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Figure S1. 

TEM (a) and HRTEM (b) images of reduced POM (rPOM); inset (a): TEM image of (NH4)3PMo12O40. 
(c) Schematic diagram illustrates the synthesis process of MoP700, MoP, MoP2 and Mo3P.

The formation of MoPx is strongly associated with the high thermal stability of the rPOM nanocluster, 
in which the steric structure can only be decomposed into atomic Mo reactants at temperatures near 
700 oC. At lower temperatures, the nanocluster structure of rPOM can be maintained and the P or PH3 
species from the decomposition of NaH2PO2 (240-300 oC) could diffuse and then adsorb on the rPOM 
nanoclusters to form a solid composite consisting of rPOM encapsulated by P (rPOM@P). When the 
temperature is further increased to 700 oC, the rPOM is decomposed and Mo and P atoms immediately 
combine to form MoPx. MoP700, MoP2 and MoP were synthesized by adjust the mass ratio of rPOM 
and NaH2PO2 precursors.
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Figure S2. 

(a) Thermogravimetric analysis (TGA) curves of rPOM. The sample had a 10.71 % mass loss by ~480 
oC due to the loss of crystal H2O. There is very little mass loss from 400-700 oC, confirming the rPOM 
precursor structure is stable. (b) XRD patterns for rPOM treated at different temperatures. (c) XRD 
patterns for rPOM and NaH2PO2 mixture treated at temperatures from 400 to 700 oC. Note that no 
MoPx phases can be observed in products heated at temperatures below 700 oC, that is, no MoPx was 
produced; when the conversion was subjected to 700 oC, the temperature supplied enough and suitable 
energy for the rPOM cluster decomposing and thus promoted the combination of Mo and P to form 
MoP. (d) TGA curves of MoP700.
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Figure S3. 

(a-d) HRTEM images of MoP700 showing the coexistence of MoP and MoP2 in the as-synthesized 
catalyst.
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Figure S4.

HADDF-STEM images of typical (a) MoP2 and (b) MoP phases in MoP700. (c) HRTEM image of a 
MoP2 nanoparticle, the enlarged red-boxed area shows the detailed structure of (1-10) plane. Different 
surface facets were identified by solid colored lines. (d) FFT image of the MoP2 particls. (e) Simulated 
crystal structure of MoP2 along the [110] zone axis. (f) Distribution of P atoms along the [110] zone 
axis. (g) Distribution of Mo atoms along the [110] zone axis, several possible facets of Mo-terminated 
surfaces with lower Miller indices were identified by solid lines, which are consistent with surface 
facets identified in (c). (h) HRTEM image of a MoP nanoparticle along the [010] zone axis. Various 
surface facets were identified by white lines. 

The HAADF-STEM image (Figure S4a) of typical MoP2 exhibited a zigzagging layered structure and 
the Mo and P atoms are separated into 3 different columns. Because the contrast approximately scales 
with Z1.7, the brighter columns correspond to Mo atoms and the interbedded lighter column is P atoms. 
Figure S4b shows the HAADF-STEM image of typical MoP phase oriented along the [001] direction 
in which the Mo and P atoms are separated in 2 different columns.1-2 The brighter columns correspond 
to Mo atoms and the lighter ones correspond to P atoms. The bright edges of MoP phase indicate that 
the surface atoms can be identified as Mo; that is, MoP possesses Mo-terminated surface. Those result 
suggests that the outmost atomic layers of MoP and MoP2 phases are Mo-terminated, as illustrated in 
inset Figure S4 a and b, respectively.
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Figure S5.

Nyquist plots of (a) MoP700, (b) MoP, (c) MoP2, and (d) Mo3P at different overpotentials (η) from 
100 to 150 mV. 

All electrodes show small and similar series resistance (Rs), suggesting that the experimental setup 
was consistent. The slight variation of Rs in different electrodes can be attributed to the differences in 
electrode resistance. Basically, transition metal phosphides (e.g., MoP, Ni2P, and Co2P) have physical 
properties similar to those of ordinary metallic compounds like the carbides, nitrides, and borides. 
They combine the properties of metals and ceramics, and therefore exhibit metal-like properties and 
high electrical conductivity.3-4
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Figure S6.

(a) Illustration of the home-made button cell. (b) Electrical conductivity of MoP700, MoP, MoP2 and 
Mo3P in compared with conductive carbon.

Electrical conductivity measurement was performed using a home-made button cell by confining the 
catalyst between two smooth polished steel discs and measuring the electrical resistance of the sample 
by AC electric impedance spectroscopy. The operating frequency range was 0.1-100,000 Hz, the AC 
amplitude was 10 mV, and the DC potential was 0 V compared to an open circuit.A Solartron SI 1287 
Electrochemical Interface and a Solartron SI 1260 Impedance/Gain-phase Analyzer coupling system 
was used. 
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Figure S7.

HRTEM and FFT images of MoP700 after 4,000 CV cycles between -0.45 and 0.15 V vs RHE in H2-
saturated 1.0 M PBS, which clearly show the two phases of MoP/MoP2, similar to the sample before 
the stability test (Fig.1b), indicating no obvious structure change for MoP700 during stability test.
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Figure S8.

XPS survey scan of MoP700/GC (a) before and (b) after 4,000 CV cycles between -0.45 and 0.15 V 
vs RHE in H2-saturated 1.0 M PBS. XPS high resolution spectra of (c) Mo 3d and (d) P 2p before and 
after the stability tests, which indicates no obvious surface chemistry change during stability test. 
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Figure S9.

CV curves of (a) MoP700, (b) MoP2, (c) MoP and (d) Mo3P in the potential region of 0.10-0.30 V 
(versus RHE) at various scan rate (20-100 mV s-1).

The measured capacitive currents are used to determine the specific capacitance (Cdl) of electrodes 
(∆J = ½(Ja - Jc) at 0.20 V against the scan rate).5-7 The Cdl can be converted into an electrochemical 
surface area (AECSA) using the Cdl value for a flat standard with 1 cm2 of real surface area. The Cdl for 
a flat surface is generally found to be in the range of 20-60 uF cm-2.8-9 In this work, we assume 40 uF 
cm-2, which is a general practice in literature.6-7 The AECSA of catalysts are calculated and presented 
in Figure S10.
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Figure S10.

(a) The calibration of Ag/AgCl (3.0M KCl) reference electrode with respect to reversible hydrogen 
potential using reversible hydrogen electrode (RHE) in H2-saturated 0.5 M H2SO4; The calibration 
resulted in a shift of -0.255 V vs the RHE; thus, E(RHE) = 0.059 pH + 0.255V. (b) The measured Cdl 
(Figure S9) plotted as a function of scan rate. (c) Calculated AECSA for catalysts. (d) The measured 
HER polarization curves normalized to AECSA.

To calculate the AECSA of MoPx and Pt catalysts (0.25 mg cm-2) on electrodes, we use the following 
formula:6-7

  ACatalyst
ECSA =

 Cdl 

40 uF cm ―2 per cm2
ECSA                        A

Pt
ECSA =

 79 𝑚2 𝑔 ―1 
0.2 ∗ 0.25 mg 𝑐𝑚 ―2 ∗  0.19625 𝑐𝑚2

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 
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Figure S11.

Configuration of H and H2O bind on (a) P-MoP, (b) Mo-MoP, (c) P-MoP2, (d) Mo-MoP2, (e) P-Mo3P 
and (f) Mo-Mo3P surfaces. P: pink, Mo: purple.
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Figure S12.

Configuration of initial state, transition state and final state of H2O dissociation reaction on the (a) 
Mo-MoP2 and (b) Mo-MoP surfaces. P: pink, Mo: purple.
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Table S1. 
Comparison of the HER activity/performance of the MoP700 catalyst vis-à-vis some representative 
PGM-free HER electrocatalysts recently reported for 1.0 M PBS (a catalytic materials directly grown 
or attached on current collectors)

Catalyst Loading
(mg cm-2)

Current density (j) 
(mA cm-2)

η at the corresponding j 
(mV) Reference

10 196
MoP700 0.25

25 245
This work

MoP NA/CCa - 10 187 10

MoS2/Moa - 10 244 11

MoP/CFa - 1 300 12

MoB 315

Mo2C
- 1.5

241
13

Ni-S/FTOa 10 330 14

NiS2 NA/CC 4.1(NiS2) 10 243 15

MW-CoS 0.283 10 275 16

 

Table S2. 
Comparison of the MEC activity/performance of the MoP700 catalyst vis-à-vis some representative 
electrocatalysts recently reported.

Optimal current density in MEC 
based on projected cathode surface 

(A m-2)
Catalyst type Loading (mg cm-

2) Reference

157 MoP700 0.5

145 Pt 0.5
This work

30 Electroformed Ni mesh n/a 17

14 MoS2 2.5 18

19 Stainless steel fiber felt n/a 19

18 Mg(OH)2/graphene 1.5 20
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