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Supporting Figure S1:(A) MIC values of S. aureus cells treated with indicated compounds 

(3a, 3g, 3d) and incubated for 6 h at 37 oC.1, 2 (B) Comparison of MIC values of para 

substituted derivatives (3a, 3h, 3i, 3j, 3k, 3l) and disubstituted derivatives (3s, 3t, 3u) 

between S. aureus and A. chlorophenolicus. 

Time-kill assay: 

Monitoring the rate of bacteriocidal or bacteriostatic activity in the presence of varying 

concentrations of the antimicrobial compounds is very crucial in determining the actual effect 

of the drug against a growing population of the bacterial cells.3 In this study, the growth 

kinetics of S. aureus cells in the presence of designed compounds were evaluated by an in-

vitro time-kill assay. Log phase S. aureus cells (3 x 105 cells/mL) were treated with 3a, 3d, 

3u, 3q and kananycin (as a positive control), incubated at 37 °C and OD was measured (at 

600 nm) at 1.5 hours interval. Results indicate that the compounds 3a, 3q and 3u were able to 

inhibit the growth of the bacterial cell at double-MIC concentrations while 3d was unable to 

inhibit the growth of the cells (Figure S2). 
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Supporting Figure S2: Time−kill kinetic study of the compounds (3a, 3d, 3q, 3u and 

kanamycin) against S. aureus. 3x105 cells were inoculated, treated with DMSO (0.5 %) or 

indicated compounds. Log CFU/mL was plotted against different time (hour). 

 

 

 

Supporting Figure S3: Cellular morphology of HEK 293 cells, untreated or treated with 3a, 

stained with propidium iodide (PI, nuclear stain) cells were visualized in 60x magnification. 

Scale bar- 20 µm.3	
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Supporting Figure S4: Agarose gel shift assay with 3k, 3o, 3m and 3j. Lane number 

indicates [compound]/[DNA base pair] ratios.4 

 

Supporting Figure S5:  Circular dichroism (CD) spectra of 10 µM poly-AT DNA (left) and 

poly-GC DNA (right) titrated with 3a in an increasing concentrations from 10 to 60 µM.4 

 

 

Supporting Figure S6: (A) Circular dichroism (CD) spectra of 15 µM mammalian genomic 

DNA (isolated from HEK 293 cell line) titrated with 3a in an increasing concentrations of 15, 

30, 45, 60, 75, 90, 120, 150,180 µM. (B) Ellipticity plot at 262 nm bands of CD spectra. 
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Supporting Figure S7: Quenching plot of fluorescence intercalator displacement assay 

(FID) with 10 µM S. aureus genomic DNA and 5 µM EtBr (λex = 480 nm) titrated with 3a 

(2.5-50 µM) at indicated pH and temperature. KSV values at (pH 8, 37 °C is 2.3 x 104 M-1, pH 

7, 37 °C is 2.0 x 104 M-1, pH 6, 37 °C is 3.0 x 104 M-1). 

 

Supporting Figure S8: Quenching plot of fluorescence intercalator displacement assay 
(FID) with 10 µM S. aureus genomic DNA and 5 µM EtBr (λex = 480 nm) with indicated salt 
concentration.  
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Supporting Figure S9: UV absorption spectra of compounds 3a, 3q, 3u in 10 mM 

phosphate buffer at pH 7.0 with 10 mM NaCl and 1 % DMSO at 250 C. 

 

Supporting Figure S10: UV absorption spectra of compound 3d (in 10 mM phosphate 

buffer at pH 7.0 with 10 mM NaCl and 1 % DMSO at 250 C) with an increasing concentration 

(10 µM to 100	µM). 
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Supporting Figure S11: EtBr fluorescence quenching studies for compounds (A) 3a, (B) 3q 

and (C) 3u in the presence of EtBr only in buffer (10 mM Na-P pH 7, 10 mM NaCl and 1 % 

DMSO) 
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Supporting Figure S12: Isothermal titration calorimetric analysis of CT-DNA with (A) 3a, 

(B) 3u, (C) 3q and (D) Buffer correction. Plots were drawn using Origin 7 software.5 
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Supporting Figure S13: (A) Frequency density plot shows significantly different 

distribution for untreated and treated S. aureus cells with 3a (control mean N/C = 0.73, 

treated mean N/C = 0.41). (B) Average nucleoid area also shows significant reduction in 

treated (0.423) S. aureus cells compared to control (0.56). (n=35). 

	    

 

 

Supporting Figure S14: Disruption of preformed biofilm of S. epidermidis by 3a. (A) 

Visualization of compound 3a treated (1, 2, 4 MIC) or untreated S. epidermidis biofilm under 

light microscope at 20×. (B) Quantification and visualization of biofilm formation in bacteria 

using crystal violet stain.6 
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Supporting Table 1: Comparison Table of our synthetic derivatives with already available 

analogues. 

 
Sl. 
No. 

 
Synthetic compounds/natural 

products 

MIC (µg/mL) 
Gram positive bacteria Gram negative bacteria 

S. aureus S. epidermidis E. coli P. aeruginosa 
1. 3a 1.79 2.24 3.36 6.73 
2. 3b 3.78 3.78 3.78 >10.07 
3. 3c 3.47 3.47 2.31 >9.24 
4. 3f 3.03 4.32 4.32 10.80 
5. 3h 3.45 3.45 4.59 >11.48 
6. 3m 3.36 2.24 >22.42 >22.42 
7. 3q 0.89 0.89 >8.96 >6.72 
8. 3s 1.69 0.96 7.24 >7.24 
9. 3t 0.93 1.63 >9.33 >6.99 

10. 3u 1.03 0.52 >7.75 >7.75 
11. 3-(5-Hexyl-3-phenylimidazo[1,5-

a]quinoxalin-4-on-1-yl)-1- 
nonylpyridinium iodide.7 

0.78  >500 >500 

12. 2,3-Bis(bromomethyl)-6-
(trifluoromethyl)quinoxaline. 8 

12.5  >100 >100 

13. N-(2,3-di(furan-2-yl)quinoxalin-6-
yl)-4- 

Nitrobenzenesulfonamide. 9 

15  25 30 

14. Choles-5-en-3[thiazolo [4,5-b] 
quinoxaline-2-ylhydrazone. 1 

0.78  0.39  

15. 4-tert-Butyl-3-hydroxy-1,4-
dihydrobenzo[g]quinoxaline- 

5,10-dione. 11 

12.5  12.5 12.5 

16. Echinomycin 
(quinomycin A). 1 

0.03125  25 >100 

17. Triostin A. 1 0.625  >100 >100 
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