Supporting Information for:

One macrocyclic ligand, four oxidation states: A 16-atom ringed di-anionic tetra-NHC macrocycle and its Cr(II) through Cr(V) complexes

Markus R. Anneser, Xian B. Powers, KatieAnn M. Peck, Isabel M. Jensen, and David M. Jenkins*

Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States

Table of contents:

1.	NMR Data of Compounds 1 to 7	S2
2.	Various NMR Data	S8
3.	NMR data for 8	S10
4.	Cyclic Voltammetry Data for 4	S12

1. NMR Data of Compounds 1 to 5.

Figure S1: ¹H NMR of $((^{BMe_2,Me}TC^{H})Cr)_2$ (1) in MeCN-d₃.

(peak at 9.5 ppm is very broad, see HSQC Fig.3)

Figure S3: HSQC of $((^{BMe_2,Me}TC^H)Cr)_2(\mathbf{1})$ in MeCN-d₃.

Figure S4: Paramagnetic ¹H NMR of $(^{BMe_2,Me}TC^H)Cr(Br)(NCCH_3)$ (2) in MeCN-d₃, collected from 5 mg of crystalline solid (*).

Figure S5: Paramagnetic ¹H NMR of $[(^{BMe_2,Me}TC^H)Cr(NCCH_3)_2](PF_6)$ (3) in MeCN-d₃, collected from 5 mg of crystalline solid grown from MeCN/benzene (*).

Figure S6: ¹H NMR of (^{BMe₂,Me}TC^{*H*})CrO (4) in THF-d₈.

Figure S7: ¹³C NMR of (^{BMe₂,Me_TC^H)CrO (4) in THF-d₈.}

Figure S8: HSQC of (^{BMe₂,Me}TC^{*H*})CrO (4) in THF-d₈.

Figure S9: ¹H NMR of [(^{BMe₂,Me}TC^{*H*})CrO](PF₆) (**5**) in THF-d₈, collected from 5 mg of crystalline solid grown from THF/pentane. No signals are observed.

Figure S10: Paramagnetic ¹H NMR of (^{BMe₂,Me_TC^H)Cr(N(DiPP)) (6) in MeCN-d₃.}

Figure S11: Paramagnetic ¹H NMR of (^{BMe₂,Me}TC^{*H*})Cr(N^{*t*}Bu) (7) in MeCN-d₃.

2. Various NMR Data

Figure S12: ³¹P NMR of **4** with 2 equiv. PPh₃ in MeCN-d₃ before and after addition of 1 equiv. of FcPF₆, resulting in the oxidation of PPh₃ to OPPh₃ (26 ppm) via compound **5**. The peak evolving at 21.5 ppm is likely to be assigned to a OPPh₃ adduct as **3** accumulates.

Figure S13: ³¹P NMR of **3** with 1 equiv. OPPh₃ in MeCN-d₃. Small peak at 21.5 ppm indicates the formation of **3**-OPPh₃.

3. NMR data for Mo reactions

Figure S14: ¹H NMR of ((^{BMe₂,Me}TC^{*H*})Mo)₂ (**8**) in MeCN-d₃, collected from 2 mg of crystalline solid grown from toluene/pentane (*).

Figure S15: ¹³C NMR of $(({}^{BMe_2,Me}TC^{H})Mo)_2$ (8) in MeCN-d₃, collected from 2mg of crystalline solid grown from toluene/pentane (*).

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 f1 (ppm)

Figure S16: ¹H NMR of $(({}^{BMe_2,Me}TC^{H})Mo)_2$ (8) mixed with 10 equiv. of ONMe₃ in MeCN-d₃, heated to 90 °C in a sealed NMR tube for 1, 4 and 10 days.

Figure S17: ¹H NMR of (($^{BMe_2,Me}TC^H$)Mo)₂ (8) mixed with 10 eq. of ONMe₃ in MeCN-d₃, heated to 90 °C in a sealed NMR tube for 10 days. (*) are from residual 8.

4. Cyclic Voltammetry Data

Figure S18: CV of 4 in MeCN (0.1 M TBAPF₆; 100 mV/s; Pt-Electrode).