Identification of a Biomarker Panel for Early Detection of Lung Cancer Patients.

Bethany Geary^{1,2}, Michael J. Walker², Joseph T. Snow^{2,3}, David C. H. Lee¹, Maria Pernemalm⁴, Saeedeh Maleki-Dizaji², Narges Azadbakht², Sophia Apostolidou⁵, Julie Barnes⁶, Piotr Krysiak⁷, Rajesh Shah⁷, Richard Booton⁸, Caroline Dive^{9,10}, Philip A Crosbie^{1,5,8}, Anthony D. Whetton^{1,3,10}, *.

Contents

Supplemental tables

Contents	.1
Table S1. IPA analysis of proteins with higher abundance in the cancer draining vein compared to the non-cancer draining vein	
Table S2. IPA analysis of proteins with higher abundance in the cancer draining vein compared to the artery.	
Table S3. IPA analysis of proteins with significant differential abundance in patients within 1 year of cancer diagnosis	.3

¹ Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom

² Stem cell and leukaemia proteomics laboratory, Institute of Cancer Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom

³ Department of Earth Sciences, University of Oxford, Oxford, United Kingdom.

⁴ Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.

⁵ Gynaecological Cancer Research Centre, Department of Women's Cancer, Institute for Women's Health, University College London, London, United Kingdom

⁶ Abcodia, Cambourne, Cambridgeshire, United Kingdom

⁷ Department of Thoracic Surgery, Wythenshawe Hospital, Manchester University NHS Foundation Trust, United Kingdom

⁸ North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, United Kingdom

⁹ Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom

¹⁰ Cancer Research UK Lung Cancer Centre of Excellence

^{*} Corresponding author: Anthony D. Whetton tony.whetton@manchester.ac.uk +44 (0)161 2756267

Table S1. IPA analysis of proteins with higher abundance in the cancer draining vein compared to the non-cancer draining vein.

Associated network functions	Number of associated
	proteins
Cardiovascular System Development and Function, Cellular Movement, Cancer	26
Lipid Metabolism, Small Molecule Biochemistry, Cardiovascular Disease	22
Cellular Movement, Cellular Development, Tissue Development	17
Cancer, Cardiovascular Disease, Cell Death and Survival	2
Cardiovascular Disease, Cell Death and Survival, Connective Tissue Disorders	2

Top diseases and disorders	p value
Cancer	0.048
Organismal injury and abnormalities	0.048
Inflammatory disease	0.030
Respiratory disease	0.048
Endocrine system disorders	0.048

Table S2. IPA analysis of proteins with higher abundance in the cancer draining vein compared to the artery.

Associated network functions	Number of associated proteins
RNA Damage and Repair, Inflammatory Response, Cell Cycle	20
Inflammatory Response, Organismal Injury and Abnormalities, Cell Death and Survival	15
Cardiovascular System Development and Function, Embryonic Development,	2
Nervous System Development and Function	
Cancer, Cell Death and Survival, Cellular Development	2
Cellular Movement, Hematological System Development and Function, Cancer	2
Top diseases and disorders	p value
Cancer	0.049
Cardiovascular disease	0.037
Connective tissue disorders	0.038
Dermatological diseases and conditions	0.049
Endocrine system disorders	0.043

Table S3. IPA analysis of proteins with significant differential abundance in patients within 1 year of cancer diagnosis

Associated network functions	Number of associated proteins
Organismal Survival, Dermatological Diseases and Conditions, Organismal Injury and Abnormalities	37
Cellular Movement, Cellular Development, Cellular Growth and Proliferation	24
Cellular Growth and Proliferation, Cell Cycle, Cellular Movement	18
Cancer, Organismal Injury and Abnormalities, Cell Death and Survival	14
RNA Post-Transcriptional Modification, Connective Tissue Disorders, Developmental Disorder	2
Top diseases and disorders	p value
Organismal injury and abnormalities	0.006
Gastrointestinal disease	0.013
Connective tissue disorders	0.014
Dermatological diseases and conditions	0.014
Developmental disorder	0.014