Cholinesterase Inhibitory Arisugacins L-Q from a *Penicillium* sp. Isolate Obtained through a Citizen Science Initiative and their Activities in a Phenotype-Based Zebrafish Assay

Wentao Dai,^{†,⊥} Imelda T. Sandoval,^{§,⊥} Shengxin Cai,[†] Kaylee A. Smith,[†] Richard Glenn C. Delacruz,[§] Kevin A. Boyd,[§] Jessica J. Mills,[§] David A. Jones^{*,§} and Robert H. Cichewicz^{*,†}

[†]Natural Product Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, University of Oklahoma, Norman, Oklahoma 73019, United States

[§]Functional and Chemical Genomics Program, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, Oklahoma 73104, United states

Contents

Table S1. Identification Codes and Associated Information for the Fungal Isolate

 Table S2. Dose curve analysis of toxic crude fungal extracts.

 Table S3. ROESY correlations of compounds 4.

 Table S4. ROESY correlations of compounds 5.

 Table S5. ROESY correlations of compounds 8.

 Table S6. ROESY correlations of compounds 12.

 Table S7. ROESY correlations of compounds 13.

Figure S1. Zebrafish phenotype screen reveals fungal extracts that impaired motility. Frame-by-

frame images representing response of zebrafish embryos to external stimulus (represented by

black line).

Figure S2. ¹H-NMR spectrum of compound 4 in Acetone- d_6 (500 MHz).

Figure S3. ¹³C-NMR spectrum of compound 4 in Acetone- d_6 (100 MHz).

Figure S4. ¹H-¹H COSY spectrum of compound **4** in Acetone- d_6 (500 MHz).

Figure S5. HSQC spectrum of compound 4 in Acetone- d_6 (500 MHz).

Figure S6. HMBC spectrum of compound 4 in Acetone- d_6 (500 MHz).

Figure S7. ROESY spectrum of compound 4 in Acetone- d_6 (500 MHz).

Figure S8. HRESIMS of compound 4.

Figure S9. ¹H-NMR spectrum of compound 5 in CDCl₃ (500 MHz).

Figure S10. ¹³C-NMR spectrum of compound 5 in CDCl₃ (100 MHz).

Figure S11. ¹H-¹H COSY spectrum of compound **5** in CDCl₃ (500 MHz).

Figure S12. HSQC spectrum of compound 5 in CDCl₃ (500 MHz).

Figure S13. HMBC spectrum of compound 5 in CDCl₃ (500 MHz).

Figure S14. ¹H-NMR spectrum of compound 5 in DMSO- d_6 (600 MHz).

Figure S15. ¹H-¹H COSY spectrum of compound 5 in DMSO- d_6 (600 MHz).

Figure S16. HSQC spectrum of compound 5 in DMSO- d_6 (600 MHz).

- Figure S17. HMBC spectrum of compound 5 in DMSO- d_6 (600 MHz).
- Figure S18. ROESY spectrum of compound 5 in DMSO- d_6 (500 MHz).
- Figure S19. HRESIMS of compound 5.
- Figure S20. ¹H-NMR spectrum of compound 8 in DMSO- d_6 (500 MHz).
- Figure S21. ¹³C-NMR spectrum of compound 8 in DMSO- $d_6(100 \text{ MHz})$.
- Figure S22. ¹H- ¹H spectrum of compound 8 in DMSO- d_6 (500 MHz).
- Figure S23. HSQC spectrum of compound 8 in DMSO- d_6 (500 MHz).
- Figure S24. HMBC spectrum of compound 8 in DMSO- d_6 (500 MHz).
- Figure S25. ROESY spectrum of compound 8 in DMSO- d_6 (500 MHz).
- Figure S26. HRESIMS of compound 8.
- Figure S27. ¹H-NMR spectrum of compound 12 in DMSO- d_6 (500 MHz).
- Figure S28. ¹³C-NMR spectrum of compound 12 in DMSO- d_6 (100 MHz).
- Figure S29. ¹H-¹H spectrum of compound 12 in DMSO- d_6 (500 MHz).
- Figure S30. HSQC spectrum of compound 12 in DMSO- d_6 (500 MHz).
- Figure S31. HMBC spectrum of compound 12 in DMSO-*d*₆ (500 MHz).
- Figure S32. ROESY spectrum of compound 12 in DMSO- d_6 (500 MHz).
- Figure S33. HRESIMS of compound 12.
- Figure S34. ¹H-NMR spectrum of compound 13 in DMSO- d_6 (500 MHz).
- Figure S35. ¹³C-NMR spectrum of compound 13 in DMSO- d_6 (100 MHz).
- Figure S36. ¹H-¹H spectrum of compound 13 in DMSO- d_6 (500 MHz).
- Figure S37. HSQC spectrum of compound 13 in DMSO- d_6 (500 MHz).
- Figure S38. HMBC spectrum of compound 13 in DMSO-*d*₆ (500 MHz).
- Figure S39. ROESY spectrum of compound 13 in DMSO- d_6 (500 MHz).
- Figure S40. HRESIMS of compound 13.
- Figure S41. ¹H-NMR spectrum of compound 14 in Acetone- d_6 (500 MHz).
- Figure S42. ¹³C-NMR spectrum of compound 14 in Acetone- d_6 (100 MHz).
- **Figure S43.** ¹H-¹H spectrum of compound 14 in Acetone- d_6 (500 MHz).

Figure S44. HSQC spectrum of compound 14 in Acetone- d_6 (500 MHz). Figure S45. HMBC spectrum of compound 14 in Acetone- d_6 (500 MHz). Figure S46. ROESY spectrum of compound 14 in Acetone- d_6 (500 MHz). Figure S47. HRESIMS of compound 14.

Fungus name used in this report:	Penicillium sp.
Full ID code for the sample from	10263, soil
which the fungal isolated was	
obtained:	
SHAREOK link for citizen-	https://shareok.org/handle/11244/300790
science-derived sample (if	
available):	
Internal lab sample ID code:	OK0263
Full fungal isolate ID code:	OK0263 PDA-20
Plate number and well for fungal	87-B1
initial extract:	
First chemistry notebook code	3000-PDA Ch1 MaxPlot 200-600nm,4nm x 1.00
assigned to fungal extract and	2000 99WD109A
PDA chromatogram of the crude	
extract:	1000-
	of the second will be a second
	LCMS condition: MeCN-H ₂ O gradient containing 0.1% HCOOH
	(10:90-100:0 in 15 min)
Pictures of fungal isolate: picture	and the second sec
shows the fungus growing on	States to the second
Cheerios.	
	and the second sec
ITS sequence used to assign	GCGGGTGACAAAGCCCCATACGCTCGAGGACCGGACGCG
taxonomy.	GTGCCGCCGCTGCCTTTCGGGCCCGTCCCCCGAAAATCGG
unonomy.	AGGACGGGGCCCAACACACAAGCCGGGCTTGAGGGCAG
	CAATGACGCTCGGACAGGCATGCCCCCCGGAATACCAGG
	GGGCGCAATGTGCGTTCAAAGACTCGATGATTCACTGAA
	TTTGCAATTCACATTACGTATCGCATTTCGCTGCGTTCTTC
	ATCGATGCCGGAACCAAGAGATCCGTTGTTGAAAGTTTT
	AAATAATTTATATTTTCACTCAGACTTCAATCTTCAGACA
	GAGTTCGAGGGTGTCTTCGGCGGGCGCGGGGCCCGGGGGC
	GTGAGCCCCCGGCGGCCAGTTAAGGCGGGCCCGCCGAA
	GCAACAAGGTAAAATAAACACGGGTGCGGAGGTTGGACC
	CAGAGGGCCCTCACTCGGTAATGATCCTTCCGCAGGTTCA
	CCTACGGAAACCTTGTTACGACTTTTACTTCC
GenBank accession number:	MK722362
Notes on the taxonomic	Multiple Penicillium species all at 98.90% identity, 100% query
affiliation of the fungal isolate:	cover, cannot assign species level identification, BLAST date April
	1 2019

 Table S1. Identification and Associated Information for the Fungal Isolate OK0263 PDA-20.

Sample ID	Phenotype Observed ^a	Dose, µg/mL ^b
P86-B12	Edema	0.1
P86-C4	Misshapen tail	1
P86-C6	Misshapen tail, necrosis	2
P86-D7	Misshapen tail, necrosis	1
P86-D10	Edema, necrosis, enlarged hindbrain	0.2
Р86-Е9	Hemorrhage	0.2
P86-F1	Edema, misshapen tail, necrosis, lack of blood circulation	0.1
P87-A3	Edema	1
P87-A5	Misshapen tail	2
P87-A7	Growth arrest, necrosis	1
P87-A8	Ν	-
P87-A9	Necrosis	0.1
P87-A11	Ν	-
P87-A12	Ν	-
P87-B2	Ν	-
P87-B5	Ν	-
P87-B8	Misshapen tail and body	1
P87-B10	Ν	-
P87-B12	Ν	-
P87-C2	Ν	-
P87-C8	Ν	-
P87-C9	Hemorrhage	0.1
P87-C10	Ν	-
P87-D8	Ν	-
P87-E8	Ν	-
P87-F12	Ν	-
P87-H6	Hemorrhage	2
P87-H8	Ν	-
GL6-A8	Ν	-
GL6-B8	Ν	-
GL6-B12	Ν	-
GL6-F9	Small embryo	10
GL6-F10	Loss of pigmentation, impaired motility	2
GL7-H8	N	-
^a N – no pheno	otype observed at all concentrations tested.	
^b Dose when p	bhenotype was initially observed.	

Table S2. Dose curve analysis of toxic crude fungal extracts.

Proton	ROESY correlations
H-12 ($\delta_{\rm H}$ 2.71)	H-25 ($\delta_{\rm H}$ 1.44), H-26 ($\delta_{\rm H}$ 1.19)
H-12 (<i>δ</i> _H 3.14)	OH-13 ($\delta_{\rm H}$ 6.72), H-19 ($\delta_{\rm H}$ 4.91)
OH-13 (<i>δ</i> _H 6.72)	H-12 ($\delta_{\rm H}$ 3.14), H-15 ($\delta_{\rm H}$ 2.38), H-19 ($\delta_{\rm H}$ 4.91), H-23 ($\delta_{\rm H}$ 1.10)
H-15 (<i>δ</i> _H 2.38)	OH-13 ($\delta_{\rm H}$ 6.72), OH-17 ($\delta_{\rm H}$ 6.81)
H-16 (<i>δ</i> _H 1.73)	H-23 (δ _H 1.10)
H-16 (δ _H 1.94)	H-24 ($\delta_{\rm H}$ 1.04), H-25 ($\delta_{\rm H}$ 1.44), H-26 ($\delta_{\rm H}$ 1.19)
OH-17 ($\delta_{\rm H}$ 6.81)	H-15 ($\delta_{\rm H}$ 2.38), H-19 ($\delta_{\rm H}$ 4.91), H-23 ($\delta_{\rm H}$ 1.10)
H-19 ($\delta_{\rm H}$ 4.91)	H-12 ($\delta_{\rm H}$ 3.14), OH-13 ($\delta_{\rm H}$ 6.72), OH-17 ($\delta_{\rm H}$ 6.81),
	OH-21($\delta_{\rm H}$ 5.44)
OH-19 ($\delta_{\rm H}$ 3.63)	H-12 ($\delta_{\rm H}$ 3.14), H-26 ($\delta_{\rm H}$ 1.19)
H-20 (δ _H 2.16)	H-24 ($\delta_{\rm H}$ 1.04), H-26 ($\delta_{\rm H}$ 1.19), OH-19 ($\delta_{\rm H}$ 3.63)
H-20 (δ _H 2.05)	OH-19 (δ _H 3.63)
H-21 (δ _H 3.66)	H-23 ($\delta_{\rm H}$ 1.10), H-24 ($\delta_{\rm H}$ 1.04), H-20 ($\delta_{\rm H}$ 2.05, $\delta_{\rm H}$ 2.16)
OH-21 (δ _H 5.44)	H-23 ($\delta_{\rm H}$ 1.10), H-19 ($\delta_{\rm H}$ 4.91)

 Table S3. ROESY correlations of compound 4.

Proton	ROESY correlations
H-12 ($\delta_{\rm H}$ 2.19)	H-19 ($\delta_{\rm H}$ 1.14), OH-13 ($\delta_{\rm H}$ 6.66)
H-12 ($\delta_{\rm H}$ 2.60)	H-25 ($\delta_{\rm H}$ 1.34), H-26 ($\delta_{\rm H}$ 1.07)
OH-13 ($\delta_{\rm H}$ 6.66)	H-12 ($\delta_{\rm H}$ 2.19), H-15 ($\delta_{\rm H}$ 2.28), H-19 ($\delta_{\rm H}$ 2.11), H-23 ($\delta_{\rm H}$ 0.91)
H-15 (<i>δ</i> _H 1.57)	H-25 ($\delta_{\rm H}$ 1.37)
H-15 ($\delta_{\rm H}$ 2.28)	OH-13 ($\delta_{\rm H}$ 6.66), OH-17 ($\delta_{\rm H}$ 6.08)
H-16 ($\delta_{\rm H}$ 1.61)	H-23 ($\delta_{\rm H}$ 0.91)
H-16 ($\delta_{\rm H}$ 1.89)	H-24 ($\delta_{\rm H}$ 0.84), H-25 ($\delta_{\rm H}$ 1.34), H-26 ($\delta_{\rm H}$ 1.07)
OH-17 ($\delta_{\rm H}$ 6.08)	H-15 ($\delta_{\rm H}$ 2.28), H-16 ($\delta_{\rm H}$ 1.61), H-19 ($\delta_{\rm H}$ 2.11), H-23 ($\delta_{\rm H}$ 0.91)
H-19 ($\delta_{\rm H}$ 1.14)	H-26 ($\delta_{\rm H}$ 1.07)
H-19 ($\delta_{\rm H} 2.11$)	H-21 ($\delta_{\rm H}$ 3.72), OH-17 ($\delta_{\rm H}$ 6.08)
H-21 (δ _H 3.72)	H-19 ($\delta_{\rm H}$ 2.11), H-23 ($\delta_{\rm H}$ 0.91)
OH-21 (δ _H 4.19)	H-23 ($\delta_{\rm H}$ 0.91)

Table S4. ROESY correlations of compound 5.

Proton	ROESY correlations
H-12 ($\delta_{\rm H}$ 2.65)	H-25 ($\delta_{\rm H}$ 1.38), H-26 ($\delta_{\rm H}$ 1.10)
H-12 ($\delta_{\rm H}$ 2.95)	H-19 ($\delta_{\rm H}$ 4.74)
OH-13 ($\delta_{\rm H}$ 6.63)	H-19 ($\delta_{\rm H}$ 4.74)
H-15 ($\delta_{\rm H}$ 1.63)	H-24 (0.96), H-25 ($\delta_{\rm H}$ 1.38)
H-15 ($\delta_{\rm H}$ 2.23)	OH-17 ($\delta_{\rm H}$ 6.46)
H-16 ($\delta_{\rm H}$ 1.63)	H-23 ($\delta_{\rm H}$ 1.10)
H-16 ($\delta_{\rm H}$ 1.96)	H-25 ($\delta_{\rm H}$ 1.38), H-26 ($\delta_{\rm H}$ 1.10)
OH-17 ($\delta_{\rm H}$ 6.46)	H-15 ($\delta_{\rm H}$ 2.23), H-19 ($\delta_{\rm H}$ 4.74)
H-19 ($\delta_{\rm H}$ 4.74)	H-23 ($\delta_{\rm H}$ 1.10), H-12 ($\delta_{\rm H}$ 2.95), OH-13 ($\delta_{\rm H}$ 6.63), OH-17 ($\delta_{\rm H}$ 6.46)
OH-19 ($\delta_{\rm H}$ 5.05)	H-26 ($\delta_{\rm H}$ 1.10)
H-20 (δ _H 2.54)	H-23 ($\delta_{\rm H}$ 1.10)
H-20 (δ _H 2.74)	H-24 ($\delta_{\rm H}$ 0.91)

 Table S5. ROESY correlations of compound 8.

Proton	ROESY correlations
H-12 ($\delta_{\rm H}$ 2.72)	H-25 ($\delta_{\rm H}$ 1.37), H-26 ($\delta_{\rm H}$ 1.24)
H-12 ($\delta_{\rm H}$ 3.39)	OH-13 ($\delta_{\rm H}$ 6.44)
OH-13 ($\delta_{\rm H}$ 6.44)	H-12 ($\delta_{\rm H}$ 3.39), H-15 ($\delta_{\rm H}$ 2.22)
H-15 (<i>δ</i> _H 1.60)	H-25 (δ _H 1.37)
H-15 (<i>δ</i> _H 2.22)	OH-13 ($\delta_{\rm H}$ 6.44), OH-17 ($\delta_{\rm H}$ 6.73)
H-16 ($\delta_{\rm H}$ 1.74)	H-23 ($\delta_{\rm H}$ 0.94), H-24 ($\delta_{\rm H}$ 1.11), OH-17 ($\delta_{\rm H}$ 6.73)
H-16 ($\delta_{\rm H}$ 1.92)	H-24 ($\delta_{\rm H}$ 1.11), H-25 ($\delta_{\rm H}$ 1.37), H-26 ($\delta_{\rm H}$ 1.24)
OH-17 ($\delta_{\rm H}$ 6.73)	H-15 ($\delta_{\rm H}$ 2.22), H-16 ($\delta_{\rm H}$ 1.74), H-23 ($\delta_{\rm H}$ 0.94)
H-20 ($\delta_{\rm H}$ 2.65)	H-21 ($\delta_{\rm H}$ 3.94), H-24 ($\delta_{\rm H}$ 1.11), H-26 ($\delta_{\rm H}$ 1.24)
H-20 ($\delta_{\rm H}$ 2.79)	H-23 (<i>δ</i> _H 0.94),
H-21 (δ _H 3.94)	H-23 ($\delta_{\rm H}$ 0.94), H-24 ($\delta_{\rm H}$ 1.11), H-26 ($\delta_{\rm H}$ 1.24)
OH-21 (δ _H 5.10)	H-23 (<i>δ</i> _H 0.94)

 Table S6. ROESY correlations of compound 12.

Proton	ROESY correlations
H-12 ($\delta_{\rm H}$ 2.31)	H-25 ($\delta_{\rm H}$ 1.30), H-26 ($\delta_{\rm H}$ 1.10)
H-12 ($\delta_{\rm H}$ 2.67)	H-13 ($\delta_{\rm H}$ 1.78)
H-13 ($\delta_{\rm H}$ 1.78)	H-12 ($\delta_{\rm H}$ 2.67)
H-15 ($\delta_{\rm H}$ 2.11)	H-25 ($\delta_{\rm H}$ 1.30)
H-16 ($\delta_{\rm H}$ 1.62)	H-24 ($\delta_{\rm H}$ 1.02), H-25 ($\delta_{\rm H}$ 1.30), H-26 ($\delta_{\rm H}$ 1.10)
H-16 ($\delta_{\rm H}$ 1.74)	H-23 ($\delta_{\rm H}$ 1.09)
H-17 ($\delta_{\rm H}$ 1.86)	H-23 ($\delta_{\rm H}$ 1.09)

 Table S7. ROESY correlations of compound 13.

Figure S1. Zebrafish phenotype screen reveals fungal extracts that impaired motility. Frame-byframe images representing response of zebrafish embryos to external stimulus (represented by black line).

Figure S2. ¹H-NMR spectrum of compound 4 in acetone- d_6 (500 MHz).

Figure S3. ¹³C-NMR spectrum of compound 4 in acetone- d_6 (100 MHz).

Figure S4. ¹H-¹H COSY spectrum of compound 4 in acetone- d_6 (500 MHz).

Figure S5. HSQC spectrum of compound 4 in acetone- d_6 (500 MHz).

Figure 6. HMBC spectrum of compound 4 in acetone- d_6 (500 MHz).

Figure S7. ROESY spectrum of compound 4 in acetone- d_6 (500 MHz).

Figure S8. HRESIMS data for compound 4.

Figure S9. ¹H-NMR spectrum of compound 5 in CDCl₃ (500 MHz).

Figure S10. ¹³C-NMR spectrum of compound 5 in CDCl₃ (500 MHz).

Figure S11. ¹H-¹H COSY spectrum of compound **5** in CDCl₃ (500 MHz).

Figure S12. HSQC spectrum of compound 5 in CDCl₃ (500 MHz).

Figure S13. HMBC spectrum of compound 5 in CDCl₃ (500 MHz).

Figure S14. ¹H-NMR spectrum of compound **5** in DMSO-*d*₆ (600 MHz).

Figure S15. ¹H-¹H COSY spectrum of compound **5** in DMSO- d_6 (600 MHz).

Figure S16. HSQC spectrum of compound 5 in DMSO- d_6 (600 MHz).

Figure S17. HMBC spectrum of compound 5 in DMSO- d_6 (600 MHz).

Figure S18. ROESY spectrum of compound 5 in DMSO- d_6 (500 MHz).

Figure S19. HRESIMS data for compound 5.

Figure S20. ¹H-NMR spectrum of compound 8 in DMSO- d_6 (500 MHz).

Figure S21. ¹³C-NMR spectrum of compound 8 in DMSO- d_6 (100 MHz).

Figure S22. ¹H-¹H spectrum of compound **8** in DMSO- d_6 (500 MHz).

Figure S23. HSQC spectrum of compound 8 in DMSO- d_6 (500 MHz).

Figure S24. HMBC spectrum of compound 8 in DMSO- d_6 (500 MHz).

Figure S25. ROESY spectrum of compound 8 in DMSO- d_6 (500 MHz).

Figure S26. HRESIMS data for compound 8.

Figure S27. ¹H-NMR spectrum of compound 12 in DMSO- d_6 (500 MHz).

Figure S28. ¹³C-NMR spectrum of compound 12 in DMSO- d_6 (100 MHz).

Figure S29. ¹H-¹H spectrum of compound 12 in DMSO- d_6 (500 MHz).

Figure S30. HSQC spectrum of compound 12 in DMSO- d_6 (500 MHz).

Figure S31. HMBC spectrum of compound 12 in DMSO- d_6 (500 MHz).

Figure S32. ROESY spectrum of compound 12 in DMSO- d_6 (500 MHz).

Figure S33. HRESIMS data for compound 12.

Figure S34. ¹H-NMR spectrum of compound 13 in DMSO-*d*₆ (500 MHz).

Figure S35. ¹³C-NMR spectrum of compound 13 in DMSO- d_6 (100 MHz).

Figure S36. ¹H-¹H spectrum of compound **13** in DMSO- d_6 (500 MHz).

Figure S37. HSQC spectrum of compound 13 in DMSO- d_6 (500 MHz).

Figure S38. HMBC spectrum of compound 13 in DMSO- d_6 (500 MHz).

Figure S39. ROESY spectrum of compound 13 in DMSO- d_6 (500 MHz).

Figure S40. HRESIMS data for compound 13.

Figure S41. ¹H-NMR spectrum of compound **14** in acetone-*d*₆ (500 MHz).

Figure S42. ¹³C-NMR spectrum of compound 14 in acetone- d_6 (100 MHz).

Figure S43. ¹H-¹H spectrum of compound **14** in acetone- d_6 (500 MHz).

Figure S44. HSQC spectrum of compound **14** in acetone- d_6 (500 MHz).

Figure S45. HMBC spectrum of compound 14 in acetone- d_6 (500 MHz).

Figure S46. ROESY spectrum of compound 14 in acetone- d_6 (500 MHz).

Figure S47. HRESIMS data for compound 14.