexane). $[\alpha]^{24} \mathrm{D}-13.6$ (c 1.00 in CHCl_{3}). IR (neat): 3353 (br), 2929, 2853, 2656, 2361, 2332, 2227, 1450, 1444, 1087, 1048, 1030, 889, $865 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.45(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.11(\mathrm{br}, 3 \mathrm{H}), 1.86-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.04(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 91.3,77.5,66.5(\mathrm{t}, \mathrm{J}=$ 20.0 Hz), 63.4, 32.5, 29.0, 25.7, 24.8 (additional small peak at 66.9 ppm due to undeuterated homopropargylic carbon). LRMS m / z (relative intensity) $169[\mathrm{M}]^{+}(0.4), 137$ (100), 119 (11), 91 (33). HRMS (El) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{DO}_{2}$ 169.1213, found 169.1213 $[\mathrm{M}]^{+}$.
(1R, 2R)-1-((tert-Butyldimethylsilyl)oxy)-4-cyclohexylbut-3-yn-1-d-2-ol

Scheme S12. Monosilylation of diol.

To a solution of diol ($846 \mathrm{mg}, 5.00 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(30 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10.0 \mathrm{mmol})$, $\mathrm{Me}_{2} \mathrm{SnCl}_{2}$ (165 mg , $0.750 \mathrm{mmol})$, and $\mathrm{TBSCl}(1.09 \mathrm{~g}, 10.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon..20 The mixture was allowed to warm to room temperature and stirred for 2.5 h , and then treated with water. The aqueous layer was extracted with DCM three times. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography eluting with $2-3 \%$ EtOAc/hexane to give TBS ether (1.43 g , quant) as a colorless oil.

$\mathrm{Rf}=0.56$ (17\% EtOAc/hexane). [$\alpha]^{24} \mathrm{D}-12.3$ (c 0.98 in CHCl_{3}). IR (neat): 2930, 2856, 2361, 2342, 2231, 2151, 1254, 1125, 1050, $837,777,668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.39(\mathrm{ddd}, J=7.3,4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 90.2,77.7,67.0(\mathrm{t}, J=20.0 \mathrm{~Hz}$), 63.2, 32.5, 29.0, 25.82, 25.80, 24.9, 18.3, $-5.35,-5.39$ (additional small peak at 67.4 ppm due to undeuterated homopropargylic carbon). LRMS m/z (relative intensity) 283 [M] ${ }^{+}$(2), 251 (10), 226 (100), 134 (40). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{DO}_{2} \mathrm{Si} 283.2078$, found 283.2084 [M] ${ }^{+}$.

(1R, 2R)-1-((tert-Butyldimethylsilyl)oxy)-4-cyclohexylbut-3-yn-2-yl-1-d methyl carbonate

Scheme S13. Introduction of leaving group.
To a solution of the alcohol ($140 \mathrm{mg}, 0.494 \mathrm{mmol}$) in anhydrous DCM (0.8 mL) were added pyridine ($63 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$) and methyl chloroformate ($61 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred at room temperature for 4.5 h , and then treated with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by preparative TLC eluting with 6% EtOAc/hexane to give carbonate ($164 \mathrm{mg}, 97 \%$) as a colorless oil.

$\operatorname{Rf}=0.68$ (17\% EtOAc/hexane). $[\alpha]^{18} \mathrm{D}-41.7$ (c 1.21 in CHCl_{3}). IR (neat): 2931, 2856, 2239, 2158, 1757, 1577, 1472, 1463, $1443,1409,1389,1362,1340,1268,1140,1106,1084,1007,986,939,890,873,838,815,778,740,667 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.33(\mathrm{dd}, \mathrm{J}=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.25(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{~s}$, $9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.2,92.1,74.3,69.4,65.0(\mathrm{t}, \mathrm{J}=22.0 \mathrm{~Hz}), 54.8,32.3,29.0,25.8,25.7,24.7$, 18.2, -5.4 (additional small peak at 65.3 ppm due to undeuterated homopropargylic carbon). LRMS m/z (relative intensity) 341 $[\mathrm{M}]^{+}(0.04), 310(0.3), 284(3), 240(10), 133(100) . \mathrm{HRMS}(E I)$ calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{DO}_{4} \mathrm{Si} 341.2133$ found 341.2138 [M] ${ }^{+}$.

tert-Butyl(((1R, 3S)-4-cyclohexylbuta-2,3-dien-1-yl-1-d)oxy)dimethylsilane

Scheme S14. Sn2' anti reduction of propargyl carbonate.
To a test tube containing CuCl ($7.0 \mathrm{mg}, 0.0707 \mathrm{mmol}$), IBiox $12 \cdot \mathrm{HOTf}(42.5 \mathrm{mg}, 0.0700 \mathrm{mmol})$, and $\mathrm{NaO}{ }^{\prime} \mathrm{Bu}(20.2 \mathrm{mg}, 0.210$ $\mathrm{mmol})$ was added anhydrous $\mathrm{PhMe}(2.8 \mathrm{~mL})$ under argon. ${ }^{21}$ The mixture was stirred at $40^{\circ} \mathrm{C}$ for 1 h , treated with PMHS ($23.7 \mu \mathrm{~L}$, 1.40 mmol), and stirred at room temperature for 5 min . To the resulting mixture was added carbonate ($239 \mathrm{mg}, 0.700 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h and cooled to room temperature. The mixture was poured into saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Et}_{2} \mathrm{O}$, and was stirred for 1 h . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by preparative TLC eluting with 2% EtOAc/hexane to give allene ($54.7 \mathrm{mg}, 29 \%$) as a colorless oil and the recovered substrate ($140 \mathrm{mg}, 59 \%$).

$\mathrm{Rf}=0.16$ (hexane). $[\alpha]^{23}{ }_{\mathrm{D}}+48.6$ (c 1.08 in CHCl_{3}). IR (neat): 2927, 2854, 2363, 2141, 1962, 1471, 1448, 1361, 1254, 1095, 1006, $951,836,775,704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.23$ (ddd, $J=6.1,6.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.16 (ddd, $J=6.1,6.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19-4.14 (m, 1H), 2.05-1.92 (m, 1H), 1.80-1.53 (m, 4H), 1.34-1.01 (m, 6H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 202.4,98.3,92.5,61.9(\mathrm{t}, \mathrm{J}=22.5 \mathrm{~Hz}$), 37.1, 33.12, 33.10, 26.2, 26.0, 18.4, $-5.06,-5.08$ (additional small peak at 62.2 ppm due to undeuterated allylic carbon). LRMS m/z (relative intensity) 267 [M] ${ }^{+}$(0.3), 210 (100), 209 (33), 128 (62). HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{29}$ DOSi 267.2129 found 267.2123 [M] ${ }^{+}$.
(1R, 3S)-4-Cyclohexylbuta-2,3-dien-1-d-1-ol

Scheme S15. Removal of TBS group.

[^1]
$R f=0.30(17 \% \mathrm{EtOAc} / \mathrm{hexane}) \cdot[\alpha]^{27} \mathrm{D}+43.8$ (c 0.69 in CHCl_{3}). IR (neat): 3341 (br), 2924, 2850, 2158, 1961, 1448, 1290, 1066, 1046, 1017, $890 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.45-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.22-4.00(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.47(\mathrm{~m}$, $4 \mathrm{H}), 1.38-0.98(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.9,100.0,92.6,60.5(\mathrm{t}, \mathrm{J}=22.5 \mathrm{~Hz}), 37.0,33.04,32.98,26.0,25.92$, 25.91 (additional small peak at 60.8 ppm due to undeuterated allylic carbon). LRMS m/z (relative intensity) 153 [M] ${ }^{+}$(4), 137 (27), 121 (36), 108 (100). HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{DO} 153.1264$ found 153.1246 [M] ${ }^{+}$.
(1R, 3S)-4-Cyclohexylbuta-2,3-dien-1-yl-1-d methyl carbonate ((Sa, R)-2b-d)

Scheme S16. Formation of methyl carbonate (Sa, R)-2b-d.

To a solution of the allenic alcohol ($30.1 \mathrm{mg}, 0.196 \mathrm{mmol}$) in anhydrous $\mathrm{DCM}(0.8 \mathrm{~mL})$ were added pyridine ($63 \mu \mathrm{~L}, 0.78 \mathrm{mmol}$) and methyl chloroformate $(61 \mu \mathrm{~L}, 0.78 \mathrm{mmol})$ under argon. The mixture was stirred at room temperature for 18 h and then treated with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by preparative TLC eluting with $10 \% \mathrm{EtOAc} / \mathrm{hexane}$ to give allenic carbonate ($34.9 \mathrm{mg}, 84 \%$) as a colorless oil.

$R f=0.68$ (17\% EtOAc/hexane). [a] ${ }^{23} \mathrm{D}+31.0$ (c 1.06 in CHCl_{3}). IR (neat): 2925, 2851, 1964, 1750, 1444, 1340, 1265, 946, 791 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.36-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.63-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.51(\mathrm{~m}, 6 \mathrm{H})$, $1.40-0.96$ (m, 4H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.7,155.6,99.0,87.2,66.1(\mathrm{t}, \mathrm{J}=23.0 \mathrm{~Hz}), 54.7,36.8,32.8,26.0,25.90$, 25.88 (additional small peak at 66.4 ppm due to undeuterated allylic carbon). LRMS m/z (relative intensity) $136\left[\mathrm{M}-\mathrm{OCO}_{2} \mathrm{Me}\right]^{+}$ (3), 119 (15), 107 (43), 92 (43), 83 (100). HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{D} 136.1237$ found 136.1235 [M—OCO2Me] ${ }^{+}$.

Substitution reaction of $(\mathrm{Sa}, R)-2 \mathrm{~b}-d$ with 5 A under the catalysis of Pd-diphosphine 8 in the absence or presence of Lil

In the absence of Li

Scheme S17. Substitution reaction of (Sa, R)-2b-d with $\mathbf{5 A}$ under the catalysis of Pd -diphosphine $\mathbf{8}$ in the absence of Lil.

To a test tube containing (Sa, R)-2b-d ($25.0 \mathrm{mg}, 0.118 \mathrm{mmol}$), (η^{3}-allyl) $\left.\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}(0.8 \mathrm{mg}, 0.004 \mathrm{mmol})$, and 8 ($5.8 \mathrm{mg}, 0.0053$ mmol) were added anhydrous $\mathrm{MeOH}(1.2 \mathrm{~mL})$ and dimethyl malonate ($41 \mu \mathrm{~L}, 0.354 \mathrm{mmol}$) under argon. The resulting mixture was sealed with a screw cap and stirred at $65{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by preparative TLC eluting with 10% EtOAc/hexane to give 6bA-d (18.5 mg, 59%) as a colorless oil. The enantiomeric ratio (er) of 6 bA-d was $(1 R, 3 S):(1 S, 3 R)=64: 36$, which was determined by HPLC analysis with chiral stationary phase column (Daicel Chiralpak OD-H, hexane $/ i-$ propanol $=397 / 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, t_{\mathrm{R}}(3 S-$
major enantiomer $)=17.5 \mathrm{~min}, t_{R}(3 R-$ minor enantiomer $\left.)=18.7 \mathrm{~min}\right)$. The diastereomeric ratio and stereochemistry of $\mathbf{6 b A}-d$ were determined using NMR analysis of γ-lactone 10-d prepared according to the following procedure.

Dimethyl 2-((1R,3S)-4-cyclohexylbuta-2,3-dien-1-yl-1-d)malonate (6bA-d)

X: 85 atom \% D
Y: 15 atom \% D
$R f=0.29$ (17\% EtOAc/hexane). $[\alpha]^{23}{ }_{\mathrm{D}}$ +33.4 (c 0.50 in CHCl_{3}). IR (neat): 2925, 2851, 1961, 1755, 1738, 1436, 1262, 1154, 1038, $892 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 5.14(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.81(\mathrm{~m}$, 1H), 1.81-1.58 (m, 4H), 1.34-0.95 (m, 6H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): ס 202.9, 169.42, 169.37, 99.0, 88.2, 52.49, 52.47, 51.2, $37.2,32.94,32.88,27.9(\mathrm{t}, J=20.5 \mathrm{~Hz}), 26.1,26.0$ (additional small peak at 28.1 ppm due to undeuterated allylic carbon). HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{DO}_{4} 268.1659$, found $268.1649[\mathrm{M}+\mathrm{H}]^{+}$.

6bA-d obtained from (Sa, R)-2b-d was also converted into iodolactone $\mathbf{1 0 - d}$ (6% over 3 steps) and overall retention of the stereoselectivity in the substitution reaction of $(\mathrm{Sa}, R)-\mathbf{2 b}-d$ with $\mathbf{5 A}$ was confirmed.

Conversion of 6bA-d into stereodefined iodolactone 10-d

6bA-d
X: 85 atom \% D
Y: 15 atom \% D

1) $\mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}$

MeOH
$70^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$
2) DMF
$80^{\circ} \mathrm{C}, 30 \mathrm{~h}$

9-d

6% over 3 steps

10-d

Scheme S18. Conversion of $\mathbf{6 b A}-d$ into stereodefined iodolactone 10-d.
(4S, 5R)-5-((Z)-2-Cyclohexyl-1-iodovinyl)dihydrofuran-2(3H)-one-4-d (10-d)

X： 85 atom \％D
Y： 15 atom \％D
White solid． $\mathrm{Rf}=0.24$（ 17% EtOAc／hexane）．IR（neat）：2923，2849，1780，1450，1317，1165， $1009 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$ ， $\left.\mathrm{CDCl}_{3}\right): \delta 5.85(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.37(\mathrm{~m}, 0.85 \mathrm{H}), 2.37-$ $2.23(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.10(\mathrm{~m}, 0.15 \mathrm{H}) 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.5,143.1,104.3,84.2,44.6$ ， 31．3，31．2， $28.4(\mathrm{t}, \mathrm{J}=21.0 \mathrm{~Hz}$ ），28．0，25．7， 25.4 （additional small peak at 28.7 ppm due to undeuterated homoallylic carbon）． LRMS m／z（relative intensity） 321 ［M］${ }^{+}$（37）， 240 （35）， 194 （100）， 152 （50）．HRMS（EI）calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{DIO}_{2} 321.0336$ found $321.0329[M]^{+}$.

In the presence of Lil

Scheme S19．Substitution reaction of（Sa，R ）－2b－d with 5A under the catalysis of Pd－diphosphine $\mathbf{8}$ in the presence of Lil．
To a test tube containing（Sa，R）－2b－d（ $0.9 \mathrm{mg}, 4 \mu \mathrm{~mol}$ ），（ η^{3}－allyl）$\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Pd}(0.2 \mathrm{mg}, 0.9 \mu \mathrm{~mol}), 8(0.3 \mathrm{mg}, 0.3 \mu \mathrm{~mol})$ ，and Lil（ 0.6 $\mathrm{mg}, 4 \mu \mathrm{~mol})$ were added anhydrous $\mathrm{MeOH}(34 \mu \mathrm{~L})$ and dimethyl malonate（ $1.5 \mu \mathrm{~L}, 13 \mu \mathrm{~mol}$ ）under argon．The resulting mixture was sealed with a screw cap and stirred at $65^{\circ} \mathrm{C}$ for 3 h ．The reaction mixture was cooled to room temperature and concentrated in vacuo．The residue was purified by silica gel column chromatography eluting with $3 \% \mathrm{EtOAc} / \mathrm{hexane}$ to give $\mathbf{6 b A}-d$（ 0.3 mg ， 26% ）as a colorless oil．The enantiomeric ratio（er）of $\mathbf{6 b A}-d$ was $(1 R, 3 S):(1 S, 3 R)=51: 49$ ，which was determined by HPLC analysis with chiral stationary phase column（Daicel Chiralpak OD－H，hexane $/$ i－propanol $=397 / 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, t_{R}(3 S-$ major enantiomer $)=17.1 \mathrm{~min}, t_{R}(3 R-$ minor enantiomer $\left.)=18.6 \mathrm{~min}\right)$ ．

番号	保持時周	ビーク名	商を	面楮	相対面棈	含有量	外フ
	分		mV	$\mathrm{mV} \times$ 分	＊	n．a．	
1	17.13	n．a．	171.169	58.629	51.15	n．a	BMB＊
2	18.56	n．a．	155.258	55.993	48.85	n．a．	BMB＊
合計：			326.427	114.622	100.00	0.000	

References

 Eaborn, C.; Jackson, P. M.; Taylor, R. J. Chem. Soc. (B) 1966, 613-619.12 Chen, J.; Liu, D.; Fan, D.; Liu, Y.; Zhang, W. Tetrahedron 2013, 69, 8161-8168.
13 Tian, F.; Yao, D.; Zhang, Y. J.; Zhang, W. Tetrahedron 2009, 65, 9609-9615.
14 Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429-5432.
15 Sun, X.; Zhou, L.; Li, W.; Zhang, X. J. Org. Chem. 2008, 73, 1143-1146.
16 We found that the similar two-step conversion of optically active malonate $\mathbf{6 b} \mathbf{A}(59 \%$ ee) into monocarboxylic acid followed by esterification (3 equiv. Mel, 3 equiv $\mathrm{K}_{2} \mathrm{CO}_{3}, 0.25 \mathrm{M} \mathrm{DMF}$, rt, 2.5 h) afforded the corresponding allenic acid methyl ester (57% ee). The two-step conversion involving hydrolysis and decarboxylation at $80^{\circ} \mathrm{C}$ in DMF was required for the suppression of the racemization of allenic axial chirality. The reaction conditions were applied to the transformation of racemic 6bA-d, where the epimerization could lower the diastereomeric ratio of iodolactone 10-d. a) Pihalaja, K.; Riddell, F. G.; Jalonen, J.; Rinta-Panttila, P.; Antrunis, M. Org. Mag. Resonance 1974, 6, 301-302; b) Abraham, R. J.; Leonard, P. Magn. Reson. Chem 2013, 51, 9-15.
Jeong, K.-S.; Sjö, P.; Sharpless, K. B. Tetrahedron Lett. 1992, 33, 3833-3836.
0 Takeichi, T.; Kuriyama, M.; Onomura, O. Tetrahedron Lett. 2011, 52, 6646-6648.
21 Deutsch, C.; Lipshutz, B. H.; Krause, N. Org. Lett. 2009, 11, 5010-5012.
22 a) Jiang, Y.; Diagne, A. B.; Thomson, R. J.; Schaus, S. E. J. Am. Chem. Soc. 2017, 139, 1998-2005; b) Liu, Q.; Cao, T.; Han, Y.; Jiang, X.; Tang, Y.; Zhai, Y.; Ma, S. Synlett 2019, 30, 477-482; c) Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Zhang, J.; Ma, S. Chem. Commun. 2015, 51, 69566959; d) Ye, J.; Ma, S. Org. Synth. 2014, 91, 233-247.
${ }^{1}$ H NMR spectrum of $\mathbf{6 a A}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 a A}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b A}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b A}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 c A}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 c A}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 d A}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 d B}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 d B}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 d C}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 d D}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b E}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 d E}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 d E}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b F}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b G}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b G}$

${ }^{1} \mathrm{H}$ NMR spectrum of (E)-(4-cyclohexylbut-1-en-3-yn-1-yl)trimethylsilane

$\mathrm{Cy}=\square \mathrm{TMS}$

${ }^{13} \mathrm{C}$ NMR spectrum of (E)-(4-cyclohexylbut-1-en-3-yn-1-yl)trimethylsilane

$\mathrm{Cy}=$ -

$\mathrm{Cy}=$ —D $^{\text {——n }}$
 7b-d

${ }^{1} \mathrm{H}$ NMR spectrum of tetraethyl [1,1'-biphenyl]-2,2'-diylbis(phosphonate)

${ }^{13} \mathrm{C}$ NMR spectrum of tetraethyl [1,1'-biphenyl]-2,2'-diylbis(phosphonate

${ }^{31} \mathrm{P}$ NMR spectrum of tetraethyl [1,1'-biphenyl]-2,2'-diylbis(phosphonate

${ }^{1} \mathrm{H}$ NMR spectrum of [1,1'-biphenyl]-2,2'-diylbis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine oxide)

${ }^{13} \mathrm{C}$ NMR spectrum of [1,1'-biphenyl]-2,2'-diylbis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine oxide)

${ }^{31}$ P NMR spectrum of [1,1'-biphenyl]-2,2'-diylbis(bis(3,5-di-tert-butyl-4-methoxyphenyl)phosphine oxide)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}$

${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b A}-d$ prepared from $7 \mathbf{b}-d$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b A}-d$ prepared from $7 \mathbf{b}-d$

6bA-d
X: 27 atom \% D
Y: 73 atom \% D

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}-d$ prepared from $7 \mathbf{b}-d$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}-d$ prepared from $\mathbf{7 b}-d$

Y: 73 atom \% D

COSY spectrum of $\mathbf{1 0 -} d$ prepared from 7b- d

10-d
X: 27 atom \% D
Y: 73 atom \% D

NOESY spectrum of $\mathbf{1 0}-d$ prepared from $\mathbf{7 b}-d$

COSY spectrum of $\mathbf{1 0}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}-d$ prepared from $7 \mathbf{b}-d$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}-d$ prepared from $7 \mathbf{b}-d$

11-d
X: 28 atom \% D Y: 72 atom \% D

COSY spectrum of $\mathbf{1 1}-d$ prepared from $\mathbf{7 b}-d$

11-d
X: 28 atom \% D
Y: 72 atom \% D

NOESY spectrum of 11- d prepared from 7b- d

${ }^{1} \mathrm{H}$ NMR spectrum of $\left(4 R^{*}, 5 R^{*}\right)$-5-((E)-2-cyclohexylvinyl)dihydrofuran-2(3H)-one-4-d

${ }^{13} \mathrm{C}$ NMR spectrum of $\left(4 R^{*}, 5 R^{*}\right)$-5-((E)-2-cyclohexylvinyl)dihydrofuran-2(3H)-one-4-d

X: 27 atom \% D
Y: 73 atom \% D

COSY spectrum of $\left(4 R^{*}, 5 R^{*}\right)$-5-((E)-2-cyclohexylvinyl)dihydrofuran-2(3H)-one-4-d

X: 27 atom \% D Y: 73 atom \% D

NOESY spectrum of $\left(4 R^{*}, 5 R^{*}\right)-5-((E)$-2-cyclohexylvinyl)dihydrofuran-2(3H)-one-4-d

${ }^{1} \mathrm{H}$ NMR spectrum of $(1 R, 2 R)$-4-cyclohexylbut-3-yne-1- d-1,2-diol

${ }^{13} \mathrm{C}$ NMR spectrum of $(1 R, 2 R)$-4-cyclohexylbut-3-yne-1- d-1,2-diol

${ }^{1} \mathrm{H}$ NMR spectrum of ($1 R, 2 R$)-1-((tert-butyldimethylsilyl)oxy)-4-cyclohexylbut-3-yn-1-d-2-ol

${ }^{13} \mathrm{C}$ NMR spectrum of $(1 R, 2 R)-1-(($ tert-butyldimethylsilyl)oxy)-4-cyclohexylbut-3-yn-1-d-2-ol

${ }^{1} \mathrm{H}$ NMR spectrum of (1R, 2R)-1-((tert-butyldimethylsilyl)oxy)-4-cyclohexylbut-3-yn-2-yl-1-d methyl carbonate

${ }^{13} \mathrm{C}$ NMR spectrum of ($1 R, 2 R$)-1-((tert-butyldimethylsilyl)oxy)-4-cyclohexylbut-3-yn-2-yl-1- d methyl carbonate

${ }^{1} \mathrm{H}$ NMR spectrum of tert-butyl(((1R, 3S)-4-cyclohexylbuta-2,3-dien-1-yl-1-d)oxy)dimethylsilane

${ }^{13} \mathrm{C}$ NMR spectrum of tert-butyl(($(1 R, 3 S)-4$-cyclohexylbuta-2,3-dien-1-yl-1-d)oxy)dimethylsilane

${ }^{1} \mathrm{H}$ NMR spectrum of $(1 R, 3 S)$-4-cyclohexylbuta-2,3-dien-1- d-1-ol

${ }^{13} \mathrm{C}$ NMR spectrum of ($1 R, 3 S$)-4-cyclohexylbuta-2,3-dien-1-d-1-ol

${ }^{1} \mathrm{H}$ NMR spectrum of $(S \mathrm{a}, R)$-2b-d

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 b A}-d$ prepared from $(S a, R)-\mathbf{2 b}-d$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 b A}-d$ prepared from $(S \mathrm{Sa}, R)-\mathbf{2 b}-d$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}-d$ prepared from $(S \mathrm{a}, R) \mathbf{- 2 b}-d$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}-d$ prepared from $(S \mathrm{a}, R)-\mathbf{2 b}-d$

10-d
X: 85 atom \% D
Y: 15 atom \% D

[^0]: ${ }^{a}$ THF was contained.

[^1]: To a test tube containing substrate ($54.7 \mathrm{mg}, 0.204 \mathrm{mmol}$) were added anhydrous THF (0.8 mL) and $1 \mathrm{M} \mathrm{Bu4NF}$ solution in THF $(408 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$ under argon. The resulting mixture was sealed with a screw cap, stirred at room temperature for 1.5 h , and then treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ twice. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by preparative TLC eluting with 20% EtOAc/hexane to give allenic alcohol ($30.1 \mathrm{mg}, 96 \%$) as a colorless oil. The enantiomeric ratio (er) of $\mathbf{6 a A}$ was ($1 R, 3 \mathrm{~S}$):(1S, 3R) $=84: 16$, which was determined by HPLC analysis with chiral stationary phase column (Daicel Chiralpak AS-H, hexane/i-propanol $=50 / 1,0.6 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, t_{R}(1 S, 3 R-$ minor enantiomer $)=14.9 \mathrm{~min}, t_{R}(1 R, 3 S-$ major enantiomer $\left.)=16.1 \mathrm{~min}\right) .{ }^{22}$

