Aconicatisulfonines A and B, Analgesic Zwitterionic C₂₀-Diterpenoid Alkaloids with a Rearranged Atisane Skeleton from *Aconitum carmichaelii*

Yuzhuo Wu,[†] Shuai Shao,[†] Qinglan Guo, Chengbo Xu, Huan Xia, Tiantai Zhang,^{*} and Jiangong Shi^{*}

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

Contents of Supporting Information

No	Content	Page
1		r age
1	Experimental Section	55
2	Figure S1. The detailed 'H-'H COSY (thick lines) and HMBC correlations (red arrows, from 'H to 'SC) of 1 and 2	S4
3	Figure S2. Main NOE enhancements (pink dash lines with double arrows) of 1 and 2	S4
4	Table S1. Relative Energy and Boltzmann Distribution for Conformers of 1	S4
5	Figure S3. The key 3D conformers of 1 obtained by re-optimization at HF/6-31g	S5
6	Figure S4. (a) The overlaid experimental CD spectrum of 1 (black line) and the calculated ECD spectra of 1 (red line) and its enantiomer (blue line). (b) The overlaid experimental (black line) and calculated (red line) UV spectra of 1	S5
7	Table S2. Relative Energy and Boltzmann Distribution for Conformers of 2	S5
8	Figure S5. The key 3D conformers of 2 obtained by re-optimization at HF/6-31g	S5
9	Figure S6. (a) The overlaid experimental CD spectrum of 2 (black line) and the calculated ECD spectra of 2 (red line) and its enantiomer (blue line) (b) The overlaid experimental (black line) and calculated (red line) UV spectra of 2	S 6
10	Acetic Acid Induced Writing Test of Communds 1 and 2	\$6
11	Table S3 Experimental Data for Evaluation of the Analosic effect of Compounds 1 and 2	56
12	Figure 53. Experimental Data for Evaluation of the Analgest effect of Componits 1 and 2 Figure 57. Analgesic effects of compounds 1 and 2 and morphice against acctic acid induced writing of mice	S6
12	Figure 57. Analysis effects of compounds 1 and 2 and morphile against acceleration definition (21)	50
13	Scheme S1. The Flaushie Biosynthetic Fathways of 1 and 2 via the precursor ausine (5)	57
14	Keleprences	5/
15	Figure S8. The UV spectrum of compound 1 in H ₂ O	58
16	Figure S9. The CD spectrum of compound 1 in H ₂ O	S9
17	Figure S10. (+)-HRESIMS of compound I	\$10
18	Figure S11. (–)-HRESIMS of compound 1	S11
19	Figure S12. The IR spectrum of compound 1	S12
20	Figure S13. The ¹ H NMR spectrum of compound 1 in D ₂ O (600 MHz)	S13
21	Figure S14. An expansion of the 1–2.4 ppm region of the ¹ H NMR spectrum of compound 1 in D_2O (600 MHz)	S14
22	Figure S15. An expansion of the 3.0–4.3 ppm region of the ¹ H NMR spectrum of compound 1 in D_2O (600 MHz).	S15
23	Figure S16. The 13 C NMR spectrum of compound 1 in D ₂ O (150 MHz)	S16
24	Figure S17. The DEPT spectrum of compound 1 in D_2O (150 MHz)	S17
25	Figure S18. The ¹ H- ¹ H COSY spectrum of compound 1 in D ₂ O (600 MHz)	S18
26	Figure S19. An expansion of 1.0–4.4 ppm region of the ¹ H- ¹ H COSY spectrum of compound 1 in D ₂ O (600 MHz).	S19
27	Figure S20. The HSOC spectrum of compound 1 in D_2O (600 MHz for ¹ H)	S20
28	Figure S21. An expansion of the $1.0-2.4$ (¹ H)/18-48 (¹³ C) ppm region (¹ H) of the HSOC spectrum of compound 1 in D ₂ O (600 MHz for ¹ H).	S21
29	Figure S22. The HMBC spectrum of compound 1 in D/O (600 MHz for ¹ H)	\$22
30	Figure S23. An expansion of the $10-24$ (¹ H)(18-62 (¹³ C) npm region of the HMBC spectrum of compound 1 in D ₂ O (600 MHz for ¹ H)	S23
31	Figure S24 An expansion of the $10-24$ (¹ H)/162-206 (³ C) npm region of the HMBC spectrum of compound 1 in D ₂ O (600 MHz for H).	\$24
37	Figure 524, an expansion of the 1.0 2.4 (11/102 200 (C)) printegration of the HMPC spectrum of compound 1 in D ₂ O (600 MHz for H).	\$25
22	Figure 325. An expansion of the $3.0-4.3$ ($11/18-02$ (C) ppin region of the HMPC spectrum of compound 1 in D_20 (600 MHZ for 11).	525
22	Figure S26. An expansion of the f_{-3} -9.0 ('H)/18-62 ('C) ppm region of the HMBC spectrum of compound 1 in D_2O (600 MHZ for 'H).	520
34	Figure S27. The NOESY spectrum of compound 1 in $D_2O(600 \text{ MHz})$	527
35	Figure S28. An expansion of $1-4.5$ ppm region of the NOESY spectrum of compound 1 in D ₂ O (600 MHz).	S28
36	Figure S29. The UV spectrum of compound 2 in H_2O	S29
37	Figure S30. The CD spectrum of compound 2 in H_2O	S30
38	Figure S31. (+)-HRESIMS of compound 2	S31
39	Figure S32. (–)-HRESIMS of compound 2	S32
40	Figure S33. The IR spectrum of compound 2	S33
41	Figure S34. The ¹ H NMR spectrum of compound 2 in D_2O (600 MHz)	S34
42	Figure S35. An expansion of $1-2.2$ ppm region of the ¹ H NMR spectrum of 2 in D ₂ O (600 MHz).	S35
43	Figure S36. An expansion of $3.3-4.3$ ppm region of the ¹ H NMR spectrum of 2 in D ₂ O (600 MHz).	S36
44	Figure S37. The 13 C NMR spectrum of compound 2 in D ₂ O (150 MHz)	S37
45	Figure S38. The DEPT spectrum of compound 2 in D ₂ O (150 MHz)	S38
46	Figure S39. The ¹ H- ¹ H COSY spectrum of compound 2 in D ₂ O (600 MHz)	S39
47	Figure S40. An expansion of 1–4.2 ppm region of the ¹ H- ¹ H COSY spectrum of 2 in D ₂ O (600 MHz)	S40
48	Figure S41. The HSOC spectrum of compound 2 in D-Q (600 MHz for 1 H)	S41
49	Figure S42. An expansion of $1.0-4.5$ (1H)/20-80 (¹³ C) non-region of the HSOC spectrum of 2 in D ₂ O (600 MHz for ¹ H)	S42
50	Figure 5.43. An avancion of 1.22 (11)/20.48 (¹² C) printing of the USOC spectrum of 2 in D ₂ O (000 MHz for 11)	\$43
51	Figure 545. An expansion of $1-2.2$ (11)/20-40 (C) printegion of the DSQC spectrum of 2 in D ₂ O (000 MHz 10) f)	S40 S44
51	Figure 544. In the interpret spectrum of compound 2 in D_2O (000 MHz 101 H) Figure 545. An engenning of the 1.2 (HD)(5.75 (BO)) and explore of the HDDO encertainty of compound 2 in DO ((000 MHz 6, HD))	544 S45
52 52	Figure 345. An expansion of the $1-2.5$ (" $\pi/15-75$ ("C) ppm region of the HMBC spectrum of compound 2 in D_2O (000 MHz for "H).	545 846
33	Figure S46. An expansion of $3.5-4.5$ ('H)/20-80 (''C) ppm region of the HMBC spectrum of 2 in D ₂ O (600 MHz for 'H)	540
54	Figure S47. An expansion of 6.4–8.8 ('H)/25–75 ('C) ppm region of the HMBC spectrum of 2 in D ₂ O (600 MHz for 'H)	S47
55	Figure S48. An expansion of $1.0-2.3$ (1H)/150-190 (¹³ C) ppm region of the HMBC spectrum of 2 in D ₂ O (600 MHz for ¹ H)	S48
56	Figure S49. The NOESY spectrum of compound 2 in D ₂ O (600 MHz)	S49
57	Figure S50. An expansion of 1–4.5 ppm region of the NOESY spectrum of 2 in D ₂ O (600 MHz).	S50

Experimental Section

General Experimental Procedures. The optical rotation was measured on a P-2000 polarimeter (JASCO, Tokyo, Japan). The UV spectra was recorded on a V-650 spectrometer (JASCO). The CD spectrum was measured on a JASCO J-815 CD spectrometer (JASCO). The IR spectrum was recorded on a Nicolet 5700 FT-IR Microscope spectrometer (FT-IR Microscope Transmission) (Thermo Electron Corporation, Madison, WI, USA). 1D- and 2D-NMR spectra were obtained at 600 MHz for ¹H and 150 MHz for ¹³C, respectively, on a SYS 600 MHz (Varian Associates Inc., Palo Alto, CA, USA) or Bruker AVANCE III HD 600 MHz spectrometer with ($\delta_{\rm H}$ = 4.800) and CD₃OD or CH₃OH ($\delta_{\rm C}$ = 49.50) as references for ¹H and ¹³C, respectively. HRESIMS data were obtained on an Agilent 6520 Accurate-Mass Q-TOF LCMS spectrometer (Agilent Technologies, Ltd., Santa Clara, CA, USA). Column chromatography (CC) was performed with macroporous adsorbent resin (HPD-110, Cangzhou Bon Absorber Technology Co. Ltd, Cangzhou, China), MCI gel (CHP 20P, 75-150 µm, Mitsubishi Chemical Corporation, Tokyo, Japan), reversed phase C-18 silica gel (Ultrapure Silica Dels, Silicycle, Canada), HW-40F (Toyopearl, Tosoh, Japan), and Sephadex LH-20 (Pharmacia Biotech AB, Uppsala, Sweden). HPLC separation was performed on a system consisting of an Agilent ChemStation for LC system, an Agilent 1200 pump, and an Agilent 1100 single-wavelength absorbance detector (Agilent Technologies, Ltd) or a Smartline RI detector (Knauer, Berlin, Germany) detector, using a Capcell Pak ADME column ($250 \times 10 \text{ mm i.d.}$) (Shiseido Co., Ltd, Japan). TLC was conducted on precoated silica gel GF_{254} plates. Spots were visualized under UV light (254 or 356 nm) or by spraying with 5% H₂SO₄ in 95% EtOH followed by heating or with a Dragendorff's reagent. Unless otherwise noted, all chemicals were obtained from commercially available sources and were used without further purification.

Plant Material. The lateral root of *Aconitum carmichaelii* Debx was collected in June 2009 from the culture field in Jiangyou, Sichuan Province, People's Republic of China. Plant identity was verified by Dr. Yan Ren (Chengdu University of TCM, Sichuan 610075, China). A voucher specimen (no. ID-S-2383) was deposited at the herbarium of the Department of Medicinal Plants, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.

Extraction and Isolation. The air-dried lateral roots of *A. carmichaelii* (50 kg) were powdered and extracted with H₂O (3×150 L $\times 6$ h) at 40 °C. The H₂O extract was concentrated to 120 L under reduced pressure, subjected to chromatography over a macroporous adsorbent resin (HPD-110, 19 kg) column (20×200 cm), and eluted successively with H₂O (50 L), 30% EtOH (120 L), 50% EtOH (120 L), and 95% EtOH (100 L) to afford the corresponding fractions A–D. After removal of the solvent, fraction C (3.5 kg) was chromatographed over MCI gel (CHP 20P) with successive elution using H₂O (10 L), 30% EtOH (30 L), 50% EtOH (20 L), and 95% EtOH (10 L) to give fraction C1–C4. Fraction C1 (750 g) was chromatographed over reversed phase C-18 silica gel, eluting with a gradient increasing CH₃OH ($0 \rightarrow 50\%$) in H₂O (80 L), then with 100% CH₃OH (10 L), to yield corresponding subfractions C1-1 – C1-12 based on TLC analysis. Subfration C1-4 (75 g) was fractionated by CC over Sephadex LH-20 (H₂O) to afford C1-4-1 – C1-4-3, of which C1-4-3 (26 g) was rechromatographed over reversed phase C-18 silica gel ($10 \rightarrow 15\%$ CH₃OH in H₂O) to yield C1-4-3-1 – C1-4-3-10. Separation of C1-4-3-8 (20 g) by CC over reversed phase C-18 silica gel with an isocratic elution of 6% CH₃OH in H₂O, to give C1-4-3-8-6-1 – C1-4-3-8-6 (12 g) was further chromatographed over HW-40F, eluting with 6% CH₃OH in H₂O, to give C1-4-3-8-6-1 – C1-4-3-8-6-7-8. Isolation of C1-4-2-8-6-7-7 (52 mg) by HPLC using the ADME column (14% CH₃CN in H₂O, containing 0.5% TFA, flow rate 2.0 mL/min) afforded 1 (3.4 mg, $t_R = 14$ min) and 2 (1.1 mg, $t_R = 21$ min).

Aconicatisulfonine A (1): Colorless prisms (CH₃OH-H₂O, 5:1), m.p. > 300 °C; $[\alpha]^{20}_{D}$ –34.5 (*c* 0.33, H₂O); UV (H₂O) λ_{max} (log ε) 232.8 (3.84) nm; CD (H₂O) λ_{max} ($\Delta \varepsilon$) 215.5 (+2.87), 244.5 (+3.65) nm; IR ν_{max} 3507, 3445, 2958, 2930, 2863, 2585, 2530, 1674, 1614, 1466, 1448, 1427, 1395, 1374, 1312, 1273, 1228, 1186, 1110, 1086, 1046, 1023, 1007, 984, 938, 868, 850, 823, 791, 775, 704, 661, 636, 604, 579, 539, 503, 486 cm⁻¹; ¹H NMR (D₂O, 600 MHz) data, see Table 1; ¹³C NMR (D₂O, 150 MHz) data, see Table 1; (+)-HRESIMS *m/z* 422.1991 [M + H]⁺ (calcd. for C₂₂H₃₂NO₅S, 422.1996); (–)-HRESIMS *m/z* 420.1844 [M – H]⁻ (calcd. for C₂₂H₃₀NO₅S, 420.1850).

Aconicatisulfonine B (2): White amorphous powder; $[\alpha]^{20}_{D}$ –56.3 (*c* 0.08, H₂O); UV (H₂O) λ_{max} (log ε) 203.0 (3.03), 275.0 (sh, 1.76) nm; CD (H₂O) λ_{max} ($\Delta \varepsilon$) 222 (+4.08) nm; IR ν_{max} 3382, 2942, 2877, 1678, 1425, 1202, 1139,1034, 879, 867, 838, 802, 766, 723, 671, 626, 561 cm⁻¹; ¹H NMR (D₂O, 600 MHz) data, see Table 1; ¹³C NMR (D₂O, 150 MHz) data, see Table 1; (+)-HRESIMS *m*/*z* 424.2152 [M + H]⁺ (calcd. for C₂₂H₃₄NO₅S, 424.2152); (-)-HRESIMS *m*/*z* 422.2009 [M - H]⁻ (calcd. for C₂₂H₃₂NO₅S, 422.2007).

Conformational Analysis and Calculations of the ECD and UV Spectra of 1 and 2.^{S1} Conformational analysis and quantum computations were performed using Gaussian 16 program package.^{S2} Conductor-like polarizable continuum model (CPCM) was adopted to consider solvent effects using the dielectric constant of H_2O ($\epsilon = 78.36$).

Conformational searches of 1 and 2 showed 20 and 11 lowest energy conformers with relative energy within 10 kcal/mol, respectively. After re-optimized using HF at 6-31g level, the conformers with boltzmann distributions larger than 1% and without virtual frequency (Table S1 and Figure S3 for 1 and Table S2 and Figure S5 for 2) were calculated using the TDDFT methodology at the B3LYP/6-311g (d, p) level for their energies, oscillator strengths, rotational strengths. The ECD and UV spectra were simulated by the Gaussian function ($\sigma = 0.24 \text{ eV}$). The final spectra of 1 (Figure S4) and 2 (Figure S6) were accomplished by averaging of relative conformational Gibbs free energy (G) combined with UV correction, respectively. For the enantiomers, the ECD spectra were depicted by inverting the final spectra of 1 and 2.

X-ray Crystallography of 1. monoclinic, space group P2₁ (no. 4), a = 8.1008 (3) Å, b = 16.2916 (9) Å, c = 8.2497 (3) Å, $\alpha = 90^{\circ}$, $\beta = 98.027$ (4)°, $\gamma = 90^{\circ}$, V = 1078.08 (8) Å³, Z = 2, μ (Cu K α) = 1.720, 6942 reflections measured, 4055 unique ($R_{int} = 0.0240$), $wR_2 = 0.0788$ (all data), goodness of fit = 1.097, Flack parameter -0.001 (6).

The data were collected on a Gemini E diffractometer with Cu K α radiation by using the ω scan technique with 2θ values from 10.83° to 142.24°. The crystal was kept at 108 (6) K during data collection. Using Olex2,^{S3} the structure was solved with the

SIR2004^{S4} structure solution program using Direct Methods and refined with the SHELXL^{S5} refinement package using CGLS minimisation. The absolute configuration was determined on the basis of the Flack parameter -0.001 (6). Crystallographic data for the structure of **1** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication (CCDC 1936199). Copies of these data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Figure S1. The detailed ¹H-¹H COSY (thick lines) and HMBC correlations (red arrows, from ¹H to ¹³C) of 1 and 2

Figure S2. Main NOE enhancements (pink dash lines with double arrows) of 1 and 2.

1 and 1 \mathbf

	MMFF94		HF/6-31g		B3LYP/6-311G(d,p)	
Conf.	rel. E kcal/mol	Boltzmann distribution	E Hartree	Boltzmann distribution	E Hartree	Boltzmann distribution
1C1	30.30710	72.32%	-1676.4992207	2.71%	-1686.3378550	2.95%
1C2	30.88020	27.47%	-1676.4992174	2.70%	-1686.3391013	11.07%
1C3	34.41550	0.07%	-1676.4934851	0.01%		
1C4	34.62680	0.05%	-1676.5021457	60.22%	-1686.3397641	22.36%
1C5	34.99680	0.03%	-1676.4999796	6.06%	-1686.3394755	16.46%
1C6	35.01580	0.03%	-1676.4992208	2.71%	-1686.3379091	3.13%
1C7	35.40400	0.01%	-1676.4931286	0.00%		
1C8	35.63530	0.01%	-1676.4964963	0.15%		
1C9	35.99410	0.00%	-1676.4964963	0.15%		
1C10	36.16200	0.00%	-1676.4966958	0.19%		
1C11	36.95600	0.00%	-1676.4999796	6.06%	-1686.3394645	16.27%
1C12	37.19440	0.00%	-1676.4992174	2.70%	-1686.3391024	11.09%
1C13	37.59430	0.00%	-1676.4989590	2.06%	-1686.3348372	0.12%
1C14	37.91230	0.00%	-1676.4999628	5.96%	-1686.3353737	0.21%
1C15	38.15510	0.00%	-1676.4966959	0.19%		
1C16	38.25150	0.00%	-1676.4999796	6.06%	-1686.3394608	16.21%
1C17	38.28480	0.00%	-1676.4916111	0.00%		
1C18	38.57820	0.00%	-1676.4989590	2.06%	-1686.3391013	0.12%
1C19	39.02140	0.00%	-1676.4934852	0.01%		
1C20	39.39480	0.00%	-1676.4911997	0.00%		

Figure S3. The key 3D conformers of 1 obtained by re-optimization at HF/6-31g.

(blue line). (b) The overlaid experimental (black line) and calculated (red line) UV spectra of 1.

	MMFF94		HF/6-3	31g	B3LYP/6-311G(d,p)		
Conf	rel. E kcal/mol	Boltzmann distribution	E Hartree	Boltzmann distribution	E Hartree	Boltzmann distribution	
2C1	59.7236	49.93%	-1677.684743	10.62%	-1687.5405604	8.18%	
2C2	60.0349	29.52%	-1677.684719	10.36%	-1687.5415228	22.68%	
2C3	60.424	15.30%	-1677.68649	67.64%	-1687.5420016	37.68%	
2C4	61.0618	5.21%	-1677.684144	5.63%	-1687.5418272	31.32%	
2C5	64.8121	0.01%	-1677.683318	2.35%	-1687.5361615	0.08%	
2C6	64.8121	0.01%	-1677.683318	2.35%	-1687.5361615	0.08%	
2C7	64.9759	0.01%	-1677.682299	0.80%			
2C8	65.0816	0.01%	-1677.680126	0.08%			
2C9	65.1236	0.01%	-1677.680756	0.16%			
2C10	65.8203	0.00%	-1677.678824	0.02%			
2C11	66.3174	0.00%	-1677.678441	0.01%			

Table S2	. Relative	Energy	and Boltzmann	Distribution	for	Conformers	of	2.
----------	------------	--------	---------------	--------------	-----	------------	----	----

Figure S5. The key 3D conformers of 2 obtained by re-optimization at HF/6-31g.

Figure S6. (a) The overlaid experimental CD spectrum of 2 (black line) and the calculated ECD spectra of 2 (red line) and its enantiomer (blue line). (b) The overlaid experimental (black line) and calculated (red line) UV spectra of 2.

Acetic Acid-Induced Writhing Test of Compounds 1 and 2. An acetic acid-induced writhing method was adopted for the evaluation of analgesic activity of compounds 1 and 2. Briefly, ICR female mice were randomly divided into groups (eight mice per group), and pre-treated intraperitoneally with normal saline (the vehicle group), morphine (0.3 mg/kg, the positive control group), and compounds 1 or 2 (1.0 mg/kg, 0.3 mg/kg, and 0.1 mg/kg, the three test groups), respectively. 30 min later, mice were treated by intraperitoneal injection of 1.0% v/v acetic acid solution (0.1 ml/kg). The number of writhing was recorded for 15 min. The analgesic effects of the test compound and positive control were respectively expressed by decreasing the number of writhes compared to normal saline. Percent inhibition was calculated using formula as below:

Percent inhibition = $[(Wm-Wt)/Wm] \times 100\%$

Where *Wm* is the number of writhing of the vehicle group, and *Wt* is the number of writhing of test group or positive group.

The results showed that compounds 1 and 2 significantly reduced the number of writhing induced by acetic acid in a dose-dependent manner (Table S3 and Figure S7).

Groups	Reagents	Number	Dose (mg/kg)	Number of writhing	Percent inhibition (%)
Vehicle group	Normal saline	8	-	36.5±2.4	-
Positive group	morphine	8	0.3	12.1±2.1***	66.82
Test group	Compound 1	8	0.1	28.0±3.3	23.29
Test group	Compound 1	8	0.3	20.8±3.1**	43.15
Test group	Compound 1	8	1.0	18.1±3.1***	50.34
Test group	Compound 2	8	0.1	19.5±5.5**	46.57
Test group	Compound 2	8	0.3	12.9±2.1***	64.73
Test group	Compound 2	8	1.0	8.9±5.3***	75.68

Table S3. Experimental Data for Evaluation of the Analgesic effect of Compounds 1 and 2.

Note: Data are expressed as mean \pm SEM, **p < 0.01, ***p < 0.001 compared to vehicle group.

Figure S7. Analgesic effects of compounds against acetic acid-induced writhing of mice. (A) The analgestic effects of compound 1; (B) The analgestic effects of compound 2. The data were expressed as mean \pm SEM, **p < 0.01, ***p < 0.001 compared to vehicle group.

Scheme S1. The Plausible Biosynthetic Pathways of 1 and 2 via the precursor atisine (3')

References

(S1) (a) Li, X.-C.; Ferreira, D.; Ding, Y.-Q. *Curr. Org. Chem.* **2010**, *14*, 1678–1697. (b) Chianese, G.; Fattorusso, E.; Aiyelaagbe, O. O.; Luciano, P.; Schroder, H. C.; Müller, W. E. G.; Taglialatela-Scafati, O. *Org. Lett.* **2011**, *13*, 316–319.

(S2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnemberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16, Revision A.03*; Gaussian, Inc.: Wallingford, CT, 2016.

(S3) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

(S4) Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Siliqi, D.; Spagna, R. J. Appl. Cryst. 2007, 40, 609–613.

(S5) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

Figure S8. The UV spectrum of compound 1 in H₂O.

Figure S9. The CD spectrum of compound 1 in H_2O and the octant rule to predict the absolute configuration of compound 1.

Figure S10. (+)-HRESIMS of compound 1.

Figure S11. (-)-HRESIMS of compound 1.

Figure S12. The IR spectrum of compound 1.

PROTON_01

VNS-600 PROTON w-69 IN d2o Aug 31 2018

8.709 7.745 4.800	4.196 4.188 4.073 4.062 4.062	4.031 3.875 3.846 3.846 3.729	3.038 3.028 2.281 2.277 2.155	2.135 2.115 2.100 2.002	2.092 2.018 2.013 2.013 1.915 1.910	1.880 1.858 1.858 1.814 1.813 1.803	1.743 1.743 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.700 1.700 1.649	1.514 1.505 1.492 1.118 1.097 1.084
							1	
						A		
	92 ≖			N h	1.32 ^H 1.32 ^H 1.08 ^H 1.08 ^H 1.08 ^H	1.00± 1.00± 1.05		1.10 1.10
9.0 8.5	8.0 7.5	7.0 6.5	6.0 5.5	5.0	4.5 4.0	3.5 3.0 2	2.5 2.0 1.5	1.0 0.5 0.1

PROTON_01 VNS-600 PROTON w-69 IN d2o Aug 31 2018

PROTON_01 VNS-600 PROTON w-69 IN d2o Aug 31 2018

-203.31

-183.21

- 166.58

-143.18

5.41 0.37 8.43	9.50 8.61	4.90	1.41	9.16 6.83	4.23 6.10	5.07 2.94	1.27 0.61	0.24
200	4 4	44	44	ς m m	ά Ň	0 0	N N	Ñ
								\checkmark

Figure S16. The ¹³C NMR spectrum of compound 1 in D₂O (150 MHz).

S17

Figure S18. The ¹H-¹H COSY spectrum of compound 1 in D₂O (600 MHz).

Figure S19. An expansion of 1.0-4.4 ppm region of the ¹H-¹H COSY spectrum of compound 1 in D₂O (600 MHz).

Figure S20. The HSQC spectrum of compound 1 in D₂O (600 MHz for ¹H).

gHSQCAD_01 VNS-600 gHSQCAD w-69 IN d2o Nov 10 2018

Figure S21. An expansion of the $1.0-2.4 (^{1}\text{H})/18-48 (^{13}\text{C})$ ppm region (^{1}H) of the HSQC spectrum of compound 1 in D₂O (600 MHz for ^{1}H).

Figure S22. The HMBC spectrum of compound 1 in D_2O (600 MHz for ¹H).

Figure S23. An expansion of the $1.0-2.4 (^{1}\text{H})/18-62 (^{13}\text{C})$ ppm region of the HMBC spectrum of compound 1 in D₂O (600 MHz for ¹H).

Figure S24. An expansion of the $1.0-2.4 (^{1}\text{H})/162-206 (^{13}\text{C})$ ppm region of the HMBC spectrum of compound 1 in D₂O (600 MHz for ¹H).

Figure S25. An expansion of the 3.0–4.5 (¹H)/18–62 (¹³C) ppm region of the HMBC spectrum of compound 1 in D₂O (600 MHz for ¹H).

Figure S26. An expansion of the 7.5–9.0 $(^{1}\text{H})/18-62$ (^{13}C) ppm region of the HMBC spectrum of compound 1 in D₂O (600 MHz for $^{1}\text{H})$.

Figure S27. The NOESY spectrum of compound 1 in D₂O (600 MHz).

Figure S28. An expansion of 1–4.5 ppm region of the NOESY spectrum of compound 1 in D₂O (600 MHz).

Figure S29. The UV spectrum of 2 in H₂O.

Figure S30. The CD spectrum of 2 in H₂O.

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
424.21521	424.21522	-0.02	6.5	C22 H34 O5 N S	M+H

Figure S31. (+)-HRESIMS report of 2.

compound NO. : 3-4-6 Method : LCMS(compound)-low

m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition	
422.20093	422.20067	0.62	7.5	C22 H32 O5 N S	M-H

Figure S32. (–)-HRESIMS report of 2.

Figure S34. The ¹H NMR spectrum of 2 in D₂O (600 MHz).

Figure S35. An expansion of 1–2.2 ppm region of the ¹H NMR spectrum of **2** in D₂O (600 MHz).

Figure S36. An expansion of 3.3–4.3 ppm region of the ¹H NMR spectrum of 2 in D₂O (600 MHz).

Figure S37. The 13 C NMR spectrum of 2 in D₂O (150 MHz).

Figure S39. The $^{1}H^{-1}H$ COSY spectrum of 2 in D₂O (600 MHz).

Figure S40. An expansion of 1–4.2 ppm region of the ¹H-¹H COSY spectrum of 2 in D₂O (600 MHz).

Figure S41. The HSQC spectrum of 2 in D₂O (600 MHz for ¹H).

20190307 3-4-6.5.ser Bruker AVIII HD 600 HSQC D20 D:\\ DATA2019 58

Figure S42. An expansion of $1.0-4.5 (1H)/20-80 (^{13}C)$ ppm region of the HSQC spectrum of 2 in D₂O (600 MHz for ¹H).

20190307 3-4-6.5.ser Bruker AVIII HD 600 HSQC D20 D:\\ DATA2019 58

Figure S43. An expansion of $1-2.2 (1H)/20-48 (^{13}C)$ ppm region of the HSQC spectrum of 2 in D₂O (600 MHz for ¹H).

Figure S44. The HMBC spectrum of 2 in D_2O (600 MHz for ¹H).

20190307 3-4-6.6.ser Bruker AVIII HD 600 HMBC D2O D:\\ DATA2019 58

Figure S45. An expansion of the 1–2.3 (¹H)/15–75 (¹³C) ppm region of the HMBC spectrum of compound 2 in D₂O (600 MHz for ¹H).

20190307 3-4-6.6.ser Bruker AVIII HD 600 HMBC D2O D:\\ DATA2019 58

Figure S46. An expansion of $3.5-4.5 (^{1}H)/20-80 (^{13}C)$ ppm region of the HMBC spectrum of 2 in D₂O (600 MHz for ¹H).

20190307 3-4-6.6.ser Bruker AVIII HD 600 HMBC D20 D:\\ DATA2019 58

Figure S48. An expansion of 1.0–2.3 (1H)/150–190 (¹³C) ppm region of the HMBC spectrum of **2** in D₂O (600 MHz for ¹H).

20190307 3-4-6.7.ser Bruker AVIII HD 600 NOESY_2D D20 D:\\ DATA2019 58

Figure S49. The NOESY spectrum of 2 in D₂O (600 MHz).

20190307 3-4-6.7.ser Bruker AVIII HD 600 NOESY_2D D20 D:\\\ DATA2019 58

Figure S50. An expansion of 1–4.5 ppm region of the NOESY spectrum of 2 in D₂O (600 MHz).