Supporting Information

Spongy Materials Based on Supramolecular Polymer Networks for Detection and Separation of Broad Spectrum Pollutants

Qi Lin,*^{,†} Xiao-Wen Guan,[†] You-Ming Zhang,^{*,†,‡} Jiao Wang,[†] Yan-Qing Fan,[†] Hong Yao,[†]

Tai-Bao Wei^{*,†}

- [†]Qi Lin, Xiao-Wen Guan, Jiao Wang, Yan-Qing Fan, Hong Yao, Tai-Bao Wei. Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Research Center of Gansu Military and Civilian Integration Advanced Structural Materials; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China; E-mail: linqi2004@126.com; weitaibao@126.com.
- [‡]You-Ming Zhang. College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, 730070, China; E-mail: zhangnwnu@126.com.

Suporting Informaltion:

Number of pages: 37 (S1–S37)

Number of Figure: 45 (Figure S1–S45)

Number of Table: 6 (Table S1-S6)

Table of Contents

Materials and instruments	4
General procedure:	
Figure S1. ¹ H NMR spectrum of compound L (CDCl ₃ , 600 MHz, 298 K)	7
Figure S2. ¹ H NMR spectrum of compound P5 (CDCl ₃ , 600 MHz, 298 K)	
Figure S3. ¹³ C NMR spectrum of compound P5 (CDCl ₃ , 150 MHz, 298 K)	9
Figure S4. Mass spectrum of P5.	
Synthesis of NM:	
Figure S5. ¹ H NMR spectrum of compound NM (DMSO- <i>d</i> ₆ , 600 MHz, 298 K)	
Figure S6. ¹³ C NMR spectrum of compound NM (DMSO-d ₆ , 150 MHz, 298 K).	
Synthesis of P5N:	
Figure S7. ¹ H NMR spectrum of compound P5N (CDCl ₃ , 600 MHz, 298 K)	
Figure S8. ¹³ C NMR spectrum of compound P5N (CDCl ₃ , 150 MHz, 298 K)	
Figure S9. Mass spectrum of P5N.	
Synthesis of compound G:	
Figure S10. ¹ H NMR spectrum of G (DMSO- <i>d</i> ₆ , 600 MHz, 298 K).	
Table S1. Gelation property of SPN-TDPG	
Figure S11. LSCM images of SPN-TDPG xerogel.	
Figure S12. Nitrogen adsorption-desorption isotherm (77.0 K) of SPN-TDPG.	
Figure S13 Pore size distribution profiles of SPN-TDPG.	
Figure S14. Thermogravimetric analysis of SPN-TDPG.	
Table S2. Water regain analysis of SPN-TDPG. The water regain (expressed as weight percent) of the SPN-TDI	
was determined from the average (87.4 %) of three measurements.	
Figure S15. Partial 2D NOESY NMR spectrum of 5.0 mM P5N and G in DMSO- <i>d</i> ₆ solution (600 MHz, 298 K)	
Figure S16. Partial ¹ H NMR spectra (600MHz, 298 K) of P5N in DMSO- d_6 at various concentrations: (a) 1.0 mM;	
2.0 mM; (c) 5.0 mM; (d) 10.0 mM; (e) 15.0 mM; (f) 20.0 mM; (g) 30.0 mM.	
Figure S17. FT-IR spectra of powdered P5N, xerogel SPN-TDPG.	
Figure S18. Partial ¹ H NMR spectra (600 MHz, DMSO- <i>d</i> ₆ , 298 K) of P5N and G at different concentrations: (a) statement of the second secon	
mM; (b) 10.0 mM; (c) 20.0 mM; (d)40.0 mM; (e) 80.0 mM.	
Figure S19. Representative SEM images showing the morphology of (a) P5N and (b) SPN-TDPG.	
Figure S20. HR-ESI-MS of mixture P5N and G, clearly indicating the 2:1 stoichiometry for P5N and G.	
Figure S21. The linear range of (a) SPN-TDPG for Fe^{3+} ; (b) SPN-TDPG for Hg^{2+} ; (c) SPN-TDPG-Fe for F;	
SPN-TDPG-Hg for Br ⁻	
Table S3. Limits of detection the SPN-TDPG or SPN-TDPG treated by metal ions for target ions.	21
Figure S22. The control experiments: (a) SPN-TDPG treated by water solutions of various cations; (b) SPN-TDI	
contained water solutions of various cations treated by water solution of Fe^{3+} ; (c) SPN-TDPG treated by wa	
solutions of various cations; (d) SPN-TDPG contained water solutions of various cations treated by water solution	
Hg ²⁺	
Figure S23. Fluorescence spectra of supramolecular gel (in gelated state) (a) SPN-TDPG-Fe and SPN-TDPG-Fe +	- F-:
(b) SPN-TDPG-Hg and SPN-TDPG-Hg + Br; (c) The fluorescent titrations of SPN-TDPG-Fe for F; (d) T	
fluorescent titrations of SPN-TDPG-Hg for Br ⁻	
Figure S24. The control experiments: (a) SPN-TDPG-Fe and SPN-TDPG-Fe treated by water solutions of vario	
anions; (b) SPN-TDPG-Fe and SPN-TDPG-Fe contained water solutions of various anions treated by water solutions	
of F ⁻ . (c) SPN-TDPG-Hg and SPN-TDPG-Hg treated by water solutions of various anions; (d) SPN-TDPG-Hg a	
SPN-TDPG-Hg contained water solutions of various anions treated by water solution of Br	
Table S4. Chemical name, chemical structures and exact weight of pollutants.	
Figure S25. A plot of concentration vs. absorbance intensity is shown. (a) methylene blue; (b) Bismarck brown Y;	
Giemsa's stain; (d) orangel I; (e) methyl orangel; (f) rhodamine B; (g) Sudan I; (h) Sudan II; (i) picric acid;	
1-naphthol; (k) KMnO ₄ ; (l) $K_2Cr_2O_7$	
Table S5. The required contact time to reach equilibrium on the pollutants adsorptions. The amount of the adsorb	ent
used in this study is 0.5 mg/mL.	
Figure S26. Pseudo-second-order plots for SPN-TDPG: (a) methylene blue; (b) Bismarck brown Y; (c) Giems.	
stain; (d) orangel I; (e) methyl orangel; (f) rhodamine B; (g) Sudan I; (h)Sudan II; (i) picric acid; (j) 1-naphthol;	
KMnO4; (1) K ₂ Cr ₂ O ₇ . Here t (min) is the contact time of each pollutant solution with SPN-TDPG and q_t (mg/mg)	
the amount of each pollutant adsorbed per gram of SPN-TDPG .	
Table S6. Rates of each pollutant uptake by SPN-TDPG.	

Figure S27. UV-vis spectra recorded before (red line)- after (black line, 40min) of adsorption (a) methyl orange,	, (b)
rhodamine B, (c) picric acid and (d) K ₂ Cr ₂ O ₇ with activated carbon (0.5 mg/mL)	29
Figure S28. SEM images showing the morphology of regeneration SPN-TDPG.	29
Figure S29. PXRD diagrams of SPN-TDPG and regeneration SPN-TDPG.	30
Figure S30. FT-IR spectra of SPN-TDPG and regeneration SPN-TDPG.	30
Figure S31. Partial ¹ H NMR spectra of SPN-TDPG in DMSO- d_6 with different equivalent Hg ²⁺ (a) 0 equiv.; (b)	0.2
equiv.; (c) 0.5 equiv.; (d) 1.0 equiv.; (e) 1.5 equiv	31
Figure S32. FT-IR spectra of xerogel of SPN-TDPG, SPN-TDPG-Hg and SPN-TDPG-Hg + Br	31
Figure S33. SEM images showing the morphology of (a) SPN-TDPG-Hg; (b) SPN-TDPG-Hg+Br ⁻	32
Figure S34. Partial ¹ H NMR spectra of SPN-TDPG in DMSO-d ₆ with different equivalent pyridine (a) 0 equiv.;	; (b)
0.2 equiv.; (c) 0.5 equiv.; (d) 1.0 equiv.	32
Figure S35. Partial ¹ H NMR spectra of SPN-TDPG in DMSO-d ₆ with different equivalent K ₂ Cr ₂ O ₇ (a) 0 equiv.;	; (b)
0.2 equiv.; (c) 0.5 equiv.; (d) 1.0 equiv.; (e) 1.5 equiv.	32
Figure S36. Partial ¹ H NMR spectra of SPN-TDPG in DMSO-d ₆ with different equivalent KMnO ₄ (a) 0 equiv.;	; (b)
0.2 equiv.; (c) 0.5 equiv.; (d) 1.0 equiv.; (e) 1.5 equiv.	
Figure S37. PXRD diagrams of SPN-TDPG adsorb rhodamine B	
Figure S38. FT-IR spectra of SPN-TDPG adsorb rhodamine B	34
Figure S39. Representative SEM images showing the morphology of SPN-TDPG adsorbed (1) methylene blue;	(2)
bismarck brown Y; (3) giemsa's stain; (4) orangel I; (5) methyl orangel; (6)rhodamine B; (7) sudan I; (8) sudan II;	
picric acid; (10) 1-naphthol; (11) KMnO ₄ ; (12) K ₂ Cr ₂ O ₇ .	34
Figure S40. Partial ¹ H NMR titration spectra (600 MHz, 298K) of 3.0 mM SPN-TDPG with various equivalent	
methyl orangel in DMSO-d ₆ solution. (a) SPN-TDPG ; (b) 0.5 equiv.; (c) 1.0 equiv.; (d) 2.0 equiv.; (e) 3.0 equiv.	; (f)
methyl orangel	35
Figure S41. Partial 2D NOESY NMR spectrum of 3.0 mM SPN-TDPG and methyl orangel in DMSO-d ₆ solu	tion
(600 MHz, 298 K)	
Figure S42. PXRD diagrams of SPN-TDPG adsorb methyl orange.	
Figure S43. FT-IR spectra of SPN-TDPG adsorb methyl orange.	
Figure S44. FT-IR spectra of xerogel SPN-TDPG, SPN-TDPG-Fe and SPN-TDPG-Fe + F	
Figure S45. Representative SEM images showing the morphology of (a) SPN-TDPG-Fe; (b) SPN-TDPG-Hg;	
SPN-TDPG-Fe+F; (d) SPN-TDPG-Hg+Br ⁻	37

Materials and instruments

All cations were used as the perchlorate salts, while all anions were used as the sodium salts, which were purchased from Alfa Aesar and used as received. All dyes were used as the analytical purity, which purchased from Aladdin. Fresh double distilled water was used throughout the experiment. Nuclear magnetic resonance (NMR) spectra were recorded on Varian Mercury 400 and Varian Inova 600 instruments. Mass spectra were recorded on a Bruker Esquire 6000 MS instrument. The X-ray diffraction analysis (XRD) was performed in a transmission mode with a Rigaku RINT2000 diffractometer equipped with graphite monochromated CuKa radiation ($\lambda = 1.54073$ Å). The morphologies and sizes of the xerogels were characterized using field emission scanning electron microscopy (FE-SEM, JSM-6701F) at an accelerating voltage of 8 kV. The infrared spectra were performed on a Digilab FTS-3000 Fourier transform-infrared spectrophotometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). Fluorescence spectra were recorded on a Shimadzu RF-5301PC spectrofluorophotometer. Ultraviolet-visible (UV-vis) spectra were recorded on a Shimadzu UV-2550 spectrometer. Thermogravimetric Analysis (TGA) was carried out on a DSCQ1000 Thermal Gravimetric Analyzer. Surface area measurements were conducted on a BELSORP-Max Accelerated Surface Area and Porosimetry Analyzer. The sample was degassed at 100 °C for 12.0 h and then backfilled with N₂. N₂ isotherms were generated by incremental exposure to ultra high purity nitrogen up to 1.0 atm in a liquid nitrogen bath (77.0 K), and surface parameters were determined using BET adsorption models included in the instrument SPNtware (BELSORP-Max).

General procedure:

1. Organogel preperation:

The mixture of host P5N (5.0 mg) and guest G (5.0 mg) were added into cyclohexanol (0.2 mL), the mixture was heated dissolve, then cooled to room temperature, obtaining stable gel (organogel, yellow).

2. Xerogel preparation:

The organogel was heated to dissolve, then it was dumped on the clear glass plate and aired at room temperature, obtaining the xerogel.

3. ¹H NMR experiment:

(1). The host (P5N)-guest (G) ¹H NMR titration:

The **P5N** (5 mg, 3.17×10^{-6} mol) was dissolved in the DMSO- d_6 (0.5 mL), then a series of different equivalents of **G** (i.e. 0.2 equiv., 0.5 equiv., 1.0 equiv., 1.5 equiv., 2.0 equiv., 2.5 equiv., 3.0 equiv.,) were added into the solution of **P5N** and recorded their ¹H NMR, respectively.

(2). The concentrations-dependent ¹H NMR of P5N:

A serious of DMSO- d_6 solutions of **P5N** with different concentrations ((a) 1.0 mM; (b) 2.0 mM; (c) 5.0 mM; (d) 10.0 mM; (e) 15.0 mM; (f) 20.0 mM; (g) 30.0 mM) were prepared. Then record their ¹H NMR, respectively.

(3). The host (SPN-TDPG)-guest (Hg²⁺) ¹H NMR titration:

The xerogel of the **SPN-TDPG** (5 mg) was dissolved in the DMSO- d_6 (0.5 mL), then different equivalents (0 equiv.; 0.2 equiv.; 0.5 equiv.; 1.0 equiv.; 1.5 equiv) of Hg²⁺ (0.1 M, in DMSO- d_6) were added into the DMSO- d_6 solutions of the **SPN-TDPG** and record their ¹H NMR, respectively.

(4). The host (SPN-TDPG-Hg)-guest (Br⁻) ¹H NMR titration:

The xerogel of the **SPN-TDPG-Hg** (5 mg) was dissolved in the DMSO- d_6 (0.5 mL), then different equivalents (0 equiv.; 0.2 equiv.; 0.5 equiv.; 1.0 equiv.; 1.5 equiv) of Br⁻ (0.1 M, in DMSO- d_6) were added into the DMSO- d_6 solutions of the **SPN-TDPG** and record their ¹H NMR, respectively.

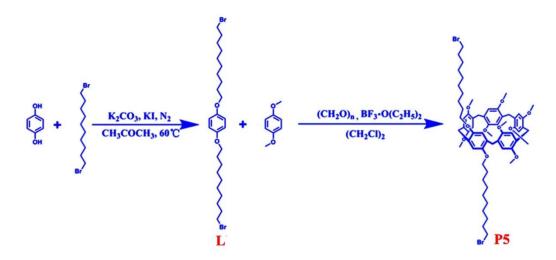
4. Fluorescence titration:

(1). Fluorescence titration based on different concentrations cations:

A serious of the **SPN-TDPG** gels with different concentrations (0.05 equiv., 0.1 equiv., 0.15 equiv., 0.2 equiv., and so on) metal ions (Fe³⁺ and Hg²⁺) were prepared by dissolving **P5N** (5 mg), **G** (5 mg)

and proper equivalent of metal salt in cyclohexanol (0.25 mL). Then record their fluorescence intensity at 528 nm wavelength.

(2). Fluorescence titration based on different equivalent anions:


The metal-**SPN-TDPG** (**SPN-TDPG-Fe** or **SPN-TDPG-Hg**) gels with different equivalents (0.1 equiv., 0.2 equiv., 0.3 equiv., 0.4 equiv., 0.5 equiv. and so on) of anions (F^- or Br^-) were prepared by dissolve **SPN-TDPG**, metal ions and proper equivalent of anions salt in cyclohexanol (0.2 mL). Then record their fluorescence intensity at the 528nm wavelength and the limit of detection (LOD) calculated on the basis of $3\sigma/m$ method.

5. Pollutant removal experiments:

We performed the experiments of pollutant removal at room temperature (25.0 °C) in water. Firstly, 0.0025 g **SPN-TDPG** xerogel was transferred to a 5.0 mL glass sample bottle. A pollutant stock solution (10 μ M, 5.0 mL) was added to the glass sample bottle. The mixture was stirred and the suspension in the bottle (1.00 mL) was taken by a syringe at different intervals and then filtered immediately by using a LABMAX 0.2 μ m membrane filter. UV–*vis* spectroscopy was used to determine the residual concentration of the pollutants in each sample.

6. Water regain analysis:

Water regain is an important property of the materials for water treatment. **SPN-TDPG** was dispersed in deionized water for 1.00 hour and then the wet **SPN-TDPG** was filtered by using filter paper. The polymer was collected and blotted by using additional filter paper, and then weighed. These experiments were carried out with three replicates to find the average as the water regain of the **SPN-TDPG**. The water regain of **SPN-TDPG**, which is expressed as the weight percent, was determined from the average of three measurements.

The mixture of 1,10-dibromodecane (1.20 g, 4.0 mmol) and KI (0.66 g, 4.0 mmol) was added to a solution of K₂CO₃ (0.14 g, 1.0 mmol) and hydroquinone (0.11 g, 1.0 mmol) in acetone (200 mL). The mixture was heated under nitrogen atmosphere at reflux for 72 h. The solid was filtered and the solvent was removed. The residue was recrystallized in dichloromethane and petroleum ethers. The product **L** was collected by filtration, and dried under vacuum (0.45 g, 82 %). Mp: 83-85 °C. The ¹H NMR spectrum of **L** is shown in FigureS1. ¹H NMR (600 MHz, CDCl₃). δ 6.81 (s, 4H), 3.89 (t, *J* = 4.4 Hz, 4H), 1.87–1.82 (m, 4H), 1.77–1.72 (m, 4H), 1.46–1.30 (m, 24H).

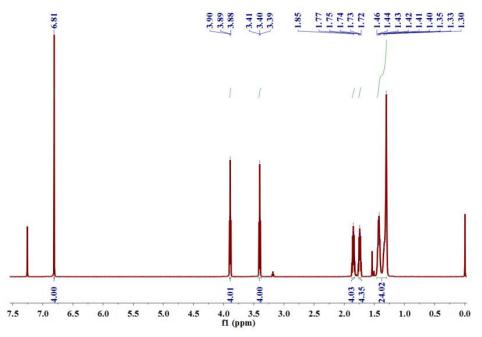


Figure S1. ¹H NMR spectrum of compound L (CDCl₃, 600 MHz, 298 K).

To a solution of 1,4-dimethoxybenzene (3.36 g, 24.0 mmol) and L (1.60 g, 3.0 mmol) in 1,2-dichloroethane (200 mL) was added paraformaldehyde (0.75 g, 25.0 mmol). Then, boron

trifluoride diethyl etherate (BF₃O(C₂H₅)₂, 4.5 ml) was added to the solution, and the mixture was stirred at 30 °C for 15-30 min. The solution was poured into water (100 mL) to quench the reaction. The mixture was filtered and the solvent was removed. The residue was dissolved in dichloromethane. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was isolated by column chromatography using ethyl acetate/petroleum ether (v/v, 1:40) to give **P5** as a white solid (1.39 g, 40 %). Mp: 111-113 °C. The proton NMR spectrum of **P5** is shown in FigureS2. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 6.95-6.86 (m, 10H), 3.94 (t, J = 4.4 Hz, 4H), 3.79 (s, 10H), 3.77-3.76 (m, 28H), 1.87-1.82 (m, 6H), 1.54-1.50 (m, 7H), 1.33 (m, 7H), 1.17 (s, 6H), 0.88-0.86 (m, 6H). The 13C NMR spectrum of **P5** is shown in FigureS3. ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.27, 150.19, 150.16, 149.51, 128.10, 128.07, 127.95, 114.06, 113.47, 113.03, 112.98, 112.93, 67.86, 55.46, 55.25, 55.21, 33.85, 32.16, 29.21, 29.09, 28.07, 27.73. ESI-MS is shown in FigureS4: m/z [M + NH₄]⁺ calcd. for C₆₃H₈₈Br₂NO₁₀ 1178.4769, found 1178.4758.

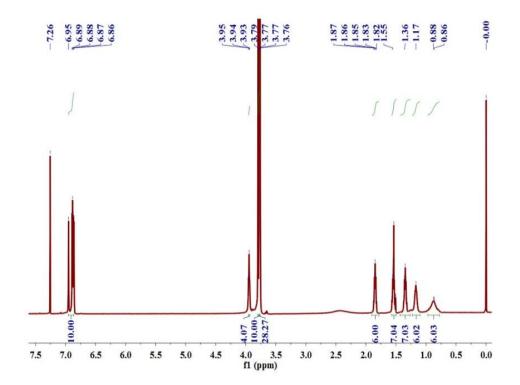


Figure S2. ¹H NMR spectrum of compound P5 (CDCl₃, 600 MHz, 298 K).

Figure S3. ¹³C NMR spectrum of compound P5 (CDCl₃, 150 MHz, 298 K).

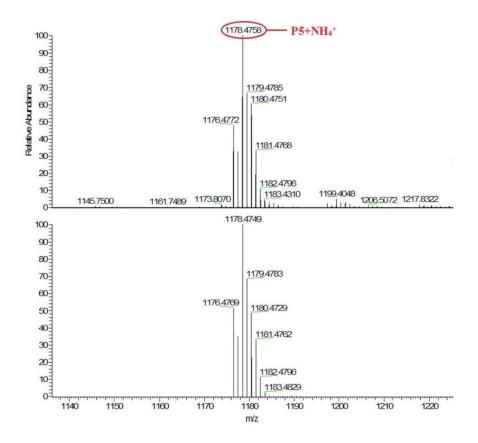
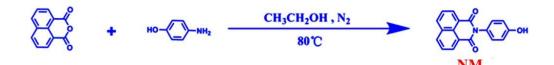



Figure S4. Mass spectrum of P5.

1,8-naphthalic anhydride (0.19 g, 1.0 mmol) was added to a mixture of 4-aminophenol (0.22 g, 2.0 mmol) in C₂H₅OH (60 mL), and the reaction mixture was stirred reflux 48 h. After reaction was finished, the solvent was filtered under reduced pressure. The crude product was elution with ethanol afforded **NM** as a white solid (0.28 g, 96 %). Mp: > 290 °C. The proton NMR spectrum of **NM** is shown in FigureS5. ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.63 (s, 1H), 8.45-8.44 (t, *J* = 5.2 Hz, 4H), 7.85 (t, *J* = 5.2 Hz, 2H), 7.13-7.11 (d, *J* = 5.6 Hz, 2H), 6.86-6.85 (d, *J* = 5.6 Hz, 2H). The ¹³C NMR spectrum of **NM** is shown in FigureS6. ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 164.28, 157.55, 134.72, 130.34, 127.32, 123.07, 115.82.

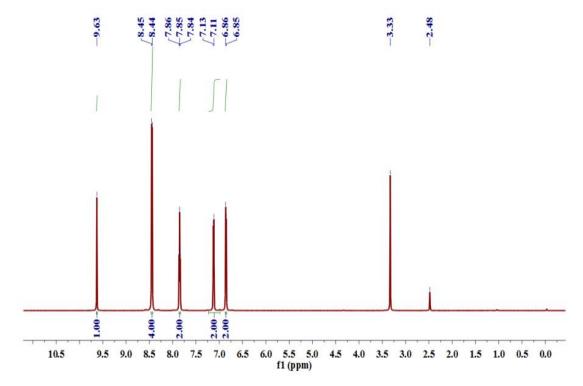


Figure S5. ¹H NMR spectrum of compound NM (DMSO–*d*₆, 600 MHz, 298 K).

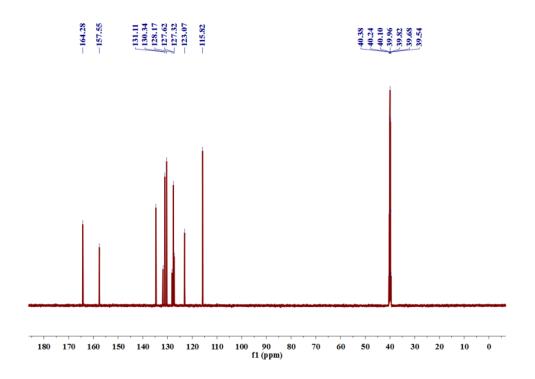
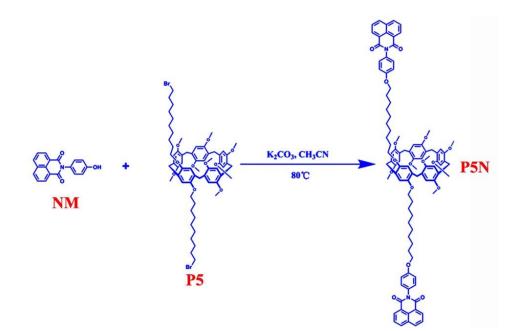



Figure S6. ¹³C NMR spectrum of compound NM (DMSO-*d*₆, 150 MHz, 298 K).

Synthesis of P5N:

Compound **P5** (1.16 g, 1.0 mmol) was added to a mixture of compound **NM** (0.87 g, 3.0 mmol), and K₂CO₃ (0.42 g, 3.0 mmol) in acetonitrile (50 mL), and the resulting mixture was stirred for 48 h. After reaction was finished, the solvent was evaporated under reduced pressure. The crude product was purified by chromatography on silica gel. Elution with a mixture of dichloromethane/ethyl acetate (v/v, 50:1) afforded **P5N** as a yellow solid (1.29 g, 82 %). Mp: 102-103 °C. The proton NMR spectrum of **P5N** is shown in FigureS7. ¹H NMR (600 MHz, CDCl₃) δ (ppm): 8.65 (d, *J* = 7.2

Hz, 4H), 8.27-8.26 (d, J = 7.2 Hz, 4H), 7.79 (t, J = 7.6 Hz, 4H), 7.22-7.21 (d, J = 8.7 Hz, 4H), 7.03-7.02 (d, J = 8.7 Hz, 4H), 6.87-6.80 (m, 10H), 3.91-3.86 (m, 8H), 3.82-3.72 (m, 10H), 3.72-3.69 (m, 24H), 1.82-1.76 (m, 3H), 1.54-1.21 (m, 19H), 1.05 (s, 3H),0.89-0.85 (m, 7H). The ¹³C NMR spectrum of **P5N** is shown in FigureS8. ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 164.56, 159.20, 150.65, 134.16, 131.73, 131.55, 129.43, 128.10, 126.99, 122.91, 115.11, 68.29, 55.71, 55.68, 55.55, 29.08, 29.03. ESI-MS is shown in FigureS9: m/z [M]⁺ calcd. for C₉₉H₁₀₄N₂O₁₆ 1577.7419, found 1577.7498.

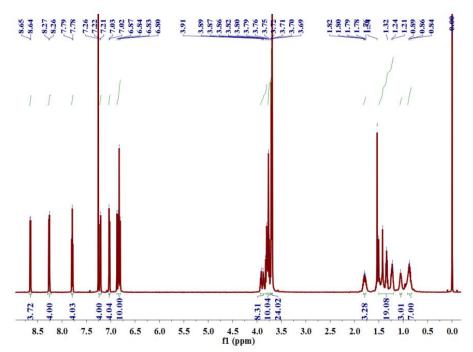


Figure S7. ¹H NMR spectrum of compound P5N (CDCl₃, 600 MHz, 298 K).

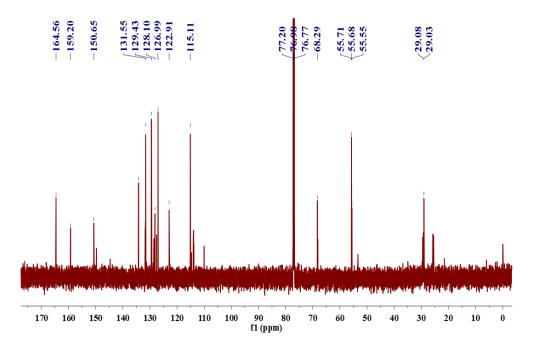


Figure S8. ¹³C NMR spectrum of compound P5N (CDCl₃, 150 MHz, 298 K).

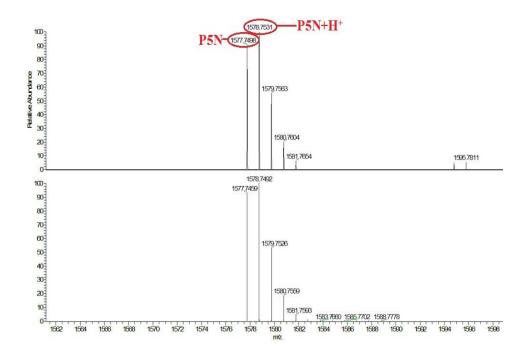
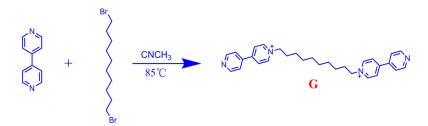



Figure S9. Mass spectrum of P5N.

Synthesis of compound G:

A solution of 1,10-dibromodecane (1.89 g, 6.3 mmol) in CH₃CN (25 mL) was added dropwise into a stirred solution of 4,4'-bipyridine (5.56 g, 35.7 mmol) in CH₃CN (50 mL) and refluxed over night. After it cooled, the suspension was filtered. The solid was washed with CH₃CN and then dried in an oven to afford a pale green solid **G** (3.3 g, 86%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.37 (d, *J*=6.7Hz, 4H), 8.89 (d, *J*=6.7Hz, 4H), 8.71 (d, *J*=6.7Hz, 4H), 8.10 (d, *J*=6.1Hz, 4H), 4.72 (t, *J*=7.3Hz, 4H), 1.97(s, 4H), 1.32 (d, *J*=15.5Hz, 12H).

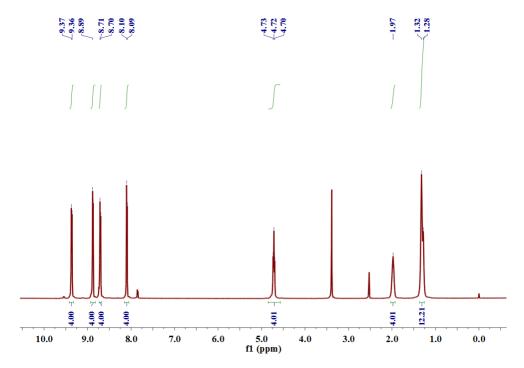


Figure S10. ¹H NMR spectrum of G (DMSO- d_6 , 600 MHz, 298 K).

Entry	Solvent	State	CGC (%)	$T_{gel}(^{\circ}C, wt\%)$
1	Ethyl acetate	S	\	/
2	Ethyl alcohol	Р	\	/
3	CCl_4	Р	\	\
4	PEG-400	Р	\	/
5	Isopropyl alcohol	Р	\	/
6	Ethylene glycol	Р	\	/
7	Acetone	Р	\	/
8	DMF	S	\	/
9	DMF/H ₂ O (V/V=9:1)	G	9.5 %	45~48 °C
10	DMSO	S	\	/
11	DMSO/H ₂ O (V/V=8:2)	G	10.0 %	61~63 °C
12	n-Propyl Alcohol	Р	\	/
13	Methyl alcohol	Р	\	/
14	Tert-butyl alcohol	Р	\	/
15	Glycerol	Р	\	
16	Isoamyl alcohol	Р	\	/
17	n-Butyl alcohol	Р	\	\
18	Cyclohexanol	G	2.0 %	55~58 °C
19	N-hexanol	G	3.0 %	50~52 °C
19	CH_2Cl_2	Р	\	/
20	Tetrahydrofuran	S	\	/
21	Acetic acid	Р	\	/
22	n-Butanol	Р	\	\
23	Cyclohexane	Р	\	\

Table S1. Gelation property of **SPN-TDPG**.

State: 10 mg/mL = 1 %, G = Gelation, S = Solution, P = Precipitation.

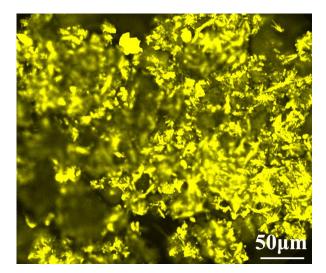


Figure S11. LSCM images of SPN-TDPG xerogel.

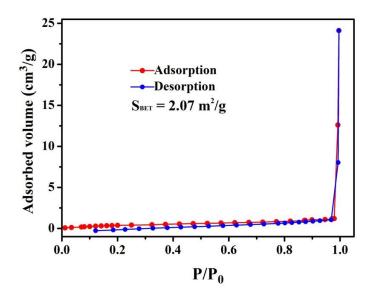


Figure S12. Nitrogen adsorption-desorption isotherm (77.0 K) of SPN-TDPG.

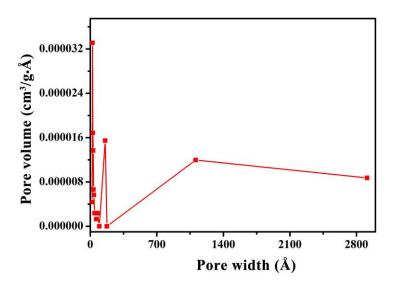
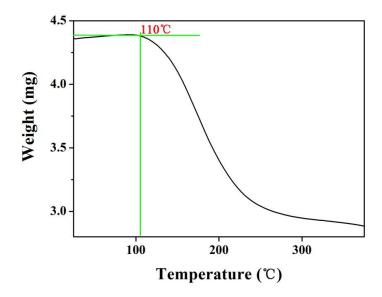
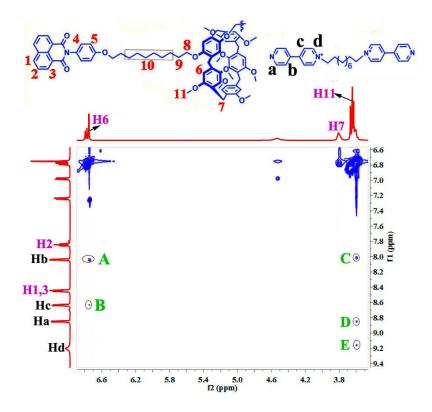


Figure S13 Pore size distribution profiles of SPN-TDPG.

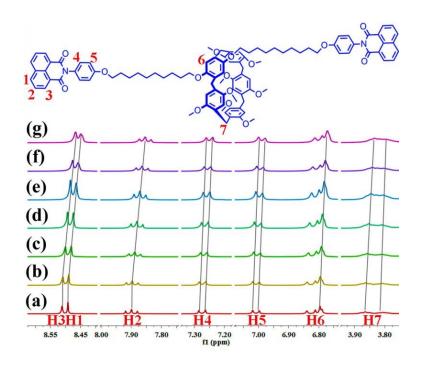

Figure S14. Thermogravimetric analysis of SPN-TDPG.

Table S2. Water regain analysis of **SPN-TDPG**. The water regain (expressed as weight percent) of the **SPN-TDPG** was determined from the average (87.4 %) of three measurements.

Entry	$M_d(mg)$	$M_w(\mathrm{mg})$	Water regain %
1	30.1	56.3	87.0
2	29.8	55.8	87.2
3	30.6	57.5	87.9

Figure S15. Partial 2D NOESY NMR spectrum of 5.0 mM **P5N** and **G** in DMSO-*d*₆ solution (600 MHz, 298 K).

Figure S16. Partial ¹H NMR spectra (600MHz, 298 K) of **P5N** in DMSO-*d*₆ at various concentrations: (a) 1.0 mM; (b) 2.0 mM; (c) 5.0 mM; (d) 10.0 mM; (e) 15.0 mM; (f) 20.0 mM; (g) 30.0 mM.

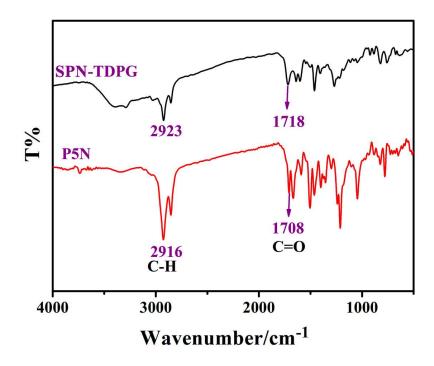
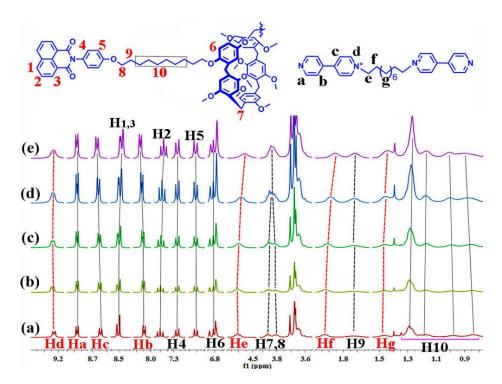



Figure S17. FT-IR spectra of powdered P5N, xerogel SPN-TDPG.

Figure S18. Partial ¹H NMR spectra (600 MHz, DMSO-*d*₆, 298 K) of **P5N** and **G** at different concentrations: (a) 5.0 mM; (b) 10.0 mM; (c) 20.0 mM; (d)40.0 mM; (e) 80.0 mM.

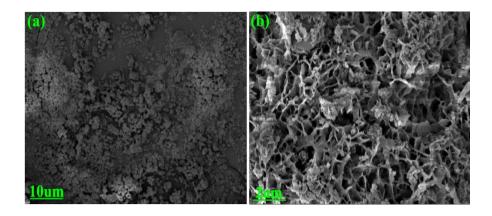


Figure S19. Representative SEM images showing the morphology of (a) P5N and (b) SPN-TDPG.

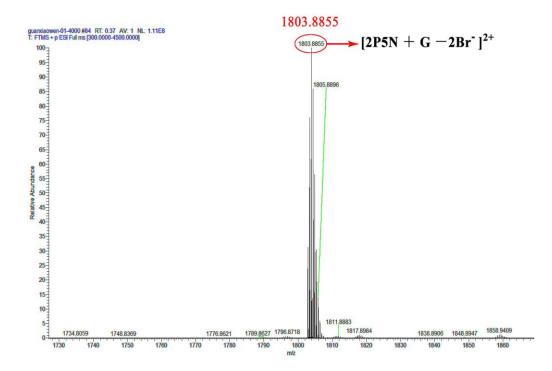
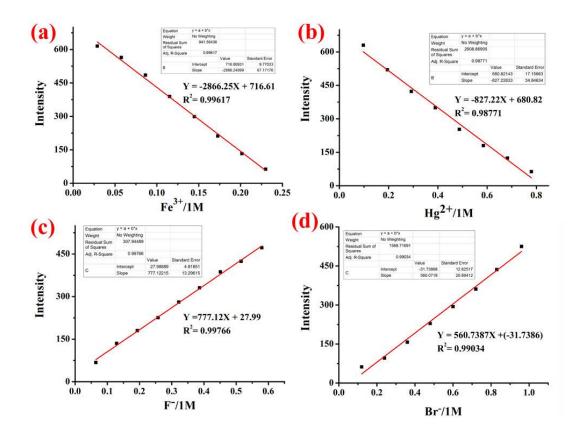



Figure S20. HR-ESI-MS of mixture P5N and G, clearly indicating the 2:1 stoichiometry for P5N and G.

Figure S21. The linear range of (a) **SPN-TDPG** for Fe³⁺; (b) **SPN-TDPG** for Hg²⁺; (c) **SPN-TDPG-Fe** for F⁻; (d) **SPN-TDPG-Hg** for Br⁻.

	Table S3. Limits of detection the	SPN-TDPG or SPN-TDPG	treated by metal ions	for target ions.
--	-----------------------------------	----------------------	-----------------------	------------------

Entry	Gel	Target ions	LOD/M
1	SPN-TDPG	Fe ³⁺	$9.19 imes 10^{-9}$
2	SPN-TDPG	Hg ²⁺	$3.95 imes 10^{-8}$
3	SPN-TDPG-Fe	F	3.38×10^{-8}
4	SPN-TDPG-Hg	Br	$8.17 imes10^{-8}$

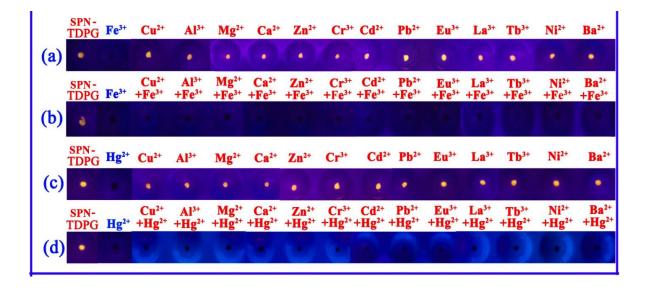
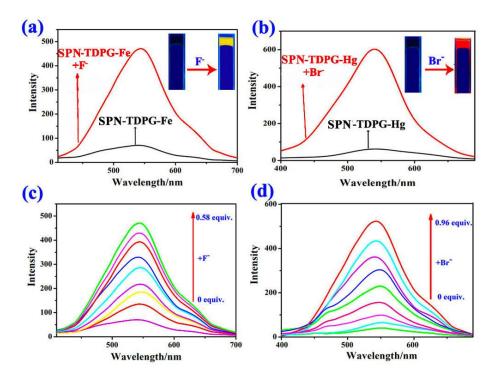
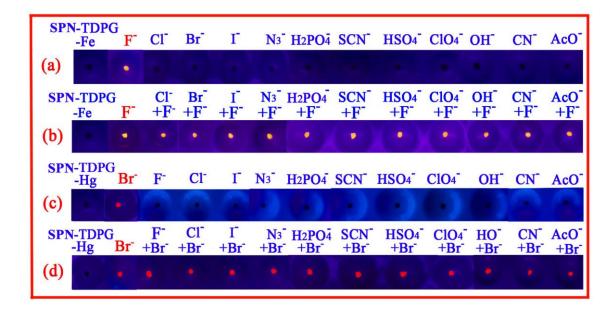




Figure S22. The control experiments: (a) SPN-TDPG treated by water solutions of various cations; (b) SPN-TDPG contained water solutions of various cations treated by water solution of Fe^{3+} ; (c) SPN-TDPG treated by water solutions of various cations; (d) SPN-TDPG contained water solutions of various cations treated by water solutions of Hg²⁺.

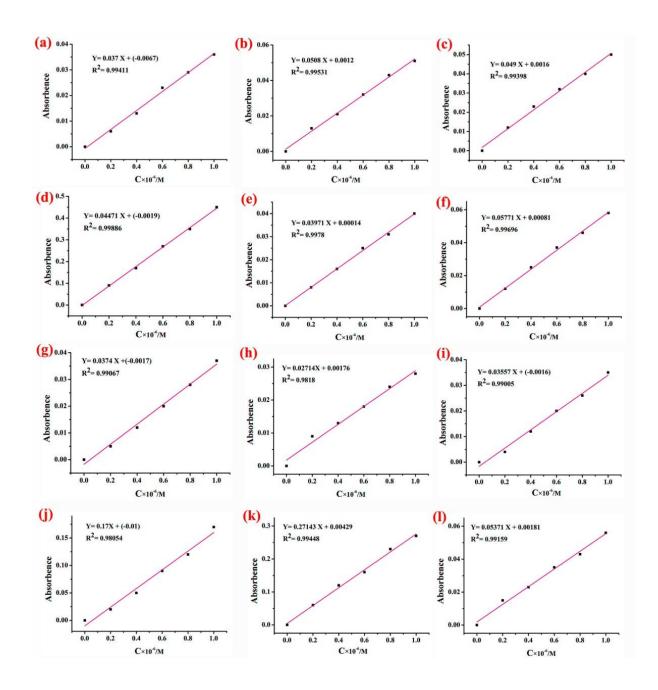

Figure S23. Fluorescence spectra of supramolecular gel (in gelated state) (a) **SPN-TDPG-Fe** and **SPN-TDPG-Fe** + F^- ; (b) **SPN-TDPG-Hg** and **SPN-TDPG-Hg** + Br^- ; (c) The fluorescent titrations of **SPN-TDPG-Fe** for F^- ; (d) The fluorescent titrations of **SPN-TDPG-Hg** for Br^- .

Figure S24. The control experiments: (a) **SPN-TDPG-Fe** and **SPN-TDPG-Fe** treated by water solutions of various anions; (b) **SPN-TDPG-Fe** and **SPN-TDPG-Fe** contained water solutions of various anions treated by water solution of F⁻. (c) **SPN-TDPG-Hg** and **SPN-TDPG-Hg** treated by water solutions of various anions; (d) **SPN-TDPG-Hg** and **SPN-TDPG-Hg** contained water solutions of various anions treated by water solution of Br⁻.

Entry	Chemical name	Chemical structures	Molar mass (g/mol)
1	Methylene Blue		319.09
2	Bismarck Brown Y	$H_2 N \xrightarrow[N+2]{N+2} N \xrightarrow[N+2]{N$	346.16
3	Giemsa's Stain		291.06
4	Orangel I	O S O H	350.03
5	Methyl Orangel	N- N- N- N- N- N- N- N- N- N- N- Na ⁺ N- Na ⁺	327.06
6	Rhodamine B	N CI	481.03
7	Sudan I	N=N-COH	248.28
8	Sudan II	N=N OH	276.33
9	Picric Acid		229.10
10	1-Naphthol	ОН	144.17
11	Potassium Permanganate	KMnO ₄	158.03
12	Potassium Dichromate	$K_2Cr_2O_7$	294.18

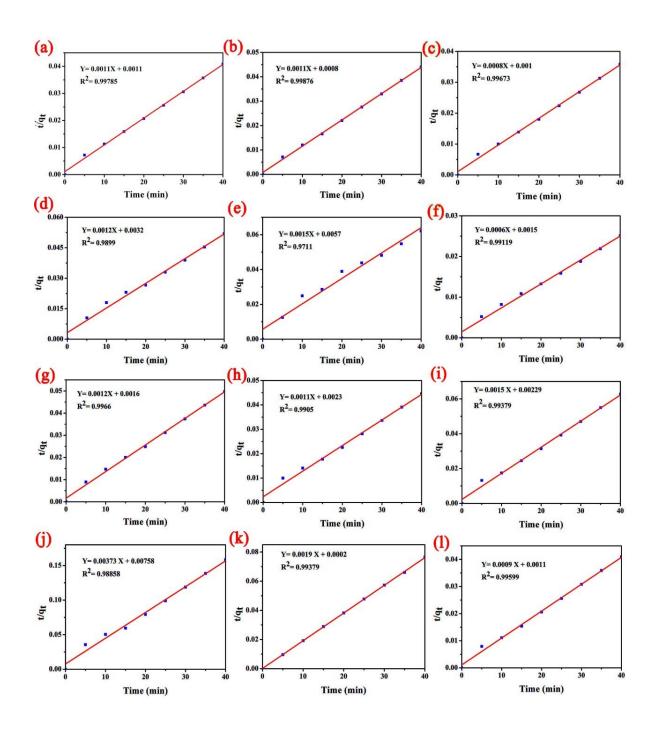

 Table S4. Chemical name, chemical structures and exact weight of pollutants.

Figure S25. A plot of concentration vs. absorbance intensity is shown. (a) methylene blue; (b) Bismarck brown Y; (c) Giemsa's stain; (d) orangel I; (e) methyl orangel; (f) rhodamine B; (g) Sudan I; (h) Sudan II; (i) picric acid; (j) 1-naphthol; (k) KMnO4; (l) K₂Cr₂O₇.

Entry	Pollutants	Equilibrium Time (min)
1	Methylene Blue	20
2	Bismarck Brown Y	20
3	Giemsa's Stain	15
4	Orangel I	20
5	Methyl Orangel	25
6	Rhodamine B	25
7	Sudan I	20
8	Sudan II	25
9	Picric Acid	15
10	1-Naphthol	20
11	KMnO ₄	5
12	$K_2Cr_2O_7$	10

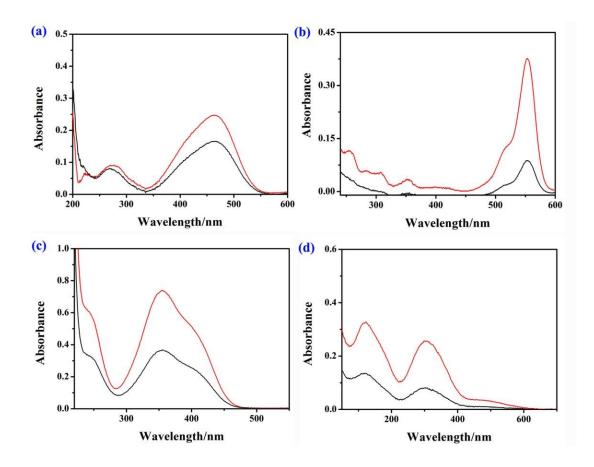

Table S5. The required contact time to reach equilibrium on the pollutants adsorptions. The amount of the adsorbent used in this study is 0.5 mg/mL.

Figure S26. Pseudo-second-order plots for **SPN-TDPG**: (a) methylene blue; (b) Bismarck brown Y; (c) Giemsa's stain; (d) orangel I; (e) methyl orangel; (f) rhodamine B; (g) Sudan I; (h)Sudan II; (i) picric acid; (j) 1-naphthol; (k) KMnO4; (l) K₂Cr₂O₇. Here *t* (min) is the contact time of each pollutant solution with **SPN-TDPG** and q_t (mg/mg) is the amount of each pollutant adsorbed per gram of **SPN-TDPG**.

Entry	Pollutants	$k_{\rm obs} \times 10^{-3} ({\rm mg/mg\ min})$	R ²
1	Methylene Blue	1.10	0.99
2	Bismarck Brown Y	1.51	0.99
3	Giemsa's Stain	0.64	0.99
4	Orangel I	0.45	0.99
5	Methyl Orangel	0.39	0.97
6	Rhodamine B	0.24	0.99
7	Sudan I	0.90	0.99
8	Sudan II	0.53	0.99
9	Picric Acid	0.98	0.99
10	1-Naphthol	1.83	0.99
11	KMnO ₄	18.1	0.99
12	$K_2Cr_2O_7$	0.74	0.99

 Table S6. Rates of each pollutant uptake by SPN-TDPG.

Figure S27. UV–*vis* spectra recorded before (red line)- after (black line, 40min) of adsorption (a) methyl orange, (b) rhodamine B, (c) picric acid and (d) $K_2Cr_2O_7$ with activated carbon (0.5 mg/mL).

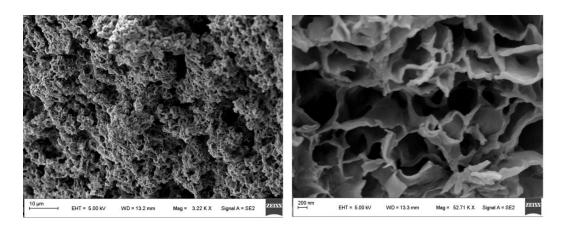


Figure S28. SEM images showing the morphology of regeneration SPN-TDPG.

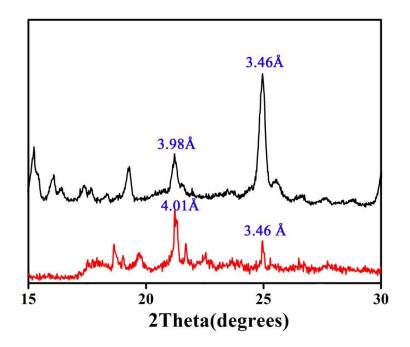


Figure S29. PXRD diagrams of SPN-TDPG and regeneration SPN-TDPG.

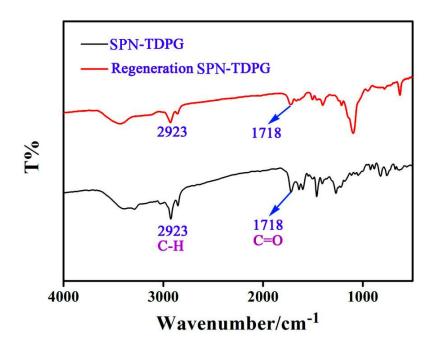
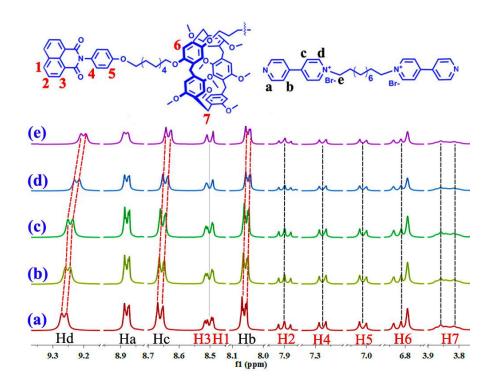
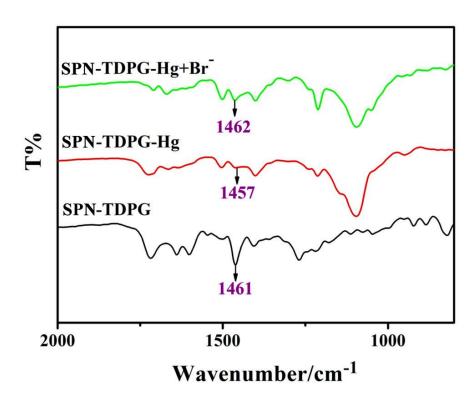
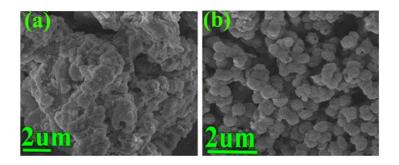
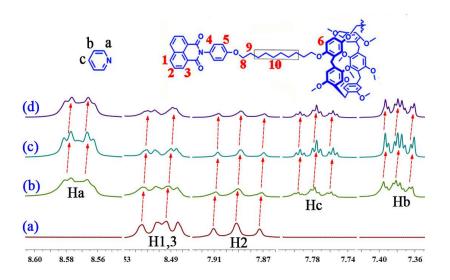
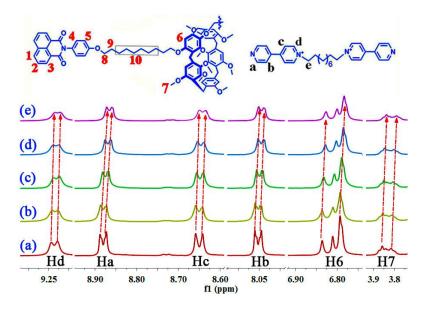



Figure S30. FT-IR spectra of SPN-TDPG and regeneration SPN-TDPG.

Figure S31. Partial ¹H NMR spectra of **SPN-TDPG** in DMSO- d_6 with different equivalent Hg²⁺ (a) 0 equiv.; (b) 0.2 equiv.; (c) 0.5 equiv.; (d) 1.0 equiv.; (e) 1.5 equiv.


Figure S32. FT-IR spectra of xerogel of SPN-TDPG, SPN-TDPG-Hg and SPN-TDPG-Hg + Br⁻.

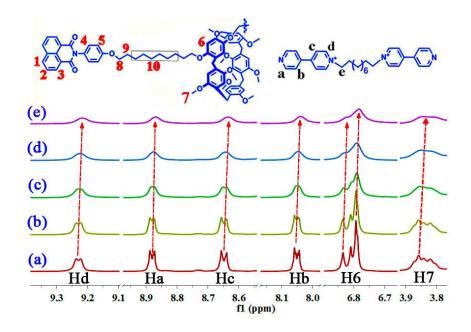

Figure S33. SEM images showing the morphology of (a) **SPN-TDPG-Hg**; (b) **SPN-TDPG-Hg**+Br⁻.

Figure S34. Partial ¹H NMR spectra of **SPN-TDPG** in DMSO- d_6 with different equivalent pyridine (a) 0 equiv.; (b) 0.2 equiv.; (c) 0.5 equiv.; (d) 1.0 equiv.

Figure S35. Partial ¹H NMR spectra of **SPN-TDPG** in DMSO- d_6 with different equivalent K₂Cr₂O₇ (a) 0 equiv.; (b) 0.2 equiv.; (c) 0.5 equiv.; (d) 1.0 equiv.; (e) 1.5 equiv.

Figure S36. Partial ¹H NMR spectra of **SPN-TDPG** in DMSO- d_6 with different equivalent KMnO₄ (a) 0 equiv.; (b) 0.2 equiv.; (c) 0.5 equiv.; (d) 1.0 equiv.; (e) 1.5 equiv.

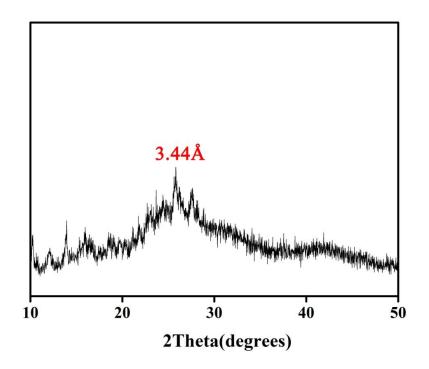
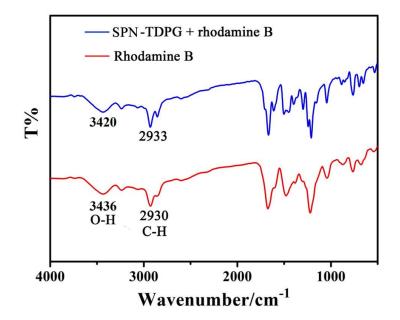
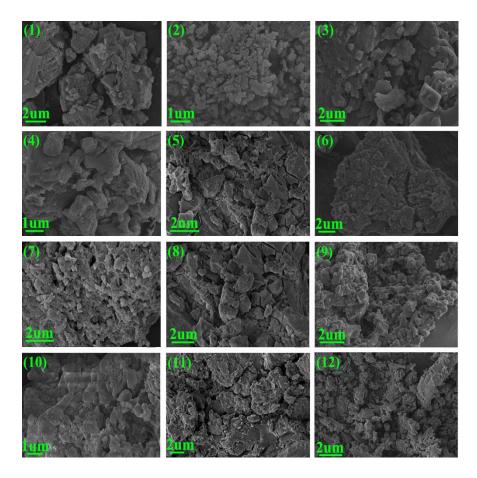
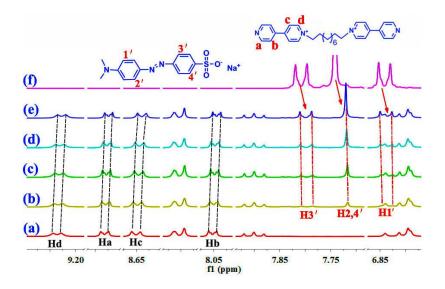


Figure S37. PXRD diagrams of SPN-TDPG adsorb rhodamine B.

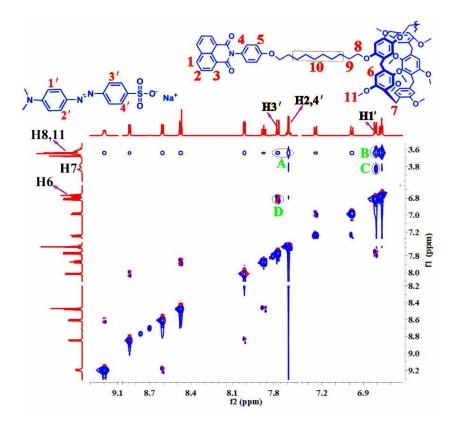

Figure S38. FT-IR spectra of SPN-TDPG adsorb rhodamine B.

Figure S39. Representative SEM images showing the morphology of **SPN-TDPG** adsorbed (1) methylene blue; (2) bismarck brown Y; (3) giemsa's stain; (4) orangel I; (5) methyl orangel; (6)rhodamine B; (7) sudan I; (8) sudan II; (9) picric acid; (10) 1-naphthol; (11) KMnO₄; (12) $K_2Cr_2O_7$.

Figure S40. Partial ¹H NMR titration spectra (600 MHz, 298K) of 3.0 mM **SPN-TDPG** with various equivalents of methyl orangel in DMSO- d_6 solution. (a) **SPN-TDPG**; (b) 0.5 equiv.; (c) 1.0 equiv.; (d) 2.0 equiv.; (e) 3.0 equiv.; (f) methyl orangel.

Figure S41. Partial 2D NOESY NMR spectrum of 3.0 mM **SPN-TDPG** and methyl orangel in DMSO-*d*₆ solution (600 MHz, 298 K).

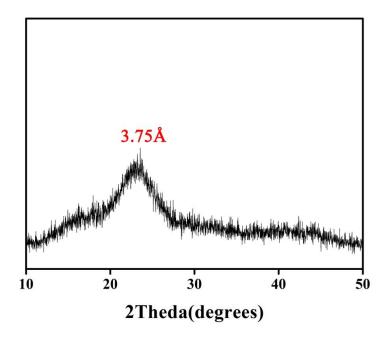


Figure S42. PXRD diagrams of SPN-TDPG adsorb methyl orange.

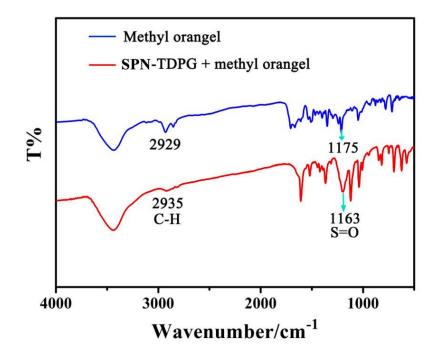


Figure S43. FT-IR spectra of SPN-TDPG adsorb methyl orange.

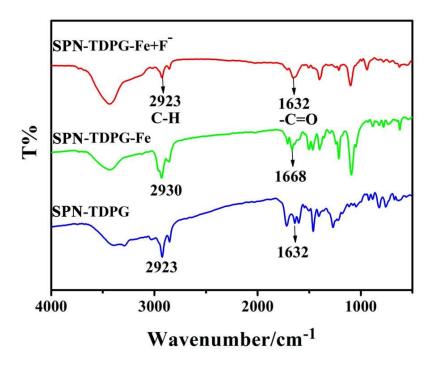
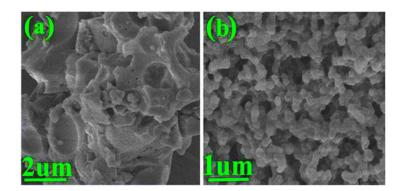



Figure S44. FT-IR spectra of xerogel SPN-TDPG, SPN-TDPG-Fe and SPN-TDPG-Fe + F⁻.

Figure S45. Representative SEM images showing the morphology of (a) **SPN-TDPG-Fe**; (b) **SPN-TDPG-Hg**; (c) **SPN-TDPG-Fe**+F⁻; (d) **SPN-TDPG-Hg**+Br⁻.