
Supporting information

p-Type Conductivity of Hydrated Amorphous V₂O₅ and its Enhanced Photocatalytic Performance in ZnO/V₂O₅/rGO

Heechae Choi,^{1,‡} Yong Jung Kwon,^{2,‡} Juwon Paik,² Jae-Bok Seol³ and Young Kyu Jeong^{2,*}

¹Theoretical Materials & Chemistry Group, Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany ²Non-Ferrous Materials Group, KITECH, Gangneung 25440, South Korea ³National Institute for Nanomaterials Technology, POSTECH, Pohang 37673, South Korea

*Corresponding author. E-mail address: immrc8o@gmail.com (Y. K. Jeong)

Figure S1. XRD patterns of (a) FLZ, (b) FLZ/*ha*-V₂O₅ and (c) FLZ/*c*-V₂O₅. (d) Raman spectra of annea led FLZ/*c*-V₂O₅ and unannealed FLZ/*ha*-V₂O₅ structures, respectively.

Figure S1(a) shows an XRD pattern of FLZ, exhibiting reflection peaks that can be indexed to the ZnO phase (JCPDS card: No. 36-1451). Also, the XRD spectra of FLZ/*ha*-V₂O₅ in Figure S2(b) show only the peaks of the ZnO phase without the peak associated with V₂O₅ phase. This result demonstrates that the unannealed *ha*-V₂O₅ shell layer is apparently amorphous. On the other hand, in figure S1(c), the XRD spectra of the FLZ/*c*-V₂O₅ exhibits ZnO-related peaks and also shows the reflections of V₂O₅ phase with a lattice parameter of a =1.1516 nm, b = 0.35656nm, and c = 0.4372 nm (JCPDS: 41-1426), indicating that the *ha*-V₂O₅ shell layers was crystallized by thermal annealing process.

Figure S1(d) shows a Raman spectra of annealed $FLZ/c-V_2O_5$ and unannealed $FLZ/ha-V_2O_5$ structures, respectively. Annealed V₂O₅ exhibits sharp bands reflecting its ordered crystal structure. The sharp Raman band at 995 cm⁻¹ stems from vibration of the V=O double bond and the remaining bands from 200–800 cm⁻¹ correspond to various vibrations of bridging V–O–V bonds of crystalline V₂O₅. In contrast to the sharp characteristics of Raman bands in the annealed V₂O₅, the unannealed one doesn't show the bands of crystalline V₂O₅ and possess broad bands implying the absence of long-range order.

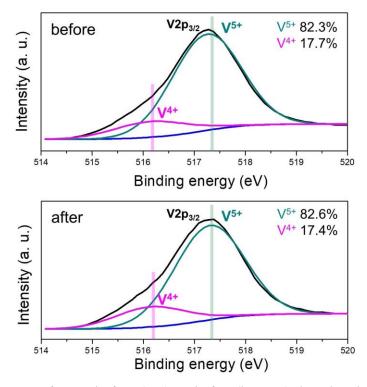
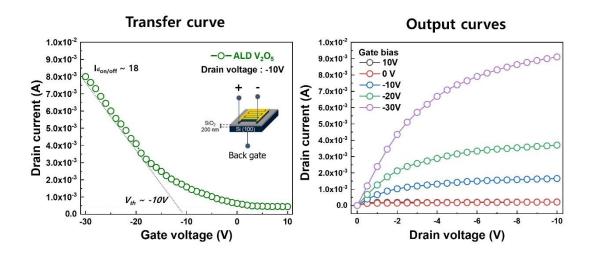



Figure S2. XPS V2p spectra of V2O5 before (top) and after (bottom) the RhB degradation test.

In order to confirm any compositional changes or contaminations of ha-V₂O₅ in the FLZ/ha-V₂O₅/rGO system during the photocatalytic experiments, we have performed XPS analysis. Figure S2 shows the V 2p spectra of V₂O₅ before and after the RhB degradation test. The XPS spectra show two peaks that correspond to V⁴⁺ and V⁵⁺, respectively, indicating V₂O₅ dominantly consist of V₂O₅ compound with a small portion of VO₂. In addition, the two peaks were found to be almost identical suggesting that there are no significant changes in the chemical state and composition of V₂O₅. These XPS results additionally support the enhanced chemical stability of V₂O₅ by applying the rGO matrix in the FLZ/ha-V₂O₅/rGO system.

Figure S3. Electric characterizations of p-type ALD V₂O₅ layer which shows p-type behaviors in transfe r & output curves at room temperature.

We investigated its electric transport properties by fabricating a field-effect transistor (FET) which uses ha-V₂O₅ as a channel layer with back gate structures in order to study the conducting behavior of ha-V₂O₅ at room temperature. This device has a channel length of 10 µm and a dielectric (SiO₂) thickness of 200 nm. As shown in the transfer and output curves, the transfer and output curves of the ha-V₂O₅ FET clearly show typical p-type characteristics at room temperature.