Supporting Information for:

Detosylative (Deutero)alkylation of Indoles and Phenols with (Deutero)alkoxides

Ming-Hui Zhu,[†] Cheng-Long Yu,[†] Ya-Lan Feng,[†] Muhammad Usman,[†] Dayou Zhong,[†] Xin Wang,[†] Nasri Nesnas,[‡] and Wen-Bo Liu^{*,†}

Email: wenboliu@whu.edu.cn

 [†]Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
 [‡]Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States

Table of Contents

General Information and Materials	2
Scheme S1. Debrominative Deuteration vs Detosylative Methylation.	3
Table S1. Reaction Condition Optimizations for N-Methylation of N-Tosylindole.	3
Table S2. Reaction Condition Optimizations for O-Methylation of O-Tosylphenol.	4
General Procedure and Spectroscopic Data for Detosylation/(Deutero)alkylation of Indoles a	ind
Phenols with (Deutero)alkoxides	5
Table S3. Reaction Condition Optimizations for N-Alkylation of Indoles with Alcohols	19
General Procedure and Spectroscopic Data for N-Alkylation of Indoles and Heterocyclic	
Compounds using Alcohols	20
General Procedure for One-pot Reaction of N-Alkylation of Indoles	31
Synthesis of 8 (Pramoxine) and 8-d (Deuterated Pramoxine)	32
References	34
GC-MS Spectra	35
¹ H and ¹³ C NMR Spectra	36

General Information and Materials

Unless otherwise stated, all reactions were carried out in oven-dried Schlenk glassware under an atmosphere of dry argon or in a glovebox. Reactions were monitored by thin-layer chromatography (TLC). TLC was performed using Huanghai 8±0.2µm precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, KMnO₄, *p*-anisaldehyde, or phosphomolybdic acid staining. Huanghai silica gel (particle size 300-400 or 200-300 mesh) was used for silica gel chromatography. ¹H NMR spectra were recorded at room temperature on a Bruker ADVANCE III 400 MHz spectrometer or Oxford NMR AS600 600 MHz spectrometer and were reported relative to CDCl₃ (δ 7.26 ppm). ¹³C NMR spectra were recorded on a Bruker ADVANCE III 400 MHz spectrometer and were reported relative to CDCl₃ (δ 77.16 ppm). Data for ¹H NMR were reported as chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration) using standard abbreviations for multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, and br = broad signal. Data for ¹³C NMR were reported in terms of chemical shifts (δ ppm). GC-MS analyses were carried out on an Agilent 7890B gas chromatograph equipped with a HP-5 (5%-phenyl)-methylpolysiloxane capillary column (Agilent) and an Agilent 5977A quadrupole mass-selective detector (MSD) in an electron ionization (EI) mode. High resolution mass spectra (HRMS) were obtained by use of Thermo Fisher Scientific LTQ FTICR-MS spectrometer or Bruker Compact TOF mass spectrometer in an electrospray ionization mode (ESI+) or an atmospheric pressure chemical ionization (APCI+).

Unless otherwise noted, all reagents were purchased commercially and used without further purification. Petroleum ether (60–90 °C) was used as eluent for silica gel chromatography. Dry solvents were purchased commercially or were dried by passage through an activated alumina column under argon.

Scheme S1. Debrominative Deuteration vs Detosylative Methylation.

Table S1. Reaction Condition Optimizations for N-Methylation of N-

Tosylindole.

	R N PG	base (2 equiv) solvent, rt, 4 h	R		N H
	1		2	dep	protection
entry ^a	R; PG	solvent	base	2 (yield)	deprotection (yield)
1	R = H; PG = Ts	CH ₃ CN	KOCH ₃	2a , 95% ^b	N.D.
2	R = H; PG = Ts	THF	KOCH ₃	2a , 95% ^b	N.D.
3	R = H; PG = Ts	toluene	KOCH ₃	2a , 94% ^b	N.D.
4	R = H; PG = Ts	DMF	KOCH ₃	2a , 81% ^b	N.D.
5	R = H; PG = Ts	DCM	KOCH ₃	2a , 72% ^{<i>b</i>}	N.D.
6	R = H; PG = Ts	CH ₃ CN	LiOCH ₃	2a , N.D.	N.D.
7	R = H; PG = Ts	CH ₃ CN	NaOCH ₃	2a , 84% ^{<i>c</i>}	N.D.
8	R = H; PG = Ts	CH ₃ CN	KOCH ₃	2a , 92% ^c	N.D.
9	$R = H; PG = PhSO_2$	CH ₃ CN	KOCH ₃	2a , 96% ^c	N.D.
10	R = H; PG = Tf	CH ₃ CN	KOCH ₃	2a , N.D.	77% ^{<i>c</i>}
11	R = Br; PG = Ac	CH ₃ CN	KOCH ₃	2d , N.D.	$20\%^{c} (68\%^{d})$

^{*a*}Reactions were conducted with 0.2 mmol **1**, 0.4 mmol base in 0.7 mL solvent. ^{*b*}Yield was determined by GC using dodecane as an internal standard. ^{*c*}Isolated yield. ^{*d*}Recovered starting material. N.D. = not detected.

General Procedure for Condition Optimizations (Table S1): To a screw-capped vial equipped with a magnetic stirring bar were added 1-tosyl-1*H*-indole **1a** (54.2 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) and 0.7 mL solvent. The vial was sealed and stirred until the completion of the reaction as monitored by TLC. Then the vial was removed from the glove box. H₂O (10 mL) was added to quench the reaction and the mixture was extracted with DCM (5 mL \times 3). The organic layers were washed with brine and dried over anhydrous Na₂SO₄, then filtered and evaporated under reduced pressure. The desired product was purified by silica gel chromatography.

Table S2. Reaction Condition Optimizations for O-Methylation of O-

Br OTS KOCH ₃ (2 equiv) solvent, temperature, 18.5 h Br							
	1n	2n					
entry ^a	solvent	temperature	yield				
1	DCM	rt	39%				
2	THF	rt	30%				
3	CH ₃ CN	rt	41%				
4	CH ₃ CN	45 °C	82%				

Tosylphenol.

^{*a*}Reactions were conducted with 0.2 mmol 4-bromophenyl 4-methylbenzenesulfonate (**1n**), 0.4 mmol KOCH₃ in 2 mL solvent for 18.5 h. ^{*b*}Isolated yield.

General Procedure for Condition Optimizations (Table S2): To a screw-capped vial equipped with a magnetic stirring bar were added 4-bromophenyl 4-methylbenzenesulfonate 1n (65.4 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) and 2 mL solvent. The vial was sealed and stirred at indicated temperature for 18.5 h. Then the vial

was removed from the glove box. The reaction mixture was filtered through a short pad of Celite, and washed by Et_2O (diethyl ether) (about 4 – 5 mL). The filtrate was concentrated under reduced pressure. The desired product was purified by silica gel chromatography.

General Procedure and Spectroscopic Data for Detosylation/(Deutero)alkylation of Indoles and Phenols with (Deutero)alkoxides

General procedure A: To a dry schlenk tube equipped with a magnetic stirring bar were added tosylated heterocycles 1 (1.0 equiv), KOCH₃ or KOCD₃ (2.0 equiv) and CH₃CN under an atmosphere of dry argon. The mixture was stirred at room temperature until the substrate 1 was completely consumed as monitored by TLC. The reaction was quenched with H₂O (10 mL) and extracted with DCM (10 mL \times 3). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Then the desired product was purified by silica gel chromatography.

General procedure B: To a dry schlenk tube equipped with a magnetic stirring bar were added *p*-toluenesulfonylphenolic esters **1** (1.0 equiv), KOCH₃ or KOCD₃ (2.0 equiv), and CH₃CN under an atmosphere of dry argon. The mixture was stirred at 45 °C until the substrate **1** was completely consumed as monitored by TLC. Then, the reaction mixture was filtered through a short pad of Celite, and washed with Et₂O. The filtrate was concentrated under reduced pressure at 0 °C. The crude mixture was purified by silica gel chromatography to give the desired product.

1-Methyl-1*H***-indole (2a)**: The general procedure A was followed. The reaction was performed with 1-tosyl-1*H*-indole **1a** (54.3 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2a** (24.0 mg, 92% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.70 – 7.62 (m, 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.31 – 7.20 (m, 1H), 7.18 – 7.09 (m, 1H), 7.07 (d, *J* = 2.8 Hz, 1H), 6.51 (d, *J* = 3.1 Hz, 1H), 3.81 (s, 3H). These spectroscopic data were consistent with those reported in the literature.¹

1-Trideuteromethyl-1*H***-indole (3a)**: The general procedure A was followed. The reaction was performed with 1-tosyl-1*H*-indole **1a** (135.6 mg, 0.5 mmol), KOCD₃ (73.2 mg, 1.0 mmol) in 2 mL CH₃CN. The desired product **3a** (59.1 mg, 88% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.38 – 7.29 (m, 1H), 7.27 – 7.18 (m, 1H), 7.12 (d, *J* = 2.9 Hz, 1H), 6.60 (d, *J* = 3.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 128.8, 128.5, 121.5, 120.9, 119.3, 109.3, 100.9, 32.2 (m); GCMS: calc'd for C₉H₆D₃N [M]⁺: 134.09, found: 134.10.

5-Fluoro-1-methyl-1*H***-indole (2b)**: The general procedure A was followed. The reaction was performed with 5-fluoro-1-tosyl-1*H*-indole **1b** (57.9 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2b** (28.1 mg, 94% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃)

 δ 7.29 – 7.26 (m, 1H), 7.23 (dd, *J* = 8.9, 4.3 Hz, 1H), 7.09 (d, *J* = 2.9 Hz, 1H), 6.98 (td, *J* = 9.1, 2.5 Hz, 1H), 6.45 (dd, *J* = 3.2, 1.0 Hz, 1H), 3.79 (s, 3H). These spectroscopic data were consistent with those reported in the literature.²

5-Fluoro-1-Trideuteromethyl-1*H***-indole (3b)**: The general procedure A was followed. The reaction was performed with 5-fluoro-1-tosyl-1*H*-indole **1b** (144.6 mg, 0.5 mmol), KOCD₃ (73.2 mg, 1.0 mmol) in 2 mL CH₃CN. The desired product **3b** (64.8 mg, 86% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.22 (dd, *J* = 9.7, 2.5 Hz, 1H), 7.15 (dd, *J* = 8.8, 4.3 Hz, 1H), 7.01 (d, *J* = 3.0 Hz, 1H), 6.91 (td, *J* = 9.1, 2.5 Hz, 1H), 6.38 (dd, *J* = 3.1, 0.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.9 (d, *J* = 233.4 Hz), 133.5, 130.5, 128.7 (d, *J* = 10.3 Hz), δ 110.0 (d, *J* = 12.8 Hz), 109.8 (d, *J* = 3.8 Hz), 105.6 (d, *J* = 23.3 Hz), 100.9 (d, *J* = 4.8 Hz), 32.5 (m); GCMS: calc'd for C₉H₅D₃FN [M]⁺: 152.08, found: 152.10.

5-Chloro-1-methyl-1*H***-indole (2c)**: The general procedure A was followed. The reaction was performed with 5-chloro-1-tosyl-1*H*-indole **1c** (61.0 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2c** (29.6 mg, 89% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 2.1 Hz, 1H), 7.23 (d, *J* = 8.7 Hz, 1H), 7.17 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.07 (d, *J* = 3.0 Hz, 1H), 6.42 (d, *J* = 3.0 Hz, 1H), 3.78 (s, 3H). These spectroscopic data were consistent with those reported in the literature.²

5-Chloro-1-trideuteromethyl-1*H***-indole (3c)**: The general procedure A was followed. The reaction was performed with 5-chloro-1-tosyl-1*H*-indole **1c** (152.9 mg, 0.5 mmol), KOCD₃ (73.2 mg, 1.0 mmol) in 2 mL CH₃CN. The desired product **3c** (72.9 mg, 86% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 2.1 Hz, 1H), 7.24 (d, *J* = 8.6 Hz, 1H), 7.20 (dd, *J* = 8.7, 1.9 Hz, 1H). 7.08 (d, *J* = 3.1 Hz, 1H), 6.45 (d, *J* = 3.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.2, 130.2, 129.5, 125.1, 121.8, 120.2, 110.3, 100.6, 32.4 (m); GCMS: calc'd for C₉H₅D₃ClN [M]⁺: 168.05, found: 168.05.

5-Bromo-1-methyl-1*H***-indole (2d)**: The general procedure A was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole **1d** (70.1 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2d** (36.3 mg, 86% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, *J* = 1.9 Hz, 1H), 7.30 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.19 (d, *J* = 8.7 Hz, 1H), 7.05 (d, *J* = 3.1 Hz, 1H), 6.42 (d, *J* = 3.2 Hz, 1H), 3.78 (s, 3H). These spectroscopic data were consistent with those reported in the literature.²

5-Bromo-1-trideuteromethyl-1*H***-indole (3d)**: The general procedure A was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole **1d** (175.1 mg, 0.5 mmol), KOCD₃ (73.2 mg, 1.0 mmol) in 2 mL CH₃CN. The desired product **3d** (96.4 mg, 91% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 1.8 Hz, 1H), 7.31 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.19 (d, *J* = 8.6 Hz, 1H), 7.05 (d, *J* = 3.1 Hz, 1H), 6.44 (dd, *J* = 3.2, 0.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.4, 130.2, 130.0, 124.3, 123.3, 112.7, 110.8, 100.6, 32.4 (m); GCMS: calc'd for C₉H₅D₃BrN [M]⁺: 212.00, found: 211.95.

5-Iodo-1-methyl-1*H***-indole (2e)**: The general procedure A was followed. The reaction was performed with 5-iodo-1-tosyl-1*H*-indole **1e** (79.4 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2e** (42.3 mg, 82% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 1.9 Hz, 1H), 7.46 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.10 (d, *J* = 8.5 Hz, 1H), 7.03 – 6.97(m, 1H), 6.43 – 6.38 (m, 1H), 3.77 (s, 3H). These spectroscopic data were consistent with those reported in the literature.²

5-Iodo-1-trideuteromethyl-1*H***-indole (3e)**: The general procedure A was followed. The reaction was performed with 5-iodo-1-tosyl-1*H*-indole **1e** (198.6 mg, 0.5 mmol), KOCD₃ (73.2 mg, 1.0 mmol) in 2 mL CH₃CN. The desired product **3e** (121.7 mg, 94% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 1.6 Hz, 1H), 7.47 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.10 (d, *J* = 8.5 Hz, 1H), 7.01 (d, *J* = 8.6 Hz, 1H), 6.42 (dd, *J* = 3.1, 0.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 131.0, 129.8, 129.7, 129.6, 111.3, 100.3, 82.9, 32.3 (m); GCMS: calc'd for C₉H₅D₃IN [M]⁺: 259.99, found: 259.95.

5-Methoxy-1-methyl-1*H***-indole (2f)**: The general procedure A was followed. The reaction was performed with 5-methoxy-1-tosyl-1*H***-indole 1f (150.7 mg, 0.5 mmol), KOCH₃ (70.0**

mg, 1.0 mmol) in 1 mL CH₃CN. The desired product **2f** (73.7 mg, 91% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.22 (d, *J* = 8.8 Hz, 1H), 7.09 (d, *J* = 2.5 Hz, 1H), 7.02 (s, 1H), 6.89 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.40 (s, 1H), 3.85 (s, 3H), 3.77 (s, 3H). These spectroscopic data were consistent with those reported in the literature.²

5-Methoxy-1-trideuteromethyl-1*H***-indole (3f)**: The general procedure A was followed. The reaction was performed with 5-methoxy-1-tosyl-1*H*-indole **1f** (150.7 mg, 0.5 mmol), KOCD₃ (73.2 mg, 1.0 mmol) in 1 mL CH₃CN. The desired product **3f** (64.6 mg, 79% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.9 Hz, 1H), 7.13 (d, *J* = 2.4 Hz, 1H), 7.04 (d, *J* = 3.0 Hz, 1H), 6.93 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.44 (dd, *J* = 3.0, 0.8 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 132.1, 129.3, 128.8, 111.9, 110.0, 102.5, 100.4, 56.0, 32.3 (m); GCMS: calc'd for C₁₀H₈D₃NO [M]⁺: 164.10, found: 164.10.

4-Bromo-1-methyl-1*H***-indole (2g)**: The general procedure A was followed. The reaction was performed with 4-bromo-1-tosyl-1*H*-indole **1g** (70.1 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2g** (37.4 mg, 89% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.27 (m, 2H), 7.13 – 7.03 (m, 2H), 6.54 (d, *J* = 3.1 Hz, 1H), 3.78 (s, 3H). These spectroscopic data were consistent with those reported in the literature.³

SI-10

4-Bromo-1-trideuteromethyl-1*H***-indole (3g)**: The general procedure A was followed. The reaction was performed with 4-bromo-1-tosyl-1*H*-indole **1g** (70.0 mg, 0.2 mmol), KOCD₃ (29.3 mg, 0.4 mmol) in 1 mL CH₃CN. The desired product **3g** (75.5 mg, 71% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.28 (m, 1H), 7.28 – 7.26 (m, 1H), 7.11 (d, *J* = 3.3 Hz, 1H), 7.07 (d, *J* = 8.3 Hz, 1H), 6.53 (dd, *J* = 3.1, 0.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 129.4, 129.2, 122.5, 122.3, 114.9, 108.5, 101.4, 32.6 (m); GCMS: calc'd for C₉H₅D₃NBr [M]⁺: 212.00, found: 211.95.

7-Bromo-1-methyl-1*H***-indole (2h)**: The general procedure A was followed. The reaction was performed with 7-bromo-1-tosyl-1*H*-indole **1h** (70.1 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2h** (31.9 mg, 76% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 3.0 Hz, 1H), 6.91 (t, *J* = 7.7 Hz, 1H), 6.46 (dd, *J* = 3.1, 0.9 Hz, 1H), 4.16 (s, 3H). These spectroscopic data were consistent with those reported in the literature.²

7-Bromo-1-trideuteromethyl-1*H***-indole (3h)**: The general procedure A was followed. The reaction was performed with 7-bromo-1-tosyl-1*H*-indole **1h** (175.1 mg, 0.5 mmol), KOCD₃ (73.2 mg, 1.0 mmol) in 2 mL CH₃CN. The desired product **3h** (97.2 mg, 92% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 3.1 Hz, 1H), 6.92 (t, *J* = 7.7 Hz, 1H), 6.47 (d, *J* = 3.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 133.2, 131.84, 131.75, 126.6, 120.6, 120.5, 104.0, 101.3, 36.1 (m); GCMS: calc'd for C₉H₅D₃NBr [M]⁺: 212.00, found: 211.95.

Methyl 1-Methyl-1*H*-indole-4-carboxylate (2i): The general procedure A was followed. The reaction was performed with methyl 1-tosyl-1*H*-indole-4-carboxylate 1i (65.9 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product 2i (24.7 mg, 65% yield) was obtained after purification by silica gel chromatography (10% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.53 (d, *J* = 9.1 Hz, 1H), 7.26 (t, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 3.1 Hz, 1H), 7.11 (dd, *J* = 3.1, 0.9 Hz, 1H), 3.98 (s, 3H), 3.84 (s, 3H). These spectroscopic data were consistent with those reported in the literature.⁴

Methyl 1-Methyl-1*H*-indole-5-carboxylate (2j): The general procedure A was followed. The reaction was performed with methyl 1-tosyl-1*H*-indole-5-carboxylate 1j (65.9 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product 2j (33.3 mg, 90% yield) was obtained after purification by silica gel chromatography (10% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 1.0 Hz, 1H), 7.93 (dd, *J* = 8.7, 1.6 Hz, 1H), 7.32 (d, *J* = 8.6 Hz, 1H), 7.11 (d, *J* = 3.2 Hz, 1H), 6.59 (dd, *J* = 3.2, 0.9 Hz, 1H), 3.93 (s, 3H), 3.82 (s, 3H). These spectroscopic data were consistent with those reported in the literature.⁵

1,3-Dimethyl-1*H***-indole (2k)**: The general procedure A was followed. The reaction was performed with 3-methyl-1-tosyl-1*H*-indole **1k** (57.1 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2k** (25.2 mg, 87% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 7.9 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.83 (s, 1H), 3.74 (s, 3H), 2.33 (s, 3H). These spectroscopic data were consistent with those reported in the literature.⁶

3-Methyl-1-trideuteromethyl-1*H***-indole (3i)**: The general procedure A was followed. The reaction was performed with 3-methyl-1-tosyl-1*H*-indole **1k** (142.7 mg, 0.5 mmol), KOCD₃ (73.2 mg, 1.0 mmol) in 2 mL CH₃CN. The desired product **3i** (71.1 mg, 97% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 8.3 Hz, 1H), 7.17 – 7.10 (m, 1H), 7.06 – 7.00 (m, 1H), 6.73 (s, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 128.7, 126.6, 121.5, 119.0, 118.6, 110.1, 109.1, 31.9 (m), 9.7; GCMS: calc'd for C₁₀H₈D₃N [M]⁺: 148.11, found: 148.10.

1,2-Dimethyl-1*H***-indole (2l)**: The general procedure A was followed. The reaction was performed with 2-methyl-1-tosyl-1*H*-indole **1l** (57.1 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2l** (14.7 mg, 51% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 7.7 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.06 (t, *J* = 7.4 Hz, 1H). 3.66 (s, 3H), 2.43 (s, 3H). These spectroscopic data were consistent with those reported in the literature.⁷

1-Methyl-1*H***-pyrrolo[2,3-***b***]pyridine (2m): The general procedure A was followed. The reaction was performed with 1-tosyl-1***H***-pyrrolo[2,3-***b***]pyridine 1m** (54.5 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN. The desired product **2m** (22.5 mg, 85% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 8.34 (dd, *J* = 4.7, 1.6 Hz, 1H), 7.91 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.18 (d, *J* = 3.4 Hz, 1H), 7.06 (dd, *J* = 7.8, 4.7 Hz, 1H), 6.45 (d, *J* = 3.4 Hz, 1H), 3.90 (s, 3H). These spectroscopic data were consistent with those reported in the literature.⁸

1-Fluoro-4-methoxybenzene (2n): The general procedure B was followed. The reaction was performed with 4-fluorophenyl 4-methylbenzenesulfonate **1n** (132.8 mg, 0.5 mmol), KOCH₃ (70.5 mg, 1.0 mmol) in 2 mL CH₃CN for 18.5 h. The desired product **2n** (49.0 mg, 76% yield) was obtained after purification by silica gel chromatography (2% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.01 – 6.94 (m, 2H), 6.86 – 6.80 (m, 2H), 3.78 (s, 3H). These spectroscopic data were consistent with those reported in the literature.⁹

1-Chloro-4-methoxybenzene (**2o**): The general procedure B was followed. The reaction was performed with 4-chlorophenyl 4-methylbenzenesulfonate **1o** (141.3 mg, 0.5 mmol), KOCH₃ (70.3 mg, 1.0 mmol) in 2 mL CH₃CN for 18.5 h. The desired product **2o** (53.4 mg, 75% yield) was obtained after purification by silica gel chromatography (2% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 6.86 – 6.80 (m, 2H), 3.79 (s, 3H). These spectroscopic data were consistent with those reported in the literature.¹⁰

1-Bromo-4-methoxybenzene (2p): The general procedure B was followed. The reaction was performed with 4-bromophenyl 4-methylbenzenesulfonate **1p** (64.4 mg, 0.2 mmol), KOCH₃ (28.8 mg, 0.4 mmol) in 2 mL CH₃CN for 18.5 h. The desired product **2p** (30.2 mg, 82% yield) was obtained after purification by silica gel chromatography (2% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 9.0 Hz, 2H), 6.78 (d, *J* = 9.0 Hz, 2H), 3.78 (s, 3H). These spectroscopic data were consistent with those reported in the literature.¹⁰

1-Bromo-4-trideuteromethoxybenzene (3j): The general procedure B was followed. The reaction was performed with 4-bromophenyl 4-methylbenzenesulfonate **1p** (65.4 mg, 0.2 mmol), KOCD₃ (29.2 mg, 0.4 mmol) in 2 mL CH₃CN for 18.5 h. The desired product **3j** (25.1 mg, 66% yield) was obtained after purification by silica gel chromatography (2% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 9.1 Hz, 2H), 6.78 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 132.4, 115.8, 112.9. These spectroscopic data were consistent with those reported in the literature.¹¹

1-Iodo-4-methoxybenzene (**2q**): The general procedure B was followed. The reaction was performed with 4-iodophenyl 4-methylbenzenesulfonate **1q** (186.2 mg, 0.5 mmol), KOCH₃ (69.9 mg, 1.0 mmol) in 2 mL CH₃CN for 18.5 h. The desired product **2q** (85.3 mg, 73% yield) was obtained after purification by silica gel chromatography (2% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.9 Hz, 2H), 6.68 (d, *J* = 8.9 Hz, 2H), 3.78 (s, 3H). These spectroscopic data were consistent with those reported in the literature.¹⁰

1-Methoxy-2,4-dimethylbenzene (**2r**): The general procedure B was followed. The reaction was performed with 2,4-dimethylphenyl 4-methylbenzenesulfonate **1r** (137.9 mg, 0.5 mmol), KOCH₃ (70.5 mg, 1.0 mmol) in 2 mL CH₃CN for 18.5 h. The desired product **2r** (47.6 mg, 70% yield) was obtained after purification by silica gel chromatography (2% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 6.98 – 6.93 (m, 2H), 6.72 (d, *J* = 8.8 Hz, 1H), 3.80 (s, 3H), 2.26 (s, 3H), 2.19 (s, 3H). These spectroscopic data were consistent with those reported in the literature.¹²

4-Methoxy-1,1'-biphenyl (2s): The general procedure B was followed. The reaction was performed with [1,1'-biphenyl]-4-yl 4-methylbenzenesulfonate **1s** (64.8 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 2 mL CH₃CN for 18.5 h. The desired product **2s** (19.9 mg, 54% yield) was obtained after purification by silica gel chromatography (2% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.50 (m, 4H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 8.9 Hz, 2H), 3.86 (s, 3H). These spectroscopic data were consistent with those reported in the literature.¹³

1-Methoxy-4-phenoxybenzene (2t): The general procedure B was followed. The reaction was performed with 4-phenoxyphenyl 4-methylbenzenesulfonate **1t** (170.6 mg, 0.5 mmol), KOCH₃ (70.8 mg, 1.0 mmol) in 2 mL CH₃CN for 18.5 h. The desired product **2t** (56.2 mg, 56% yield) was obtained after purification by silica gel chromatography (2% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 2H), 7.05 (td, *J* = 7.4, 1.0 Hz, 1H), 7.00 (d,

J = 9.2 Hz, 2H), 6.96 (d, J = 7.7 Hz, 2H), 6.89 (d, J = 9.2 Hz, 2H), 3.81 (s, 3H). These spectroscopic data were consistent with those reported in the literature.¹⁴

1-Trideuteromethoxy-4-phenoxybenzene (3k): The general procedure B was followed. The reaction was performed with 4-phenoxyphenyl 4-methylbenzenesulfonate **1t** (170.8 mg, 0.5 mmol), KOCD₃ (73.8 mg, 1.0 mmol) in 2 mL CH₃CN for 18.5 h. The desired product **3k** (46.9 mg, 46% yield) was obtained after purification by silica gel chromatography (2% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.23 (m, 2H), 7.04 (t, *J* = 7.3 Hz, 1H), 7.02 – 6.97 (m, 2H), 6.95 (dd, *J* = 8.8, 1.1 Hz, 2H), 6.89 (d, *J* = 9.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 156.0, 150.2, 129.7, 122.5, 121.0, 117.7, 114.9; HRMS (APCI+): calc'd for C₁₃H₁₀D₃O₂ [M+H]⁺: 204.1098, found: 204.1097

2-Bromo-6-methoxynaphthalene (**2u**): The general procedure A was followed. The reaction was performed with 6-bromonaphthalen-2-yl 4-methylbenzenesulfonate **1u** (30.3 mg, 0.08 mmol), KOCH₃ (11.2 mg, 0.2 mmol) in 0.4 mL CH₃CN. The desired product **2u** (13.2 mg, 70% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.60 (d, *J* = 8.8 Hz, 1H), 7.50 (d, *J* = 8.7 Hz, 1H), 7.16 (d, *J* = 8.9 Hz, 1H), 7.10 (s, 1H), 3.92 (s, 2H). These spectroscopic data were consistent with those reported in the literature.¹⁵

2,2'-Dimethoxy-1,1'-binaphthalene (2v): The general procedure A was followed. The reaction was performed with [1,1'-binaphthalene]-2,2'-diyl bis(4-methylbenzenesulfonate) **1v** (118.9 mg, 0.2 mmol), KOCH₃ (56.0 mg, 0.8 mmol) in 0.8 mL CH₃CN. The desired product **2v** (42.0 mg, 67% yield) was obtained after purification by silica gel chromatography (7% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 9.0 Hz, 2H), 7.87 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 9.0 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 3.77 (s, 6H). These spectroscopic data were consistent with those reported in the literature.¹⁶

N, *N*-Dimethylaniline (2v): The general procedure A was followed. The reaction was performed with *N*,4-dimethyl-*N*-phenylbenzenesulfonamide 1v (131.0 mg, 0.5 mmol), KOCH₃ (77.0 mg, 1.1 mmol) in 2 mL CH₃CN overnight. The desired product 2v was not detected.

1-Methylindoline (2x): The general procedure A was followed. The reaction was performed with 1-tosylindoline 1x (54.7 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 0.7 mL CH₃CN overnight. The desired product 2x was not detected.

1-Methyl-1*H***-indol-5-amine (2y)**: The general procedure A was followed. The reaction was performed with 1-tosyl-1*H*-indol-5-amine **1y** (57.3 mg, 0.2 mmol), KOCH₃ (28.0 mg, 0.4 mmol) in 3.0 mL CH₃CN. The desired product **2y** (24.4 mg, 84% yield) was obtained

after purification by silica gel chromatography (33% EA in PE). ¹H NMR (600 MHz, CDCl₃) δ 7.14 (d, *J* = 8.5 Hz, 1H), 6.98 (m, 2H), 6.73 (d, *J* = 8.5 Hz, 1H), 6.30 (d, *J* = 3.1 Hz, 1H), 3.74 (s, 3H). These spectroscopic data were consistent with those reported in the literature.¹⁷

Table S3. Reaction Condition Optimizations for N-Alkylation of Indoles

with Alcohols

E		hexanol (x equiv) KO ^f Bu (1.2 equiv)		
	V IN Ts	4Å MS, solvent, rt	N'	
	1d		4a	-CH3
entry ^a	solvent	alcohol (x equiv)	4Å MS	yield
1	DMF	2	w/o	21% ^b
2	DCE	2	w/o	trace
3	DCM	2	w/o	36% ^b
4	toluene	2	w/o	53% ^b (51% ^c)
5	Et ₂ O	2	w/o	$44\%^b$
6	DMSO	2	w/o	22% ^b
7	THF	2	w/o	75% ^b (60% ^c)
8	THF	2	W	78% ^b (67% ^c)
9	THF	1	W	74% ^{<i>c</i>}
10	THF	1.1	W	87% ^{<i>c</i>}
11	THF	1.2	W	83% ^c
12	THF	2.5	W	43% ^{<i>c</i>}
13	THF	3	W	37% ^{<i>c</i>}

^{*a*}Reactions were conducted with 0.2 mmol of **1d**, 50 mg 4Å MS in 2 mL of solvent for the suitable time monitored by TLC. ^{*b*1}H NMR yield. ^{*c*}Isolated yield. w = with, w/o = without.

General Procedure for Condition Optimizations (Table S3): To a screw-capped vial equipped with a magnetic stirring bar were added hexanol (x equiv), KO'Bu (1.2 equiv), 4Å MS (50 mg) and 2 mL solvent. The mixture was stirred at room temperature for 1 h. Then *N*-tosyl-5-bromoindole **1d** (70.0 mg, 0.2 mmol) was added and stirred at room temperature and the reaction was monitored by TLC until the completion. Then the vial was removed from the glove box. The reaction mixture was filtered through a short pad of Celite, washed with EA (about 4 - 5 mL). The filtrate was concentrated under reduced pressure. Internal standard 1,3,5-trimethoxybenzene (11.2 mg, 0.067 mmol) was added to the residue and the yield was determined by the crude ¹H NMR. Then the desired product was purified by silica gel chromatography (1% EA in PE).

General Procedure and Spectroscopic Data for N-Alkylation of Indoles

and Heterocyclic Compounds using Alcohols

General procedure C: To a dry Schlenk tube or screw-capped vial equipped with a magnetic stirring bar, ROH (1.1 equiv), KO'Bu (1.2 equiv), 4Å MS (250 mg per 1 mmol substrate) and solvent (0.1 mmol/mL) were added under an atmosphere of dry argon. After the mixture was stirred at room temperature for 1 h, substrate **1** (1 equiv) were added and stirred at room temperature until the completion of the reaction as monitored by TLC. Then the reaction mixture was filtered through a short pad of Celite, washed with EA (5 mL) and concentrated under reduced pressure. The crude mixture was purified by silica gel chromatography to give the desired product.

SI-20

5-Bromo-1-hexyl-1*H***-indole (4a)**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole **1d** (70.0 mg, 0.2 mmol), hexanol (22.3 mg, 0.22 mmol), KO'Bu (27.2 mg, 0.24 mmol) and 4Å MS (50.0 mg) in 2 mL THF for 1 h. The desired product **4a** (48.9 mg, 87% yield) was obtained after purification by silica gel chromatography (1% CH₂Cl₂ in PE). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.31 – 7.24 (m, 1H), 7.23 – 7.18 (m, 1H), 7.09 (d, *J* = 3.1 Hz, 1H), 6.42 (d, *J* = 3.1 Hz, 1H), 4.08 (t, *J* = 7.1 Hz, 2H), 1.92 – 1.75 (m, 2H), 1.35 – 1.20 (m, 6H), 0.87 (t, *J* = 6.2 Hz, 3H). These spectroscopic data were consistent with those reported in the literature.¹⁸

5-Bromo-1-decyl-1*H***-indole(4b)**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H***-indole 1d** (176.8 mg, 0.5 mmol), 1-decanol (86.9 mg, 0.55 mmol), KO'Bu (67.8 mg, 0.61 mmol) and 4Å MS (125.0 mg) in 5 mL THF for 1 h. The desired product **4b** (153.1 mg, 90% yield) was obtained after purification by silica gel chromatography (1% CH₂Cl₂ in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 1.8 Hz, 1H), δ 7.30 – 7.24 (m, 1H), 7.22 – 7.17 (m, 1H), 7.09 (d, *J* = 3.1 Hz, 1H), 6.42 (d, *J* = 3.1 Hz, 1H), 4.08 (t, *J* = 7.1 Hz, 2H), 1.75 – 1.86 (m, 2H), 1.26 (m, 14H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.8, 130.3, 129.1, 124.3, 123.5, 112.6, 111.0, 100.6, 46.7, 32.0, 30.3, 29.64, 29.61, 29.40, 29.35, 27.1, 22.8, 14.3; HRMS (APCI+) calc'd for C₁₈H₂₇BrN [M+H]⁺: 336.1321, found 336.1328.

5-Bromo-1-(3-phenylpropyl)-1*H***-indole (4c)**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole **1d** (189.7 mg, 0.5 mmol), 3phenylpropan-1-ol (81.1 mg, 0.60 mmol), KO'Bu (74.4 mg, 0.66 mmol) and 4Å MS (125.0 mg) in 5 mL THF for 1 h. The desired product **4c** (129.7 mg, 76% yield) was obtained after purification by silica gel chromatography (1% CH₂Cl₂ in PE to 3% CH₂Cl₂ in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 1.8 Hz, 1H), 7.36 – 7.25 (m, 3H), 7.25 – 7.18 (m, 1H), 7.18 – 7.12 (m, 3H), 7.09 (d, *J*= 3.1 Hz, 1H), 6.44 (dd, *J* = 3.1, 0.8 Hz, 1H), 4.10 (t, *J* = 7.1 Hz, 2H), 2.62 (t, *J* = 7.6 Hz, 2H), δ 2.18 (quint, *J* = 7.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 134.8, 130.4, 129.0, 128.7, 128.5, 126.4, 124.4, 123.5, 112.7, 111.0, 100.9, 45.9, 33.0, 31.5; HRMS (APCI+) calc'd for C₁₇H₁₇BrN [M+H]⁺:314.0539, found: 314.0545.

5-Bromo-1-(cyclobutylmethyl)-1*H***-indole (4d)**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H***-indole 1d** (175.3 mg, 0.5 mmol), cyclobutylmethanol (47.3 mg, 0.55 mmol), KO'Bu (67.8 mg, 0.61 mmol) and 4Å MS (125.0 mg) in 5 mL THF for 3 h. The desired product **4d** (88.3 mg, 67% yield) was obtained after purification by silica gel chromatography (100% PE). ¹H NMR (400 MHz, CDCl3) δ 7.74 (s, 1H), 7.26 (d, *J* = 8.6 Hz, 1H), 7.21 (d, *J* = 8.7 Hz, 1H), 7.08 (d, *J* = 3.1 Hz, 1H), δ 6.41 (d, *J* = 2.6 Hz, 1H), 4.08 (d, *J* = 7.2 Hz, 2H), 2.81 (quint, *J* = 7.6 Hz, 1H), 2.16 – 1.97 (m, 2H), 1.97 – 1.68 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 135.0, 130.2, 129.1, 124.2, 123.4, 112.6, 111.0, 100.6, 51.8, 36.1, 26.5, 18.3; HRMS (APCI+) calc'd for C₁₃H₁₅BrN [M+H]⁺: 264.0382, found 264.0378.

5-Bromo-1-(cyclopropylmethyl)-1*H***-indole (4e)**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole **1d** (364.0 mg, 1 mmol), cyclopropylmethanol (82.5 mg, 1.14 mmol), KO'Bu (141.1 mg, 1.21 mmol) and 4Å MS (249.7 mg) in 5 mL THF for 1 h. The desired product **4e** (191.9 mg, 74% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 1.8 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.19 – 7.25 (m, 2H), 6.44 (dd, *J* = 3.1, 0.6 Hz, 1H), 3.96 (d, *J* = 6.8 Hz, 2H), 1.32 – 1.17 (m, 1H), 0.70 – 0.57 (m, 2H), 0.30 – 0.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 134.9, 130.3, 128.7, 124.3, 123.5, 112.7, 111.0, 100.7, 51.0, 11.3, 4.2; HRMS (APCI+) calc'd for C₁₂H₁₃BrN [M+H]⁺: 250.0226, found 250.0230.

5-Bromo-1-(2-iodobenzyl)-1*H***-indole (4f)**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole **1d** (175.4 mg, 0.5 mmol), (2-iodophenyl)methanol (128.8 mg, 0.55 mmol), KO'Bu (67.8 mg, 0.61 mmol) and 4Å MS (125.0 mg) in 5 mL THF for 3 h. The desired product **4f** (150.8 mg, 73% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.72 (d, *J* = 1.9 Hz, 1H), 7.18 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.09 (td, *J* = 7.6, 1.1 Hz, 1H), 7.03 (d, *J* = 3.2 Hz, 1H), 7.01 (d, *J* = 8.7 Hz, 1H), 6.90 (t, *J* = 7.3 Hz, 1H), 6.46 (d, *J* = 3.1 Hz, 1H), 6.36 (d, *J* = 7.7 Hz, 1H). 5.19 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 139.1, 135.0, 130.4, 129.6, 128.8, 127.6, 124.9, 123.7, 113.3, 111.3, 101.8, 97.3, 55.4; HRMS (APCI+) calc'd for C₁₅H₁₂BrIN [M+H]⁺: 411.9192, found 411.9205.

5-Bromo-1-(4-bromobenzyl)-1*H***-indole (4g)**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole **1d** (175.0 mg, 0.5 mmol), (4-bromophenyl)methanol (104.2 mg, 0.56 mmol), KO'Bu (69.4 mg, 0.62 mmol) and 4Å MS (129.4 mg) in 5 mL THF for 3 h. The desired product **4g** (142.5 mg, 78% yield) was obtained after purification by silica gel chromatography (2% EA in PE to 5% EA inPE). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 1.8 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.24 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.11 (d, *J* = 3.2 Hz, 1H), 7.08 (d, *J* = 8.7 Hz, 1H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.50 (dd, *J* = 3.2, 0.8 Hz, 1H), 5.24 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.2, 134.9, 132.1, 130.6, 129.5, 128.4, 124.8, 123.7, 121.8, 113.2, 111.2, 101.7, 49.8; HRMS (APCI+) calc'd for C₁₅H₁₂Br₂N [M+H]⁺: 363.9331, found 363.9338.

5-Bromo-1-(but-3-en-1-yl)-1*H***-indole (4h)**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole **1d** (175.3 mg, 0.5 mmol), but-3-en-1-ol (40.2 mg, 0.55 mmol), KO'Bu (67.8 mg, 0.61 mmol) and 4Å MS (125.0 mg) in 5 mL THF for 1 h. The desired product **4h** (81.3 mg, 65% yield) was obtained after purification by silica gel chromatography (1% CH₂Cl₂ in PE to 2% CH₂Cl₂ in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 1.3 Hz, 1H), 7.29 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.22 (d, *J* = 8.7 Hz, 1H), 7.10 (d, *J* = 3.1 Hz, 1H), 6.42 (dd, *J* = 3.1, 0.7 Hz, 1H), 5.09 – 5.02 (m, 2H), 4.16 (t, *J* = 7.1 Hz, 2H), 2.60 – 2.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 134.6, 134.4, 130.3, 128.9, 124.3, 123.4, 117.7, 112.6, 110.8, 100.7, 46.2, 34.5; HRMS (APCI+) calc'd for C₁₂H₁₃BrN [M+H]⁺: 250.0226, found: 250.0229.

(*E*)-5-Bromo-1-(hex-4-en-1-yl)-1*H*-indole (4i): The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole 1d (175.9 mg, 0.5 mmol), (*E*)-hex-4-en-1-ol (57.7 mg, 0.58 mmol), KO'Bu (69.4 mg, 0.62 mmol) and 4Å MS (131.9 mg) in 5 mL THF for 1 h. The desired product 4i (102.6 mg, 73% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 1.9 Hz, 1H), 7.28 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.20 (d, *J* = 8.7 Hz, 1H), 7.09 (d, *J* = 3.1 Hz, 1H), 6.43 (d, *J* = 3.1 Hz, 1H), 5.68 – 5.23 (m, 2H), 4.08 (t, *J* = 6.9 Hz, 2H), 2.03 – 1.94 (m, 2H), 1.93 – 1.80 (m, 2H), 1.67 (d, *J* = 5.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 134.8, 130.4, 129.7, 129.1, 126.5, 124.2, 123.5, 112.6, 111.0, 101.0, 45.9, 29.9, 29.8, 18.1; HRMS (APCI+) calc'd for C₁₄H₁₇BrN [M+H]⁺: 278.0539, found: 278.0545.

(*E*)-5-Bromo-1-(3,7-dimethylocta-2,6-dien-1-yl)-1*H*-indole (4j): The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole 1d (175.1 mg, 0.5 mmol), (Z)-3,7-dimethylocta-2,6-dien-1-ol (89.0 mg, 0.58 mmol), KO'Bu (70.3 mg, 0.62 mmol) and 4Å MS (131.8 mg) in 5 mL THF for 5 h. The desired product 4j (78.0 mg, 47% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 1.8 Hz, 1H), 7.26 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.19 (d, *J* = 8.7 Hz, 1H), 7.10 (d, *J* = 3.1 Hz, 1H), 6.41 (d, *J* = 3.1 Hz, 1H), 5.35 (t, *J* = 6.8 Hz, 1H), 5.14 (t, *J* = 7.1 Hz, 1H), 4.66 (dd, *J* = 6.8, 1.3 Hz, 2H), 2.28 – 2.20 (m, 2H), 2.20 – 2.12 (m, 2H), 1.77 (d, *J* = 1.4 Hz, 3H), 1.72 (s, 3H), 1.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 134.7, 132.6, 130.5, 128.7, 124.2, 123.6, 123.4, 120.3, 112.7, 111.1, 100.7, 44.2, 32.3, 26.5, 25.9, 23.4, 17.9; HRMS (APCI+) calc'd for C₁₈H₂₃BrN [M+H]⁺: 332.1008, found: 332.1010.

9-Hexyl-9*H***-carbazole (4k)**: The general procedure C was followed. The reaction was performed with 9-tosyl-9*H*-carbazole **1z** (161.0 mg, 0.5 mmol), hexanol (55.3 mg, 0.55 mmol), KO^{*t*}Bu (68.2 mg, 0.61 mmol) and 4Å MS (128.3 mg) in 5 mL THF for 5 h. The desired product **4k** (80.1 mg, 64% yield) was obtained after purification by silica gel chromatography (1% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.7 Hz, 2H), 7.53 – 7.34 (m, 4H), 7.25 – 7.20 (m, 2H), 4.30 (t, *J* = 7.3 Hz, 2H), 1.87 (quint, *J* = 7.4 Hz, 2H), 1.49 – 1.17 (m, 6H), 0.86 (t, *J* = 7.1 Hz, 3H). These spectroscopic data were consistent with those reported in the literature.¹⁹

1-Hexyl-1*H***-pyrrole (41)**: The general procedure C was followed. The reaction was performed with 1-tosyl-1*H*-pyrrole **1aa** (88.3 mg, 0.4 mmol), hexanol (44.8 mg, 0.44 mmol), KO'Bu (54.4 mg, 0.48 mmol) and 4Å MS (100.6 mg) in 4 mL THF for 2.5 h. The desired product **4l** (36.2 mg, 60% yield) was obtained after purification by silica gel chromatography (1% EA in PE, the product is volatile and dried under vacuum at – 20 °C). ¹H NMR (400 MHz, CDCl₃) δ 6.65 (t, *J* = 2.1 Hz, 2H), 6.14 (t, *J* = 2.1 Hz, 2H), 3.87 (t, *J* = 7.2 Hz, 2H), 1.83 – 1.71 (m, 2H), 1.36 – 1.24 (m, 6H), 0.88 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 120.6, 107.9, 49.8, 31.7, 31.5, 26.6, 22.7, 14.2; HRMS (APCI+) calc'd for C₁₀H₁₈N [M+H]⁺: 152.1434, found: 152.1435.

1-Hexyl-1*H***-benzo**[*d*]**imidazole** (**4m**): The general procedure C was followed. The reaction was performed with 1-tosyl-1*H*-benzo[*d*]**imidazole 1ab** (109.0 mg, 0.4 mmol), hexanol (45.9 mg, 0.44 mmol), KO'Bu (55.4 mg, 0.48 mmol) and 4Å MS (100.1 mg) in 4 mL THF for 2 h. The desired product **4m** (40.1 mg, 50% yield) was obtained after purification by silica gel chromatography (40% EA in PE to 50% EA

in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.81 (dd, J = 6.4, 2.3 Hz, 1H), 7.40 (dd, J = 6.5, 2.3 Hz, 1H), 7.35 – 7.23 (m, 2H), 4.16 (t, J = 7.2 Hz, 2H), 1.87 (quint, J = 7.2 Hz, 2H), 1.41 – 1.14 (m, 6H), 0.86 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 143.0, 133.9, 122.9, 122.2, 120.4, 109.8, 45.3, 31.4, 29.9, 26.6, 22.6, 14.1; HRMS (ESI+) calc'd for C₁₃H₁₉N₂ [M+H]⁺: 203.1543, found: 203.1548.

1-Hexyl-1*H***-imidazole (4n)**: The general procedure C was followed. The reaction was performed with 1-tosyl-1*H*-imidazole **1ac** (89.0 mg, 0.4 mmol), hexanol (44.7 mg, 0.44 mmol), KO'Bu (54.3 mg, 0.48 mmol) and 4Å MS (100.5 mg) in 4 mL THF for 2 h. The desired product **4n** (25.2 mg, 41% yield) was obtained after purification by silica gel chromatography (100% DCM to 50% EA in DCM, the product is volatile and dried under vacuum at -20 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.04 (s, 1H), 6.90 (s, 1H), 3.91 (t, *J* = 7.2 Hz, 2H), 1.89 – 1.68 (m, 2H), 1.41 – 1.11 (m, 6H), 0.87 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 129.3, 118.9, 47.2, 31.4, 31.2, 26.3, 22.6, 14.1; HRMS (ESI+) calc'd for C₉H₁₇N₂ [M+H]⁺: 153.1386, found: 153.1382.

1-Hexyl-1*H***-pyrazole (40)**: The general procedure C was followed. The reaction was performed with 1-tosyl-1*H*-pyrazole **1ad** (88.8 mg, 0.4 mmol), hexanol (45.4 mg, 0.44 mmol), KO'Bu (54.6 mg, 0.48 mmol) and 4Å MS (100.1 mg) in 4 mL THF for 2.5 h. The desired product **4o** (51.0 mg, 84% yield) was obtained after purification by silica gel chromatography (1% EA in PE, the product is volatile and dried under vacuum at -20 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 1.4 Hz, 1H), 7.37 (d, *J* = 2.1 Hz, 1H), 6.23 (t, *J* = 2.0 Hz, 1H), 4.12 (t, *J* = 7.2 Hz, 2H), 1.90 – 1.79 (m, 2H), 1.36 – 1.15 (m, 6H), 0.87 (t, *J*

= 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 129.0, 105.3, 52.3, 31.4, 30.5, 26.4, 22.6, 14.1; HRMS (ESI+) calc'd for C₉H₁₇N₂ [M+H]⁺: 153.1386, found: 153.1394.

4-(4-Chlorophenoxy)phenyl 4-methylbenzenesulfonate (1ae)²⁰: To a dry Schlenk flask equipped with a magnetic stirring bar, 4-(4-chlorophenoxy)phenol (1.10 g, 5 mmol), NaOH (4.4 g, 110 mmol) and 10 ml of THF were added under an atmosphere of dry argon and stirred for 15 minutes at room temperature. Then TsCl (1.05g, 5.5 mmol, 1.1 equiv, in 10 mL THF) was slowly added within 15 min at 0 °C. The reaction mixture was stirred at room temperature for 12 h, and then quenched with H₂O (20 mL) and extracted with EA (20 mL × 3). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvents were removed under reduced pressure. Then the desired product **1ae** (1.29 g, 69% yield) was obtained after purification by silica gel chromatography (10% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.43 – 7.11 (m, 4H), 7.11–6.53 (m, 6H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 155.3, 145.6, 145.1, 132.3, 130.0, 129.9, 129.0, 128.67, 124.0, 120.5, 119.4, 21.9. HRMS (ESI+) calc'd for Cl₁9H₁₅ClSO₄Na [M+Na]⁺: 397.0272, found: 397.0284.

4-(3-(4-(4-Chlorophenoxy)phenoxy)propyl)morpholine (**4p**): The general procedure C was followed. The reaction was performed with 4-(4-chlorophenoxy)phenyl 4-methylbenzenesulfonate **1ae** (74.8 mg, 0.2 mmol), 3-morpholinopropan-1-ol (86.9 mg, 0.22 mmol), KO'Bu (26.9 mg, 0.24 mmol) and 4Å MS (200.0 mg) in 2 mL THF for 12 h. The desired product **4p** (38.4 mg, 55% yield) was obtained after purification by silica gel chromatography (rinsed the silica gel with 0.2% Et₃N in PE, then with 25% EA in PE as

the eluent). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 9.0 Hz, 2H), 6.95 (d, *J* = 9.1 Hz, 2H), 6.91 – 6.82 (m, 4H), 4.00 (t, *J* = 6.3 Hz, 2H), 3.73 (t, *J* = 4.7 Hz, 4H), 2.61 – 2.36 (m, 6H), 2.03 –1.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 155.6, 149.8, 129.7, 127.4, 120.9, 118.8, 115.7, 67.1, 66.7, 55.7, 53.9, 26.6; HRMS (ESI+) calc'd for C₁₉H₂₃ClNO₃ [M+H]⁺: 348.1361, found: 348.1366.

5-Bromo-1-trideuteromethyl-1*H***-indole (3d)**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H*-indole **1d** (175.1 mg, 0.5 mmol), CD₃OD (19.9 mg, 0.55 mmol), KO'Bu (67.2 mg, 0.60 mmol) and 4Å MS (200.0 mg) in 5 mL THF for 3 h. The desired product **3d** (103.9 mg, 98% yield) was obtained after purification by silica gel chromatography (5% EA in PE).

5-Methoxy-1-trideuteromethyl-1*H***-indole (3f)**: The general procedure C was followed. The reaction was performed with 5-methoxy-1-tosyl-1*H*-indole **1f** (60.3 mg, 0.2 mmol), CD₃OD (8.0 mg, 0.22 mmol), KO^{*t*}Bu (26.9 mg, 0.24 mmol) and 4Å MS (100.0 mg) in 3 mL THF overnight. The desired product **3f** (28.3 mg, 86% yield) was obtained after purification by silica gel chromatography (5% EA in PE).

1-Iodo-4-trideuteromethoxybenzene (3l): The general procedure C was followed. The reaction was performed with, 4-iodophenyl 4-methylbenzenesulfonate **1q** (74.6 mg, 0.2 mmol), CD₃OD (8.0 mg, 0.11 mmol), KO'Bu (26.9 mg, 0.24 mmol) and 4Å MS (100 mg)

in 3 mL THF overnight. The desired product **3l** (28.3 mg, 60% yield) was obtained after purification by silica gel chromatography (5% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 6.71 – 6.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 138.3, 116.5, 82.8; HRMS (APCI+): calc'd for C₇H₄D₃IO [M+H]⁺: 237.9803, found: 237.9802.

2-bromo-6-trideuteromethoxynaphthalene (3m): The general procedure C was followed. The reaction was performed with 6-bromonaphthalen-2-yl 4-methylbenzenesulfonate **1u** (75.5 mg, 0.2 mmol), CD₃OD (8.0 mg, 0.11 mmol), KO'Bu (26.9 mg, 0.24 mmol) and 4Å MS (100 mg) in 3 mL THF overnight. The desired product **3m** (27.4 mg, 57% yield) was obtained after purification by silica gel chromatography (5% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 2.0 Hz, 1H), 7.65 (d, *J* = 9.0 Hz, 1H), 7.61 (d, *J* = 8.8 Hz, 1H), 7.50 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.16 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.09 (d, *J* = 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 133.2, 130.1, 129.8, 129.7, 128.6, 128.5, 119.9, 117.1, 105.8; HRMS (APCI+): calc'd for C₁₁H₆D₃BrO [M+H]⁺: 240.0097, found: 240.0103.

5-Bromo-1-methyl-1*H***-indole (3d')**: The general procedure C was followed. The reaction was performed with 5-bromo-1-tosyl-1*H***-indole 1d** (71.1 mg, 0.2 mmol), ¹³CH₃OH (7.8 mg, 0.11 mmol), KO'Bu (26.9 mg, 0.24 mmol) and 4Å MS (80.0 mg) in 3 mL THF for 3 h. The desired product **3d'** (42.4 mg, 99% yield) was obtained after purification by silica gel chromatography (5% EA in PE). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 1.9 Hz, 1H), 7.30 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.19 (d, *J* = 8.6 Hz, 1H), 7.05 (dd, *J* = 3.1, 2.0 Hz, 1H), 6.43 (dd, *J* = 3.1, 0.8 Hz, 1H), 3.77 (d, *J* = 138.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.5, 130.2, 130.1 (d, *J* = 2.3 Hz), 124.5, 123.4, 112.8, 110.8, 100.7 (d, *J* = 2.3 Hz), 33.14; GCMS: calc'd for C₈¹³CH₈BrN [M]⁺: 209.99, found: 210.00.

General Procedure for One-pot Reaction of N-Alkylation of Indoles

General procedure D: To a dry Schlenk tube equipped with a magnetic stirring bar, 5bromo-1*H*-indole (1 equiv), TsCl (1.1 equiv), ROH (1.1 equiv), KO'Bu (2.5 equiv), 4Å MS and THF were added under an atmosphere of dry argon. Then tube was stirred at room temperature until the completion of the reaction as monitored by TLC. After finished, the reaction mixture was filtered through a short pad of Celite, then washed with EA (10 mL). Then the filtrate was concentrated under reduced pressure. The crude mixture was purified by silica gel chromatography to give the desired product.

5-Bromo-1-hexyl-1*H***-indole (4a)**: The general procedure D was followed. The reaction was performed with 5-bromo-1*H*-indole **5** (98.0 mg, 0.5 mmol), TsCl (105.0 mg, 0.55 mol), hexanol (61.2 mg, 0.6 mmol), KO^{*t*}Bu (140.0 mg, 1.25 mmol), 4Å MS (250 mg) in 5 mL THF. The desired product **4a** (102.3 mg, 73% yield) was obtained after purification by silica gel chromatography (1% CH₂Cl₂ in PE).

5-Bromo-1-(3-phenylpropyl)-1*H***-indole (4c)**: The general procedure D was followed. The reaction was performed with 5-bromo-1*H*-indole **5** (39.3 mg, 0.2 mmol), 3phenylpropan-1-ol (30.0 mg, 0.22 mmol), KO'Bu (58.3 mg, 0.5 mmol) and 4Å MS (200 mg) in 2 mL THF. The desired product **4c** (31.4 mg, 50% yield) was obtained after purification by silica gel chromatography (5% PE in EA).

5-Bromo-1-(cyclopropylmethyl)-1*H***-indole(4e)**: The general procedure D was followed. The reaction was performed with 5-bromo-1*H*-indole **5** (39.3 mg, 0.2 mmol), cyclopropylmethanol (15.8 mg, 0.22 mmol), KO'Bu (58.3 mg, 0.5 mmol) and 4Å MS (200 mg) in 2 mL THF. The desired product **4e** (30.7 mg, 61% yield) was obtained after purification by silica gel chromatography (5% PE in EA).

5-Bromo-1-(4-bromobenzyl)-1*H***-indole (4g)**: The general procedure *D* was followed. The reaction was performed with 5-bromo-1*H*-indole **5** (39.3 mg, 0.2 mmol), (4-bromophenyl)methanol (41.1 mg, 0.22 mmol), KO'Bu (58.3 mg, 0.5 mmol) and 4Å MS (200 mg) in 2 mL THF. The desired product **4g** (39.5 mg, 54% yield) was obtained after purification by silica gel chromatography (5% PE in EA).

Synthesis of 8 (Pramoxine) and 8-d (Deuterated Pramoxine)

4-Butoxyphenyl 4-methylbenzenesulfonate (6): To a dry Schlenk flask equipped with a magnetic stirring bar, 4-butoxyphenol (0.16 g, 1 mmol), NaOH (0.88 g, 22 mmol) and 10 mL THF were added under an atmosphere of dry argon and stirred for 15 minutes at room temperature. Then TsCl (0.21 g, 1.1 mmol, 1.1 equiv, in 10 mL THF) was slowly added within 15 min at 0 °C. The reaction mixture was stirred at room temperature for 12 h, then quenched with H₂O (20 mL) and extracted with EA (20 mL × 3). The combined organic

layers were washed with brine and dried over anhydrous Na₂SO₄. The solvents were removed under reduced pressure. The desired product **6** (0.32 g, 99 % yield) was obtained after purification by silica gel chromatography (4% EA in PE) to get the corresponding product. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 6.85 (d, *J* = 9.1 Hz, 2H), 6.75 (d, *J* = 9.1 Hz, 2H), 3.89 (t, *J* = 6.5 Hz, 2H), 2.44 (s, 3H), 1.85 – 1.63 (m, 2H), 1.52 – 1.34 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 145.3, 143.0, 132.4, 129.8, 128.7, 123.4, 115.1, 68.2, 31.4, 21.9, 19.3, 14.0; HRMS (ESI+) calc'd for C₁₇H₂₀SO₄K [M+K]⁺: 359.0714, found: 359.0717.

4-(3-(4-Butoxyphenoxy)propyl)morpholine (8): The general procedure C was followed. The reaction was performed with 4-butoxyphenyl 4-methylbenzenesulfonate **6** (64.1 mg, 0.2 mmol), 3-morpholinopropan-1-ol **7** (31.9 mg, 0.22 mmol), KO'Bu (26.9 mg, 0.24 mmol) and 4Å MS (200.0 mg) in 2 mL THF for 12 h. The desired product **8** (34.3 mg, 62% yield) was obtained after purification by silica gel chromatography (5% methanol in DCM). ¹H NMR (600 MHz, CDCl₃) δ 6.82 (s, 4H), 3.96 (t, *J* = 6.3 Hz, 2H), 3.90 (t, *J* = 6.5 Hz, 2H), 3.74 – 3.65 (m, 4H), 2.56 – 2.43 (m, 6H), 1.98 –1.88 (m, 2H), 1.79 – 1.69 (m, 2H), 1.54 – 1.40 (m, 2H), 0.96 (t, *J* = 6.9 Hz, 3H). These spectroscopic data were consistent with those reported in the literature.²¹

4-(3-(4-Butoxyphenoxy)propyl-2,3,3-*d***3)morpholine (8-***d*): The general procedure C was followed. The reaction was performed with 4-butoxyphenyl 4- methylbenzenesulfonate **6**

(48.1 mg, 0.15 mmol), 3-morpholinopropan-1,1,2-*d*₃-1-ol **7-***d* (23.5 mg, 0.16 mmol), KO'Bu (20.2 mg, 0.18 mmol) and 4Å MS (100.0 mg) in 2 mL THF for 12 h. The desired product **8-***d* (33.9 mg, 76% yield) was obtained after purification by silica gel chromatography (rinsed the silica gel with 0.2% Et₃N in PE, then with 25% EA in PE as the eluent). ¹H NMR (400 MHz, CDCl₃) δ 6.82 (s, 4H), 3.96 (t, *J* = 6.0 Hz, 0.69H), 3.90 (t, *J* = 6.5 Hz, 2H), 3.73 (t, *J* = 4.6 Hz, 4H), 2.58 – 2.40 (m, 6H), 1.98 – 1.88 (m, 1.39H), 1.77 – 1.68 (m, 2H), 1.53 – 1.41 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 153.1, 115.5, 68.4, 67.1, 55.7, 53.9, 31.6, 26.4, 19.4, 14.0; HRMS (ESI+) calc'd for C₁₇H₂₅D₃NO₃ [M+H]⁺: 297.2252, found: 297.2245.

References

(1) Ogiwara, Y.; Sakurai, Y.; Hattori, H.; Sakai, N. Org. Lett. 2018, 20, 4204.

(2) Tolnai, G. L.; Ganss, S.; Brand, J. P.; Waser, J. Org. Lett. 2013, 15, 112.

(3) Zheng, H.-X.; Shan, X.-H.; Qu, J.-P.; Kang, Y.-B. Org. Lett. 2017, 19, 5114.

(4) Kitano, M.; Kojima, A.; Nakano, K.; Miyagishi, A.; Noguchi, T.; Ohashi, N. *Chem. Pharm. Bull.* **1999**, *47*, 1538.

(5) Kong, A.; Han, X.; Lu, X. Org. Lett. 2006, 8, 1339.

(6) Jiang, X.; Yang, J.; Zhang, F.; Yu, P.; Yi, P.; Sun, Y.; Wang, Y. Org. Lett. 2016, 18, 3154.

(7) Klare, H. F. T.; Oestreich, M.; Ito, J.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312.

(8) Taylor, N. J.; Emer, E.; Preshlock, S.; Schedler, M.; Tredwell, M.; Verhoog, S.; Mercier, J.; Genicot,

C.; Gouverneur, V. J. Am. Chem. Soc. 2017, 139, 8267.

(9) Xi, X.; Chen, T.; Zhang, J.-S.; Han, L.-B. Chem. Comm. 2018, 54, 1521.

(10) Wang, D.-Y.; Yang, Z.-K.; Wang, C.; Zhang, A.; Uchiyama, M. Angew. Chem. Int. Ed. 2018, 57, 3641.

(11) Shen, Z.; Zhang, S.; Geng, H.; Wang, J.; Zhang, X.; Zhou, A.; Yao, C.; Chen, X.; Wang, W. Org. Lett. **2019**, *21*, 448.

(12) Alonso, F.; Yus, M. Tetrahedron 1992, 48, 2709.

(13) Guo, W.-J.; Wang, Z. -X. J. Org. Chem. 2013, 78, 1054.

(14) Rovira, M.; Soler, M.; Güell, I.; Wang, M-Z.; Gómez, L.; Ribas, X. J. Org. Chem. 2016, 78, 1054.

(15) Maraš, N.; Polanc, S.; Kočevar, M. Tetrahedron 2008, 64, 11618.

(16) Wongma, K.; Bunbamrung, N.; Thongpanchang, T. Tetrahedron 2016, 72, 1533.

(17) Chen, S.; Lu, G.; Ca, C. New J. Chem. 2015, 39, 5360.

(18) Babu, D. D.; Su, R.; El-Shafei, A.; Adhikari, A. V. *Electrochimica*. Acta. 2016, 198, 10.

(19) Li, M.; Kang, S.; Du, J.; Zhang, J.; Wang, J.; Ariga, K. Angew. Chem. Int. Ed. 2018, 57, 4936.

(20) Lei, X.; Jalla, A.; Shama, M. A. A.; Stafford, J. M.; Cao, B. Synthesis 2015, 47, 2578.

(21) Guo, Y.; Fan, X.-M.; Nie, M.; Liu, H.-W.; Liao, D.-H.; Pan, X.-D.; Ji, Y.-F. *Eur. J. Org. Chem.* **2015**, 4744.

GC-MS Spectra

GC-MS of 2b

GC-MS of 2c

GC-MS of 2d

GC-MS of 2e

GC-MS of 2f

GC-MS of 2g

GC-MS of 2h

GC-MS of 2l

GC-MS of 2m

q

0.0

čD₃

цĽ

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of 4b

₽2[.]9—

 ^{13}C NMR (100 MHz, CDCl₃) of 4n

60 Z 51 Z 51 Z 51 Z 51 Z 51 Z 51 Z 52 Z

SI-112

SI-113

SI-116

