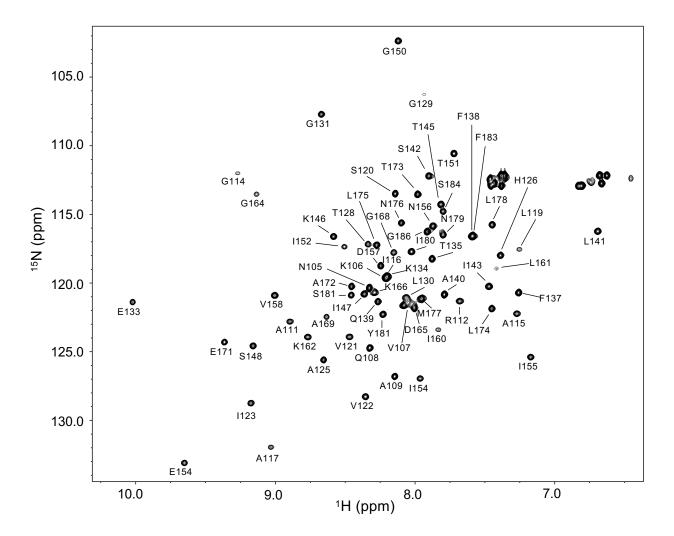
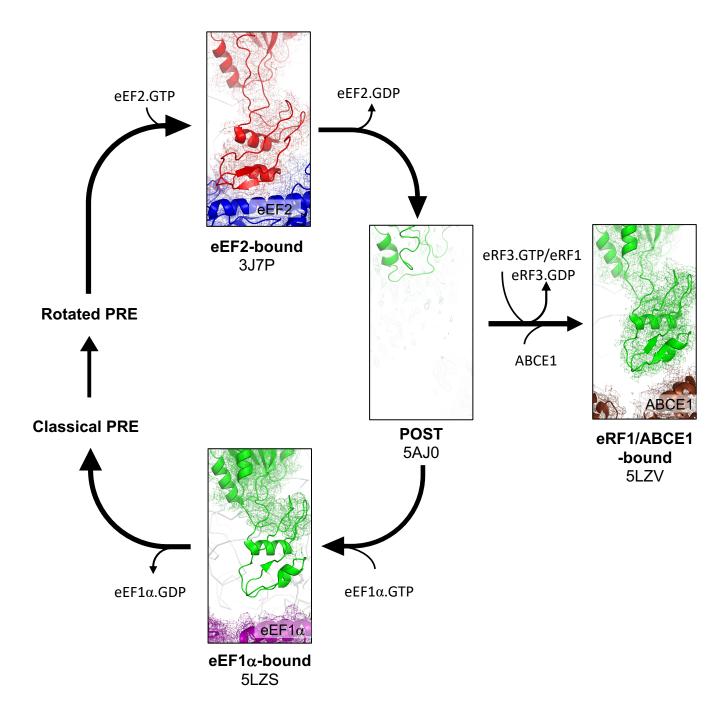
Supporting information


Structural and Mutagenesis Studies Evince the Role of the Extended Protuberant Domain of Ribosomal Protein uL10 in Protein Translation

Kwok-Ho Andrew Choi,[†] Lei Yang,[†] Ka-Ming Lee,[†] Conny Wing-Heng Yu,[†] David K. Banfield,[‡] Kosuke Ito,[§] Toshio Uchiumi, [§] and Kam-Bo Wong *,[†]


[†]School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China

[‡] Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

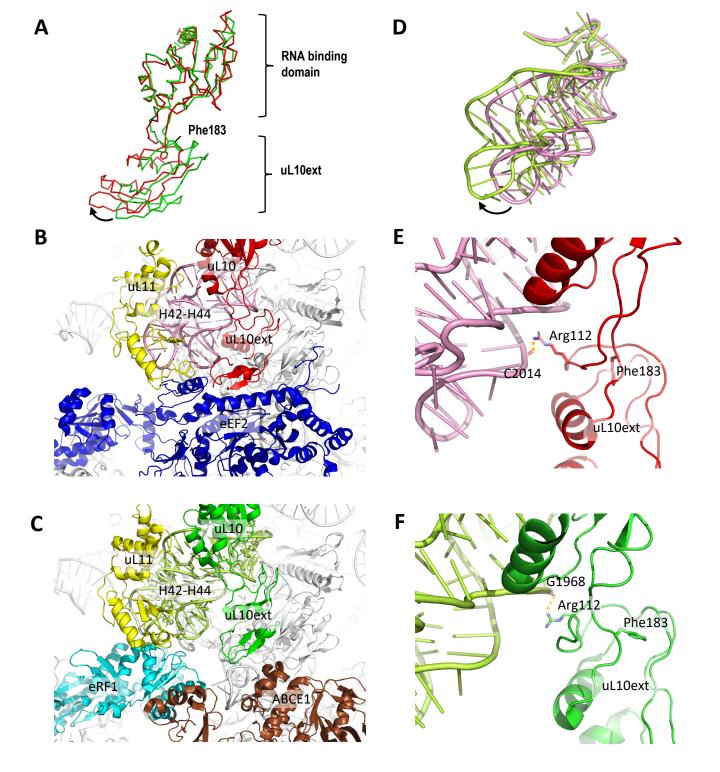

[§] Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2191, Japan

Figure S1. ¹H-¹⁵N correlation map of *Bm*uL10ext at pH 7.4 and 298 K. The sequence-specific assignments of individual residues are denoted.

Figure S2. Structures of the uL10ext domain in various states of eukaryotic ribosomes. The classification of various states in the elongation cycle is described by Behrmann and co-workers ⁷⁰. Cryo-EM densities for the uL10ext domain and the surrounding area are shown with the fitted models. Structures of the eEF2-bound (PDB accession code: 3J7P ⁶⁵), eRF1/ABCE1-bound (PDB accession code: 5LZV ⁶⁴), eEF1α-bound (PDB accession code: 5LZS ⁶⁴) and post-translocation state (POST) (PDB accession code 5AJ0 ⁷⁰) of ribosomes were shown. The uL10ext domain is defined only in the eEF2-bound and eRF1/ABCE1-bound ribosomes.

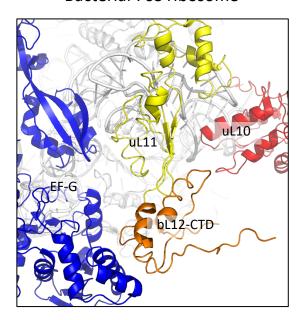


Figure S3. Structural changes in the stalk base of eukaryotic ribosomes. **(A)** The structure of uL10 from eRF1/ABCE1-bound ribosomes (green) was superimposed with that from the eEF2-bound ribosomes (red) based on residues in the RNA-binding domain. As denoted by an arrow, the uL10ext domain in the eRF1/ABCE1-bound ribosomes exhibits a rigid-body hinging motion relative to the RNA-binding domain. **(B)** The conformation of the stalk base in the eEF2-bound ribosome. Both the uL10ext domain (red) and uL11 (yellow) make extensive contacts with the bound eEF2 (blue). **(C)** The conformation of the stalk base in the eRF1/ABCE1-bound ribosomes. **(D)** Interactions between uL11 and eRF1 induce the rRNA stem loop H42-H44 move towards the eRF1 binding site in eRF1/ABCE1-bound ribosomes (light green) as compared to the eEF2-bound ribosomes (pink). **(E)** In the eEF2-bound ribosomes, Arg112 from the uL10ext domain forms a salt bridge with C2014 of rRNA. **(F)** In the eRF1/ABCE1-bound ribosomes, the conserved arginine residue moves to a new position and forms a salt bridge with G1968 of rRNA (light green), inducing the rigid-body hinging motion of the uL10ext domain (green).

Eukaryotic 80S ribosome

uL11 uL10 eEF-2 uL10ext

Bacterial 70S ribosome

Figure S4. Structural comparison of the stalk base of the eEF2-bound eukaryotic ribosomes (PDB accession code: 3J7P ⁶⁵) and the EF-G-bound bacterial ribosomes (PDB accession code: 4V5F ⁸⁰). The uL10ext domain occupies a location that is similar to that occupied by the C-terminal domain (CTD) of bL12.