Supporting Information

Reaction-based Enumeration, Active Learning, and Free Energy Calculations to Rapidly Explore Synthetically Tractable Chemical Space and Optimize Potency of Cyclin Dependent Kinase 2 Inhibitors

Kyle D. Konze[‡], Pieter H. Bos[‡], Markus K. Dahlgren, Karl Leswing, Ivan Tubert-Brohman, Andrea Bortolato, Braxton Robbason, Robert Abel, Sathesh Bhat^{*} [‡]These authors contributed equally to this work

* sathesh.bhat@schrodinger.com

٠	Figure S1. Example of the R-group enumeration workflow in the PathFinder GUI	S2
•	Figure S2. FEP Simulation Interaction Diagrams.	S3
•	Table S1. Phenyl and Pyridine R-groups from PathFinder Enumeration.	S4
•	Table S2. Thiazole R-groups from PathFinder Enumeration.	S5
•	Table S3. Thiophene R-groups from PathFinder Enumeration.	S6
•	Table S4. PathFinder Reactions - Schrödinger Suite 2019-1.	S7
•	Table S5. Structures and PathFinder reaction-based enumeration data of a set of drug	S17
	molecules approved by the FDA in 2017 and Compound C73.	
•	Detailed FEP+ methods	S18
•	AutoQSAR/DC details	S19
•	Figure S4. General overview of the workflow combining reaction-based enumeration,	S20
	active learning, and free energy calculations.	
•	Table S6. FEP+ predicted dG and error estimates in kcal/mol for compounds	S21
	described in Table 2, 5, 6, S1, S2, and S3	
•	References	S23

Figure S1. Example of the R-group Enumeration Workflow in the PathFinder GUI.

Figure S2. FEP Simulation Interaction Diagrams. a) SID of **2** with CDK2 during the FEP simulation indicating key features contributing to binding affinity: hydrogen bonding to the hinge, and direct/water-mediated hydrogen bonds to I10, D86, and K89. **b**) SID of **6** with CDK2 during the FEP simulation indicating key features contributing to binding affinity: hydrogen bonding to the hinge, water-mediated hydrogen bond of the thiazole nitrogen, and hydrophobic interactions of the cyclopentyl moiety.

Table S1. Phenyl and Pyridine R-groups from PathFinder Enumeration.^a

^dThe predicted dG and error estimates in kcal/mol can be found in the Supporting Information (Table S6).

Table S2. Thiazole R-groups from PathFinder Enumeration.^a

^dThe predicted dG and error estimates in kcal/mol can be found in the Supporting Information (Table S6).

Table S3. Thiophene R-groups from PathFinder Enumeration.^a

^dThe predicted dG and error estimates in kcal/mol can be found in the Supporting Information (Table S6).

Table S4. PathFinder Reactions - Schrödinger Suite 2019-1

Name	Description	Reactant Library 1	Reactant Library 2	Reactant Library 3
123-triazole-1	Copper-catalyzed Huisgen cycloaddition of an alkyne and an azide to form a 123-triazole (implicit azide formation from primary and secondary halides).	Monosubstituted alkynes	Primary and secondary halides	
123-triazole-2	Copper-catalyzed Huisgen cycloaddition of an alkyne and an azide to form a 123-triazole.	Monosubstituted alkynes	Azides	
123-triazole-3	Ruthenium-catalyzed Huisgen cycloaddition of an alkyne and an azide to form a 123-triazole (implicit azide formation from primary and secondary halides).	Monosubstituted alkynes	Primary and secondary halides	
123-triazole-4	Ruthenium-catalyzed Huisgen cycloaddition of an alkyne and an azide to form a 123-triazole.	Monosubstituted alkynes	Azides	
124-triazole-1	124-triazole from an aryl nitrile and an amidine.	Aryl nitriles	Amidines	
124-triazole-2	124-triazole from a nitrile and hydrazide.	Nitriles	Hydrazides	
124-triazole-3	124-triazole from a nitrile and a carboxylate using hydrazine.	Nitriles	Carboxylic acids	
5-het-amination	Amination of 5-member heterocycles (n-alkyl-imidazole, thiazole, oxazole, benzothiazole, benzimidazole, and benzoxazole).	2-Halo-heterocycles	Primary and secondary amines	
5-het-arylation	Arylation of 5-member heterocycles, including: thiophene, n-methyl-imidazole, 4-methyl-thiazole, 2- methyl-furan, benzothiophene, and benzothiazole.	2-Unsubstituted heterocycles	Aryl bromides	
BOC-deprotection	Deprotection of a Boc-protected amine			

BOC-protection	Protection of a primary or secondary amine with a Boc- group	Primary and secondary amines	
N-azole-arylation	N-arylation of azoles, including: indole, pyrazole, imidazole, triazole, tetrazole, benzimidazole, and indazoles.	Aryl boronates	Azoles
acylation-1	Acylation of an alkyne with an acid chloride.	Monosubstituted alkynes	Acid chlorides
alkylation-1	Alkylation of a primary or secondary amine using a primary or secondary alkyl halide.	Primary and secondary halides	Primary and secondary amines
alkylation-2	N-Alkylation of heterocycles using a primary or secondary alkyl halide.	Primary and secondary halides	Heterocycles
amide_coupling-1	Traditional amide coupling using a carboxylic acid and a primary or secondary amine.	Carboxylic acids	Primary and secondary amines
amide_coupling-2	Schotten-Baumann: Amide coupling using an acid chloride and a primary or secondary amine.	Acid chlorides	Primary and secondary amines
amide_coupling-3	Intramolecular amide coupling		
amide_coupling-4	Intramolecular amide coupling		
amination-1	Buchwald-Hartwig Amination: N-arylation of primary and secondary amines using aryl halides.	Aryl halides	Primary and secondary amines
amination-2	Reductive Amination: Alkylation of primary or secondary amines with a ketone or an aldehyde.	Aldehydes and ketones	Primary and secondary amines
aminothiophene-1	Gewald Aminothiophene synthesis.	2-Unsubstituted ketones	2-Cyano esters
benzimidazole-1	Benzimidazole synthesis from an ortho-amino aniline and a carboxylic acid or ester.	Ortho-amino anilines	Carboxylic acids

benzimidazole-2	Benzimidazole synthesis from an ortho-amino aniline and an aldehyde.	Ortho-amino anilines	Aldehydes
benzimidazole-3	2-Chloro-benzimidazole formation from 2-amino anilines.	Ortho-amino anilines	
benzimidazole-4	Benzimidazole formation from 2-amino anilines.	Ortho-amino anilines	
benzofuran-1	Benzofuran synthesis from a 2-iodo phenol and an alkyne.	2-Iodo phenols	Monosubstituted alkynes
benzothiazole-1	Benzothiazole synthesis from a 2-thiol aniline and an aldehyde.	2-Mercapto anilines	Aldehydes
benzothiophene	Benzothiophene synthesis.	2-Iodo thioanisoles	Monosubstituted alkynes
benzoxazole-1	Benzoxazole synthesis from a 2-amino phenol and a carboxylic acid.	2-Amino phenols	Carboxylic acids
benzoxazole-2	Benzoxazole synthesis from a 2-amino phenol and an aryl aldehyde.	2-Amino phenols	Aryl aldehydes
carbamate	Carbamate sythesis from isocyanates and primary or secondary alcohols.	Isocyanates	Primary and secondary alcohols
carbamate-2	Carbamate sythesis from primary or secondary amines and primary or secondary alcohols.	Primary and secondary amines	Primary and secondary alcohols
castro-stephens-1	Castro-Stephens coupling: synthesis of indoles.	2-Iodo anilines	Monosubstituted alkynes
castro-stephens-2	Castro-Stephens coupling: synthesis of disubstituted acetylenes.	Aryl and vinyl halides	Monosubstituted alkynes
claisen-1	Crossed Claisen condensation: 1,3-diketone synthesis from an enolizable ketone and a non-enolizable ester.	Enolizable ketones	Non-enolizable esters

claisen-2	Claisen condensation: beta-keto ester synthesis from an enolizable ester and a non-enolizable ester.	Enolizable esters	Non-enolizable esters
conrad-limpach	Conrad-Limpach synthesis of substituted 4- hydroxyquinolines.	3-Ketoesters	Anilines
corey-chaykovsky-1	Corey-Chaykovsky synthesis of an epoxide from an aldehyde or a ketone.	Aldehydes and ketones	
corey-chaykovsky-2	Corey-Chaykovsky cyclopropane synthesis.	Unsaturated ketones	
coumarin	Pechmann condensation: Coumarin synthesis from a phenol and a beta-keto ester.	3-Ketoesters	Phenols
cyanohydrin	Cyanohydrin formation from an aldehyde.	Aldehydes	
decarboxylative_coupling-1	Aryl C-C bond formation from an aryl carboxylic acid and an aryl halide.	Aryl carboxylic acids	Aryl halides
diyne	Heterocoupling of two alkynes to form a 1,3-diyne (implicit formation of a haloalkyne).	Monosubstituted alkynes	Monosubstituted alkynes
epoxidation	Epoxidation of alkenes.		
erlenmeyer-plochl	Erlenmeyer-Plochl azlactone synthesis from aldehydes or ketones and N-acyl glycine.	Aldehydes and ketones	N-acyl glycines
ester-hydrolysis-1	Hydrolysis of an ester to the parent carboxylic acid.		
ester-hydrolysis-2	Hydrolysis of an ester to the parent alcohol.		
esterification-1	Esterification of an alcohol using an acid chloride.	Acid chlorides	Alcohols

esterification-2	Esterification of an alcohol and a carboxylic acid.	Carboxylic acids	Alcohols	
ether-1	Ullmann Aryl Ether Synthesis: Gives a biaryl ether from an aryl halide and a phenol.	Aryl halides	Phenols	
ether-2	Williamson Ether Synthesis: Gives an ether from a primary or secondary halide and a primary, secondary or (hetero)aryl alcohol.	Primary and secondary halides	Alcohols	
flavone	Flavone Synthesis: Gives a 2-aryl flavone from a 2-acyl phenol and an aryl acid chloride.	2-Keto phenols	Aryl acid chlorides	
friedel-crafts-1	Friedel-Crafts acylation.	Friedel-Crafts substrates	Acid chlorides	
furan-1	Feist-Benary furan synthesis from a beta-keto-ester and a 2-halo ketone.	3-Ketoesters	2-Halo ketones	
heck	Heck Reaction: coupling of activated alkene and aryl or vinyl halides.	Aryl and vinyl halides	Activated alkenes	
imidazole-1	Imidazole synthesis from an alpha-chloro aldehyde and an amidine.	2-Halo aldehydes	Amidines	
imidazole-2	Imidazole synthesis from an aryl aldehyde, 2-halo ketone and a primary amine.	Aryl aldehydes	2-Halo aryl ketones	Primary and secondary amines
imidazole-3	Synthesis of triaryl-imidazoles.	Diaryl diketones	Aryl aldehydes	
indole-1	Bischler-Mohlau Indole: Gives a 2-aryl Indole from an aniline and a 2-halo aryl ketone.	2-Halo aryl ketones	Anilines	
indole-2	Fischer Indole: Gives an indole from an aryl hydrazine and a ketone.	Aryl hydrazines	2-Unsubstituted ketones	

isocyanate-1	Isocyanate formation from primary amines.	Primary amines	
isoxazole-1	Claisen isoxazole synthesis from a beta-ketoester and hydroxylamine.	3-Ketoesters	
mitsunobu-1	Mitsunobu: Gives an aryl ether from an alcohol and a phenol.	Primary and secondary alcohols	Phenols
mitsunobu-2	Mitsunobu: Alkylation of a sulfonamide with a primary or secondary alcohol.	Primary and secondary alcohols	Primary and secondary sulfonamides
mitsunobu-3	Mitsunobu: N-alkylation of a tetrazole with a primary or secondary alcohol.	Primary and secondary alcohols	Tetrazoles-2H
mitsunobu-4	Mitsunobu: N-alkylation of a tetrazole with a primary or secondary alcohol.	Primary and secondary alcohols	Tetrazoles-1H
mitsunobu-5	Mitsunobu: Esterification from an alcohol and a carboxylic acid.	Primary and secondary alcohols	Carboxylic acids
miyaura-borylation	Miyaura borylation.	Aryl and vinyl halides	
negishi	Negishi: Aryl C-C coupling from two halides (one will be prepared as an organozinc).	Aryl, alkynyl and vinyl halides	Aryl and vinyl halides
oxadiazole-1	Oxadiazole synthesis from a nitrile (converted to an amidoxime) and a carboxylic acid.	Nitriles	Carboxylic acids
oxazole-1	Fischer Oxazole Synthesis: Generates an oxazole from an aldehyde and a cyanohydrin.	Aldehydes	Cyanohydrins
oxazole-2	2,4-disubstituted oxazole synthesis from monosubstituted alkynes and acetonitrile or proprionitrile (PhIO as oxygen source).	Monosubstituted alkynes	Acetonitrile or Proprionitrile

phthalazinone	Phthalazinone synthesis from 2-acylbenzoic acid and a hydrazine.	2-Acyl benzoic acids	Hydrazines
pictet-spengler	Pictet-Spengler reaction.	Arylethyl amines	Aldehydes
pomeranz-fritsch	Pomeranz-Fritsch synthesis of isoquinolines.	Aryl ketones and aldehydes	
pyrazole-1	Pyrazole synthesis from 1,3-diketones and hydrazines.	3-Keto ketones	Hydrazines
pyridine-1	Hantzsch pyridine synthesis from two beta-ketoesters, an aldehyde, and ammonia (stepwise).	3-Keto esters	3-Keto esters Aldehydes
pyridine-2	Krohnke pyridine synthesis from a 2-halo ketone, and an alfa,beta-unsaturated ketone.	2-Halo ketones	Unsaturated ketones
pyridine-3	Guareshi-Thorpe pyridine synthesis from a beta- ketoester, and a cyanoacetic ester.	3-Keto esters	2-Cyanoacetic ester
pyridone-1	Pyridone synthesis from cyanoacetamide and 1,3- diketones.	cyanoacetamides	3-Keto ketones
pyrimidine-1	Pinner pyrimidine synthesis.	3-Keto ketones	Amidines
pyrimidinedione-1	Pyrimidinedione synthesis from amino-acrylates and isocyanates.	Amino-acrylates	Isocyanates
pyrimidinedione-2	Bicyclic pyrimidinedione synthesis from 2- aminobenzoates and isocyanates.	2-Aminobenzoates	Isocyanates
pyrimidone-1	Biginelli 2-pyrimidone synthesis.	3-Keto esters	Aldehydes
pyrimidone-2	Biginelli 2-mercaptopyrimidine synthesis.	3-Keto esters	Aldehydes

pyrrole-1	Knorr pyrrole synthesis.	3-Keto esters	3-Keto esters
pyrrole-2	Paal-Knorr pyrrole synthesis.	4-Keto ketones	Primary amines
quinazoline-1	Quinazoline synthesis from a quinazolinone and a primary or secondary amine.	Quinazolinones	Primary and secondary amines
quinazolinone-1	Quinazolinone synthesis from a 2-carboxy aniline, a primary amine, and an aldehyde.	2-Carboxy anilines	Primary and Aldehydes secondary amines
quinazolinone-2	Niementowski quinazolinone synthesis from a 2-carboxy aniline, and a primary amide.	2-Carboxy anilines	Primary amides
quinoline-1	Quinoline synthesis from a 2-amino benzaldehyde and a ketone.	2-Amino benzaldehydes	2-Unsubstituted ketones
quinoline-2	Niementowski quinoline synthesis from a 2-carboxy aniline and a ketone.	2-Carboxy anilines	2-Unsubstituted ketones
rubottom	Rubottom oxidation: alfa hydroxylation of an enolizable ketone <i>via</i> the corresponding silyl enol ether.	Enolizable ketones	-
sonogashira	Sonogashira Coupling: Arylation of an alkyne with an aryl/vinyl halide.	Aryl and vinyl halides	Monosubstituted alkynes
spiro-chromanone	Spiro-chromanone synthesis from an o- hydroxyacetophenone and a cyclohexanone.	o-Hydroxyacetophenones	Cyclohexanones
stille	Stille Coupling: Aryl C-C coupling from an aryl or vinyl halide and an organostannane.	Aryl and vinyl halides	Organostannanes
stille-2	Stille Carbonylative Coupling: Aryl C-C coupling with CO insertion from an aryl or vinyl halide and an organostannane.	Aryl and vinyl halides	Organostannanes
sulfonamide-1	Sulfonamide synthesis from a sulfonyl chloride and a primary or secondary amine.	Sulfonyl chlorides	Primary and secondary amines

sulfone-1	Oxidation of a thioether to a sulfone.			
sulfone-2	Oxidation of a sulfoxide to a sulfone.			
sulfoxide	Oxidation of a thioether to a sulfoxide.			
suzuki	Suzuki Coupling: Aryl C-C coupling from an aryl halide and an aryl/vinyl boronate.	Aryl and vinyl halides	Aryl and vinyl boronates	
tetrahydroindole-1	Tetrahydroindole synthesis from a cyclohexanone, 2-OH ketone and a primary amine.	Cyclohexanones	2-Hydroxy ketones	Primary amines
tetrazole-1	Tetrazole from nitrile and alkyl halide; first regioisomer.	Nitriles	Primary and secondary halides	
tetrazole-2	Tetrazole from nitrile and alkyl halide; second regioisomer.	Nitriles	Primary and secondary halides	
tetrazole-3	Synthesis of a terminal tetrazole from a nitrile.	Nitriles		
thiazole-1	Hantzsch thiazole synthesis from a thioamide and alpha- halo ketone.	Thioamides	2-Halo ketones	
thiazole-2	Hantzsch thiazole synthesis from thioformamide and an alpha-halo ketone.	2-Halo ketones		
thioether-1	Thioether synthesis from styrenes and thiols.	Styrenes	Thiols	
thioether-2	Thioether synthesis from halides and thiols.	Primary and secondary arylhalides	Thiols	
thiourea-1	Thiourea synthesis from thioisocyanates and primary or secondary amines.	Thioisocyanates	Primary and secondary amines	

urea-1	Urea synthesis from isocyanates and primary or secondary amines.	Isocyanates	Primary and secondary amines
urea-2	Urea synthesis from primary or secondary amines and primary or secondary amines.	Primary and secondary amines	Primary and secondary amines
vinyl-reduction	Reduction of vinyl groups.		
yamaguchi	Yamaguchi macrolactonization.		

Compound	Structure ^b	Target	# Enumerated Compounds ^c
Letermovir	F ₃ C N N F ₃ C O H	Antiviral	1,058,608
Abemaciclib		Dual CDK4/6 inhibitor	9,220,785
Enasidenib	$F_{3}C$ HN OH HN N CF_{3}	IDH2 allosteric inhibitor	4,077,689
Naldemedine		μ-, ∂-, ×-opioid receptor antagonist	1,390,474
Compound C73 ¹	0,0 H ₂ N ^{-S} H ₂ N ^{-N} H	CDK2 inhibitor	7,430,158

Table S5. PathFinder Reaction-Based Enumeration of a Set of Drug Molecules Approved by the FDA in 2017 and Compound C73.^a

^{*a*}PathFinder was run with a maximum depth of 2 and the core of each compound was kept constant. If a reaction contained multiple reactants that did not contain the core, only one of the components was varied (*i.e.* Route-1-enumeration-1: Reactant A (core; kept constant) + Reactant B (kept constant) -> Product 1, then Product 1 + Reactant C (varied) -> Final Product; Route-1-enumeration-2: Reactant A (core; kept constant) + Reactant B (varied) -> Product 1, then Product 1 + Reactant B (varied) -> Product 1, then Product 1 + Reactant C (kept constant) -> Final Product. ^{*b*} The cores that were kept constant are highlighted in red. (Total number of unique ligands generated using all available chemistry in the PathFinder tool while keeping the highlighted core constant.

FEP+ Supplemental Methods

FEP simulations were performed using FEP+.^{2,3} All FEP simulations used 16 lambda windows, hydrogen mass repartitioning (enabling 4 fs timestep), SPC waters48,⁴ and the OPLS3 force field.⁵ Single edge FEP was run for 1 ns and full cycle closure FEP was run for 20 ns simulation length.

<u>R-group single edge parameters:</u> 1 ns, 1 reference compound: **C12**,¹ default mapping, 16 lambda windows, SPC, 5,255 compounds, custom core SMARTS (c1ccccc1-N-c2nc3ncnc3cn2)

<u>R-group cycle closure parameter:</u> 20 ns, 2 reference compounds: **C12** and **C48**,¹ default mapping, 16 lambda windows, SPC, 177 compounds, custom core SMARTS (c1ccccc1-N-c2nc3ncnc3cn2)

<u>Core hops (all cycle closure)</u>: 20 ns, 2 reference compounds: **C12** and **C48**,¹ default mapping, 16 lambda windows, SPC, 725 compounds, custom core SMARTS (c1ccccc1-N-c2aaaaa2)

<u>R-group plus sulfonamide compounds (all cycle closure)</u>: 20 ns, 2 reference compounds: **C13** and **C70**,¹ default mapping, 16 lambda windows, SPC, 80 compounds, custom core SMARTS (c1ccccc1-N-c2nc3ncnc3cn2)

<u>Core hop plus sulfonamide compounds (all cycle closure)</u>: 20 ns, 2 reference compounds: **C13** and **C70**,¹ default mapping, 16 lambda windows, SPC, 80 compounds, custom core SMARTS (c1ccccc1-N-c2aaaaa2)

AutoQSAR/DC details

AutoQSAR/DC runs an ensemble of Graph Convolutional Neural Networks, Dense Neural Networks on ECFP4 Fingerprints, Random Forests on ECFP4 Fingerprints, and XGBoost on ECFP4 Fingerprints. It does a random search of models for 4 hours and picks the top three sets of hyper parameters using 5 fold cross validation. It then ensembles models trained from all three sets of hyper parameters and takes the mean for the final prediction.^{6,7}

Round	Model #	Model Type	Fingerprint Length	Dropout	Epochs
1	1	DNN	507 Chiral	0.15	50
1	2	DNN	1019	0.25	100
1	3	DNN	1019 Chiral	0.0	50
2	1	XGBoost	2046 Chiral	N/A	N/A
2	2	RF	2047 Chiral	N/A	N/A
2	3	RF	2048 Chiral	N/A	N/A
3	1	DNN	1029 Chiral	0.5	150
3	2	DNN	1027	0.5	50
3	3	DNN	1023	0.5	150

Figure S4. General overview of the workflow combining reaction-based enumeration, active learning, and free energy calculations.

Table S6. Predicted dG and error estimates for compounds described in Table 2, 5, 6, S1, S2, and S3.

	R =	= H	R = SO2NH2		
ID	Pred dG (kcal/mol)	Pred Err (kcal/mol)	Pred dG (kcal/mol)	Pred Err (kcal/mol)	
2	-10.65	0.98	-11.85	1.24	
4	-10.08	0.98	-10.73	1.26	
5	-10.04	0.94	-10.16	1.26	
6	-9.70	0.98	-11.40	1.28	
7	-8.75	1.12	-10.21	1.24	
22	-9.71	1.22	ND	ND	
23	-9.63	1.65	ND	ND	
24	-8.72	1.48	ND	ND	
25	-10.77	1.51	ND	ND	
27	ND	ND	-13.45	0.80	
28	ND	ND	-12.66	1.09	
29	ND	ND	-10.39	1.25	
30	-10.60	1.56	ND	ND	
31	ND	ND	-11.24	1.22	
C12	-6.03	0.82	-6.61	0.91	
C2	-7.69	0.84	-8.15	0.91	
S1	-10.39	1.06	-11.55	1.20	
S10	-8.54	1.08	-9.76	1.43	
S 11	-8.35	1.10	-9.28	1.32	
S12	-8.32	1.02	-10.12	1.21	
S13	-8.23	1.02	-9.48	1.46	
S14	-8.04	1.01	-9.31	1.32	
S15	-9.39	0.97	ND	ND	
S16	-9.01	1.04	ND	ND	
S17	-8.71	0.98	ND	ND	
S18	-7.37	1.16	ND	ND	
S19	-7.17	1.01	ND	ND	
S 2	-10.12	1.01	-11.92	1.30	
S20	-8.46	1.08	ND	ND	
S21	-8.36	1.01	ND	ND	
S22	-8.01	1.12	ND	ND	
S23	-9.42	1.02	-11.00	1.16	
S24	-9.22	1.03	-11.21	1.17	
S25	-8.84	1.09	-10.29	1.22	
S26	-8.78	0.98	-10.38	1.15	

S 27	-8.25	1.00	ND	ND
S28	-7.13	1.12	ND	ND
S29	-6.51	0.99	ND	ND
S 3	-9.97	1.09	-12.14	1.16
S30	-10.45	0.89	-10.62	1.27
S31	-9.89	0.89	-10.22	1.35
S32	-9.37	0.91	-10.42	1.23
S33	-9.32	0.91	ND	ND
S34	-9.21	0.96	ND	ND
S 35	-9.03	0.93	ND	ND
S36	-8.73	1.08	ND	ND
S 4	-9.81	1.11	-11.22	1.24
S 5	-9.33	1.11	-10.41	1.38
S 6	-9.16	1.13	-9.41	1.25
S 7	-9.13	0.96	-9.59	1.46
S 8	-9.06	1.04	-9.84	1.27
S 9	-8.92	1.01	-11.58	1.17

References

- Coxon, C. R.; Anscombe, E.; Harnor, S. J.; Martin, M. P.; Carbain, B.; Golding, B. T.; Hardcastle, I. R.; Harlow, L. K.; Korolchuk, S.; Matheson, C. J.; et al. Cyclin-Dependent Kinase (CDK) Inhibitors: Structure-Activity Relationships and Insights into the CDK-2 Selectivity of 6-Substituted 2-Arylaminopurines. J. Med. Chem. 2017, 60 (5), 1746–1767. https://doi.org/10.1021/acs.jmedchem.6b01254.
- (2) Abel, R.; Wang, L.; Harder, E. D.; Berne, B. J.; Friesner, R. A. Advancing Drug Discovery through Enhanced Free Energy Calculations. *Acc. Chem. Res.* **2017**, *50* (7), 1625–1632. https://doi.org/10.1021/acs.accounts.7b00083.
- (3) Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; Dahlgren, M. K.; Greenwood, J.; et al. Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field. J. Am. Chem. Soc. 2015, 137 (7), 2695–2703. https://doi.org/10.1021/ja512751q.
- (4) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. **1987**, *91* (24), 6269–6271. https://doi.org/10.1021/j100308a038.
- (5) Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J. Y.; Wang, L.; Lupyan, D.; Dahlgren, M. K.; Knight, J. L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. *J. Chem. Theory Comput.* **2016**, *12* (1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864.
- (6) Dixon, S. L.; Duan, J.; Smith, E.; Von Bargen, C. D.; Sherman, W.; Repasky, M. P. AutoQSAR: An Automated Machine Learning Tool for Best-Practice Quantitative Structure-Activity Relationship Modeling. *Future Med. Chem.* 2016, *8* (15), 1825–1839. https://doi.org/10.4155/fmc-2016-0093.
- (7) Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; Leswing, K.; Pande, V. MoleculeNet: A Benchmark for Molecular Machine Learning. *Chem. Sci.* 2018, 9 (2). https://doi.org/10.1039/c7sc02664a.