Supporting Information

Ligand Exchange-Ready $\mathrm{CuInS}_{2} / \mathrm{ZnS}$ Quantum

Dots via Surface Ligand Composition Control for

 Film Type Display DevicesJinyoung Choi, Wonseok Choi, and Duk Young Jeon*

Department of Materials Science and Engineering,
Korea Advanced Institute of Science and Technology,
291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

* Corresponding Author. E-mail: dyj@kaist.ac.kr

KEYWORDS: Quantum Dots, Copper Indium Sulfide, Nanocrystal, Ligand Exchange, Surface Passivation, Photoluminescence Quantum Yield

Figure S1. Photograph of the samples QDs dispersed in ethanol. (a) DDT:DDA = 1:2 sample QDs dispersed in ethanol without ligand exchange, (b) DDT:DDA = 1:2 with ligand exchange. (c) Ligand exchanged DDT:DDA = 1:2 QDs attached to TiO_{2} film under UV light. (d) DDT only QD after ligand exchange attempt dispersed in ethanol.

Figure S2 TEM image of the QDs. (a) CulnS 2_{2} core, and (b) CulnS $_{2} / \mathrm{ZnS}$ core - shell QD.

Figure S3. FT-IR spectroscopy of the QDs without the ligand exchange. (a) Overall spectrum, (b) NH bending signal region for DDT only QD, and (c) DDT:DDA=1:2 QD.

Figure S4 XRD measurement result of the sample QDs. Top graph shows the result for DDT only QD, center graph shows the result for DDT/DDA combined ligand QD without ligand exchange, and the bottom graph shows the result after ligand exchange. Standard XRD peaks of Zinc Blende ZnS and tetragonal CulnS ${ }_{2}$ crystals from ICSD are shown in top and bottom of the graph.

Figure S5. XPS survey scan of the DDT:DDA = 1:2 sample QD. Element peaks from the QD are marked written by blue text, and the peaks from the SiO 2 substrate are written in black text.

Figure S6. XPS signal peak of the N 1s. (a) Normalized N 1s peaks for the DDT/DDA ligand QDs with synthesis ligand ratio of 1:1, 1:2, and 1:4. (b) Area of the corresponding peaks in (a)

$$
\tau_{\mathrm{avg}}=\frac{\left(\tau_{1} \times B_{1}\right)+\left(\tau_{2} \times B_{2}\right)+\left(\tau_{3} \times B_{3}\right)+\cdots}{100}
$$

Equation S1. Equation to calculate the average life time (τ_{avg}) from the TCSPC. τ_{x} indicate the lifetime of each component, and B_{x} indicate the portion of the each component in percent.

Figure S7. TCSPC result of the DDT/DDA QDs with and without ligand exchange, alongside with the DDT only QD.

	DDT/DDA W/O ligand exchange	DDT/DDA W/ ligand exchange	DDT only
$\tau_{1}(\mathrm{~ns})$	50.49	136.8	109.76
B_{1} (\%)	8.5	16.2	8.58
$\tau_{2}(\mathrm{~ns})$	213.03	322.3	291.47
B_{2} (\%)	64.14	70.19	70.85
$\mathrm{t}_{3}(\mathrm{~ns})$	524.78	828.68	711.15
B_{3} (\%)	27.36	13.6	20.57
$\tau_{\text {avg }}(\mathrm{ns})$	284.51	361.09	362.21

Table S1. Numerical value of the components in sample QDs derived by the TCSPC measurement. $\mathrm{T}_{1}, \mathrm{~T}_{2}$, and T_{3} are lifetime for each component, and B1, B2, B3 are component ratio of each.

