Supporting Information

Microhydration Structures of Protonated Oxazole

Kuntal Chatterjee and Otto Dopfer*

Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

* Corresponding author: dopfer@physik.tu-berlin.de

Figure Captions

Figure S1. Optimized structure of the neutral Ox-W dimer and its linear IR absorption spectrum calculated at the B3LYP-D3/aug-cc-pVTZ level. Binding energy (D_0) and bond lengths are given in cm⁻¹ and Å, respectively.

Figure S2. NBO atomic charge distribution (in e) of selected $H^+Ox-W_{n\leq 4}$ structures obtained at the B3LYP-D3/aug-cc-pVTZ level.

Figure S3. Potential energy barrier (E_e) for internal rotation of the W ligand in H⁺Ox-W(H) calculated at the B3LYP-D3/aug-cc-pVTZ level in cm⁻¹. Bond lengths are given in Å.

Figure S4. Optimized structure and linear IR absorption spectrum of the H⁺Ox-W(C5) isomer calculated at the B3LYP-D3/aug-cc-pVTZ level. Binding energy (D_0) and bond lengths are given in cm⁻¹ and Å, respectively. Numbers in parentheses correspond to relative energies and free energies (E_0 , G_0) with respect to H⁺Ox-W(H) in cm⁻¹.

Figure S5. Potential energy barrier (E_e) between H⁺Ox-W₄(b) and Ox-H⁺W₄(1) evaluated at the B3LYP-D3/aug-cc-pVTZ level in cm⁻¹.

Figure S6. Orbital interaction between the σ^* orbital of the X-H bond (X=N/O/C) and the lone pair of O involved in the XH...O H-bonds of selected H⁺Ox-W_{n≤4} isomers obtained from the NBO analysis at the B3LYP-D3/aug-cc-pVTZ level. $E^{(2)}$ values given in kJ/mol.

Figure S7. Visualization of the NCI analysis of the XH...O (X=N/O/C) H-bonds in selected H⁺Ox-W_{n≤4} isomers calculated at the B3LYP-D3/aug-cc-pVTZ level. ρ^* values for the H-bonds are given in a.u.

Figure S8. Experimental proton affinities of W_n clusters (n=1-4) and Ox.

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Figure S7

Figure S8