SUPPORTING INFORMATION

Photophysical Behavior and Fluorescence Quenching of L-Tryptophan in Choline Chloride-Based Deep Eutectic Solvents

Anu Kadyan, Shreya Juneja, and Siddharth Pandey*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India

*To whom correspondence should be addressed.

E-mail: sipandey@chemistry.iitd.ac.in, Phone: +91-11-26596503

Figure S1: Absorbance Spectra of L-Trp at 298.15 K in Reline (top panel) and Glyceline (bottom panel).

Table S1: Quantum Yield, Viscosity, $E_T(30)$ and E_T^N of L-Trp in Reline and Glyceline Obtained Experimentally Compared with Different Solvents Available in the Literature^{12,13,58,a,b} at 298.15 K.

Solvent	Quantum Yield (Φ _F)	Viscosity (mPa·s)	$E_{\mathrm{T}}(30)$	$E_{\mathrm{T}}^{\mathrm{N}}$
Glyceline	$\textbf{0.76} \pm 0.01$	329.7 ⁴⁶	58.0 ^a	0.84 ^a
Reline	$\textbf{0.50} \pm 0.01$	827.6 ⁴⁵	57.00 ^a	0.81 ^a
Acetonitrile	0.36 ± 0.05^{12}	0.4^{58}	45.6 ^b	0.46 ^b
Water	0.21 ± 0.01^{13}	0.9^{58}	63.1 ^b	1.00 ^b
Methanol	0.14 ± 0.02^{12}	0.5^{58}	55.4 ^b	0.76 ^b
1-Hexanol	0.14 ± 0.03^{12}	4.6 ⁵⁸	48.8 ^b	0.56 ^b
1-Octanol	0.09 ± 0.03^{12}	7.3 ⁵⁸	48.1 ^b	0.54 ^b
1-Butanol	0.06 ± 0.10^{12}	2.5 ⁵⁸	49.7 ^b	0.59 ^b

^aPandey, A.; Rai, R.; Pal, M.; Pandey, S. How Polar Are Choline Chloride-Based Deep Eutectic Solvents? *Phys. Chem. Phys.* **2014**, *16*, 1559–1568. https://doi.org/10.1039/C3CP53456A.

^bReichardt, C., *Solvents and Solvent Effects in Organic Chemistry*, 2nd ed.; Wiley VCH: Weinheim, 2003. https://doi.org/10.1002/9783527632220.

Figure S2: $\langle r \rangle$ *versus* T (panel A) and $\langle r \rangle$ *versus* η (panel B) plots showing steady-state anisotropy $\langle r \rangle$, variation with temperature and viscosity of L-Trp in Reline and Glyceline at different temperatures. Solid lines represent fit to linear equation (panel A) and exponential rise to maxima equation (panel B), respectively.

T(K)	τ_1 (ns)	τ_2 (ns)	α_1	α_2	$\langle \tau \rangle$	χ^2
298.15	7.5 2.0	8.7	Reline 1 0.47	0.53	7.6	2.84 1.39
313.15	7.4 1.5	8.3	1 0.43	0.57	7.5	2.45 1.35
328.15	7.0 1.6	7.5	1 0.31	0.69	7.0	1.57 1.12
343.15	6.3 1.5	6.6	1 0.25	0.75	6.2	1.60 1.34
358.15	6.1 1.6	6.4	1 0.23	0.77	6.1	1.53 1.33
			Clucolino			
298.15	5.9 3.6	7.4	1 0.53	0.47	6.1	1.92 1.35
313.15	5.7 3.0	6.7	1 0.44	0.56	5.7	1.87 1.31
328.15	5.3 2.5	6.0	1 0.38	0.62	5.3	1.89 1.43
343.15	4.7 1.5	5.0	1 0.27	0.73	4.7	1.76 1.53
358.15	4.1 0.9	4.3	1 0.29	0.71	4.0	1.59 1.35

Table S2: Recovered Intensity Decay Parameters for L-Trp Dissolved in Reline and Glyceline at Different Temperatures. Errors Associated with Decay Times and Pre-exponential Factors are $\leq \pm 5\%$.

T(K)	Reline		Glyce	line
	τ _{rot} (ns)	χ^2	τ _{rot} (ns)	χ^2
298.15	15.9	1.09	8.9	0.97
313.15	9.2	1.06	5.3	0.82
328.15	4.5	1.05	3.2	1.07
343.15	2.3	1.01	2.1	0.80
358.15	1.4	1.01	1.6	1.09

Table S3: Rotational Reorientation Times (τ_{rot}) and Chi-Square Values Obtained from the Single-Exponential Fit of the Data from Excited-state Anisotropy Decay of L-Trp in Reline and Glyceline in the temperature range 298.15-358.15 K.

Figure S3: Plots of τ_{rot} versus 1/T (panel A) and τ_{rot} versus η (panel B) showing rotational reorientation times variation with temperature and viscosity of L-Trp in Reline and Glyceline at different temperatures.

[Acrylamide]/N	I τ_1 (ns)	τ_2 (ns)	α1	α_2	$\langle \tau \rangle$	χ^2
	1 . ,	<u> </u>	298.15 K	-		
0	7.7 1.7	8.5	1 0.41	0.59	7.7	2.67 1.42
0.1	7.1 1.7	8.2	1 0.46	0.54	7.3	3.24 1.33
0.2	6.7 1.6	7.8	1 0.5	0.5	6.7	3.64 1.40
0.3	6.1 1.5	7.6	1 0.6	0.4	6.4	4.85 1.45
0.4	5.8 1.4	7.4	1 0.65	0.35	6.0	5.29 1.24
0.5	4.9 1.3	7.0	1 0.72	0.28	5.4	5.96 1.28
0.6	5.0 1.2	6.9	1 0.72	0.28	5.1	5.78 1.25
0.7	3.4 1.2	6.6	1 0.84	0.16	4.2	7.14 1.07
0.8	2.6 1.2	6.4	1 0.88	0.12	3.6	6.79 1.12
0.9	2.4 1.2	6.1	1 0.91	0.09	3.1	5.92 1.08
			313.15 K			
0	6.9 2.9	7.9	1 0.39	0.61	7.0	1.84 1.20
0.1	6.3		1			2.08

Table S4: Recovered Intensity Decay Parameters for Quenching L-Trp Dissolved in Reline by Acrylamide at Different Temperatures. Errors Associated with Decay Times and Pre-exponential Factors are $\leq \pm 5\%$.

	1.6	7.7	0.44	0.56	6.8	1.28
0.2	5.6 2.1	6.8	1 0.50	0.50	5.7	2.32 1.19
0.3	5.1 1.6	6.0	$\begin{array}{c}1\\0.50\end{array}$	0.50	5.1	2.53 1.19
0.4	4.7 1.6	5.7	1 0.56	0.44	4.6	2.60 1.23
0.5	4.1 1.4	5.2	1 0.61	0.39	4.1	2.86 1.30
0.6	3.5 0.7	4.5	1 0.72	0.28	3.4	3.54 1.33
0.7	3.2 0.84	4.4	1 0.71	0.29	3.3	3.56 1.46
0.8	2.8 0.66	3.8	1 0.76	0.24	2.7	4.01 1.46
0.9	2.8 0.72	3.8	1 0.73	0.27	2.8	3.25 1.27
			328.15 K			
0	7.0 2.4	7.5	1 0.28	0.72	7.0	1.73 1.40
0.1	6.0 2.2	6.8	1 0.35	0.65	6.1	1.88 1.41
0.2	5.4 1.8	6.1	1 0.39	0.61	5.4	1.97 1.39
0.3	4.6 1.5	5.3	1 0.43	0.57	4.6	1.90 1.24
0.4	4.0 1.5	4.7	1 0.47	0.53	4.0	1.86 1.24
0.5	3.5 1.2	4.2	1 0.53	0.47	3.5	2.21 1.24
0.6	3.0 1.1	3.8	1 0.59	0.41	3.0	2.40 1.21
0.7	2.7		1			2.34

	0.78	3.3	0.60	0.40	2.6	1.18
0.8	2.4 0.95	3.3	1 0.66	0.34	2.5	2.57 1.21
0.9	2.5 0.90	3.3	1 0.69	0.31	2.4	2.49 1.09
			343.15 K			
0	6.4 1.3	7.2	1 0.48	0.52	6.4	2.61 1.30
0.1	5.4 1.4	6.5	1 0.56	0.44	5.4	2.78 1.14
0.2	3.8 1.2	5.2	1 0.70	0.30	3.8	3.66 1.23
0.3	3.1 1.1	4.6	1 0.74	0.26	3.2	3.40 1.09
0.4	2.5 1.1	4.0	1 0.80	0.20	2.5	3.04 1.01
0.5	2.1 0.02	2.4	1 1.00	0.00	0.02	2.62 2.12
0.6	1.7 1.0	3.0	1 0.84	0.16	1.7	2.08 0.96
0.7	1.6 0.9	2.8	1 0.84	0.16	1.6	1.93 0.97
0.8	1.4 0.03	1.5	1 1.00	0.00	0.03	1.77 1.62
			358.15 K			
0	6.5 1.2	7.4	1 0.53	0.47	6.4	3.41 1.21
0.1	5.2 1.1	5.9	1 0.52	0.48	5.1	3.13 1.46
0.2	3.7 1.1	4.6	1 0.61	0.39	3.6	3.19 1.21
0.3	2.9 1.0	3.7	1 0.68	0.32	2.7	3.21 1.09

0.4	2.1 0.9	2.9	1 0.72	0.28	2.0	2.77 1.15
0.5	1.7 0.9	2.4	1 0.74	0.26	1.6	2.64 1.36
0.6	1.4 0.03	1.4	1 1	0	0.03	1.88 1.65
0.7	1.2 0.9	2.0	1 0.88	0.12	1.2	1.56 1.09
0.8	1.1 1.0	2.3	1 0.95	0.05	1.1	1.59 1.32
0.9	1.0 0.8	1.5	1 0.83	0.17	1.0	1.61 1.44

Table S5: Stern-Volmer quenching parameters (Stern-Volmer constant, (K_D) ; and bimolecular quenching constant (k_q)) of L-Trp in Reline and Glyceline in the temperature range 298.15-358.15 K.

Temperature (K)	$K_{D}(M^{-1})$	$k_{ m q}~(10^8~{ m M}^{-1}~{ m s}~^{-1})$
298.15	0.85 ± 0.02	1.1
313.15	1.70 ± 0.16	2.4
328.15	2.18 ± 0.14	3.1
343.15	4.55 ± 0.30	7.1
358.15	6.06 ± 0.51	9.5