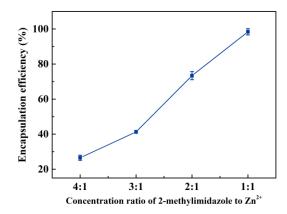
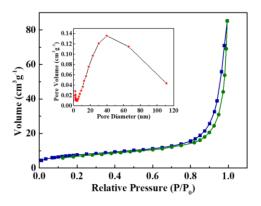
Supporting Information

HRP@ZIF-8/DNA hybrids: Functionality Integration of ZIF-8 via Biomineralization and Surface Absorption

Lei Wang^a, Wenjing Zhi^a, Dongsheng Lian^a, Yu Wang^a, Juan Han^b, Yun Wang^{a, *}


- ^a School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
- ^b School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road,
- Zhenjiang 212013, Jiangsu Province, China

*Corresponding author: Yun Wang. E-mail: <u>yunwang86@ujs.edu.cn</u>


Number of pages: 5 Number of figures: 7 Number of tables: 2

Characterization methods

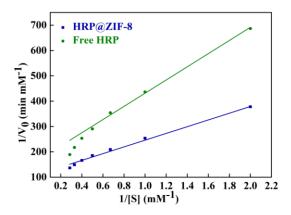
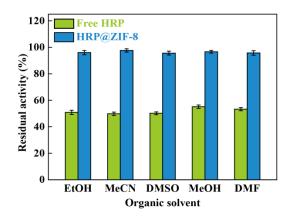

Laser Confocal Microscope (LSCM) was used to determine the presence of fluorescent labelled HRP within HRP@ZIF-8. Fourier transform infrared (FTIR) was performed using a Nicolet Nexus 470 Spectrometer in the region of 400- 4000 cm⁻¹. Thermal gravimetric analysis (TGA) measurements were performed on the STA449C Thermal Analyzer. Scanning electron microscope (SEM) was used to investigate the ZIF-8 and HRP@ZIF-8 morphology. Powder XRD patterns were collected using an X-ray diffractometer (XRD-6100Lab, Japan). The pore size of HRP@ZIF-8 bio-composite was determined by a BET measurement (TriStar II 3020). Fluorescence measurements were carried out using a Cary Eclipse spectrofluorometer (Varian, Australia).

Figure S1. Effect of the concentration ratio of 2-methylimidazole to Zn^{2+} on encapsulation efficiency of HRP@ZIF-8. The error bars represent the standard deviations of triplicate experiments.


Figure S2. N₂ adsorption-desorption curves and pore diameter distributions (inset) of ZIF-8.

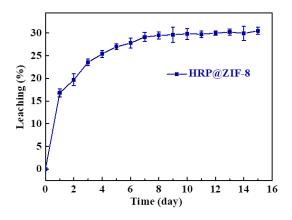

Figure S3. Lineweaver-Burk plots for determination of the kinetic parameters for free HRP and HRP@ZIF-8.

Figure S4. Enzyme leaching test of HRP@ZIF-8 after different incubation time at 60 °C.

Figure S5. Effect of organic solvents on the relative activity of free HRP and HRP@ZIF-8. The error bars represent the standard deviations of triplicate experiments.

Figure S6. Enzyme leaching test of HRP@ZIF-8 after different incubation time at 4 °C.

Scheme S1. Sequential reactions of the enzyme.

Table S1. The kinetic parameters of free HRP and HRP@ZIF-8.

Kinetic parameters	Free HRP	HRP@ZIF-8
K _m (mM)	1.5207	1.1773
$V_{max} \left(\mu M \cdot min^{-1} \right)$	5.8	8.9

Table S2. Comparison of immobilized enzyme for the detection of phenol.

Immobilized enzyme	Detection limit	Solution	Reference	
HRP@	1.0 µM	0.1 M PBS buffer (pH 7.4)	ACS Appl. Mater. Interfaces 2014 [1]	
$Cu_3(PO_4)_2 \cdot 3H_2O$			ACS Appl. Mater. Interfaces 2014 [1]	
ZIF-8@BHb	1.0 µM	0.1 M PBS buffer (pH 7.4)	ACS Appl. Mater. Interfaces 2016 [2]	

References

(1) Lin, Z.; Xiao, Y.; Yin, Y. Q.; Hu, W. L.; Liu, W.; Yang, H. H. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Appl. Mater. Interfaces 2014, 6, 10775-10782, DOI: 10.1021/am502757e.

(2) Yin, Y. Q.; Gao, C. L.; Xiao, Q.; Lin, G.; Lin, Z.; Cai, Z. W.; Yang, H. H. Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform. ACS Appl. Mater. Interfaces 2016, 8, 29052-29061, DOI: 10.1021/acsami.6b09893.