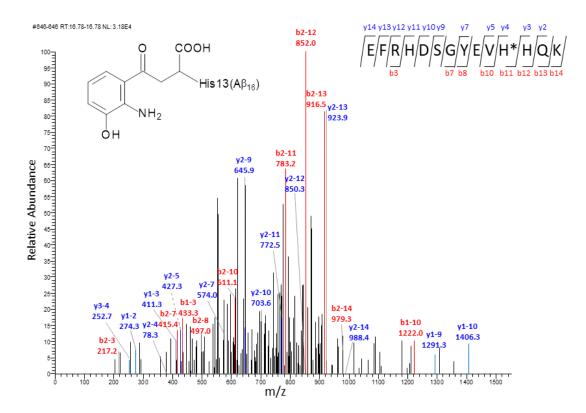
Supporting Information

Neuronal proteins as targets of 3-hydroxykynurenine: Implications in neurodegenerative diseases

Andrea Capucciati,^a Monica Galliano,^b Luigi Bubacco,^c Luigi Zecca,^d Luigi Casella,^a Enrico Monzani,^a* Stefania Nicolis^a*

^a Department of Chemistry, University of Pavia, 27100 Pavia, Italy


^b Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy

^c Department of Biology, University of Padova, 35121 Padova, Italy ^d Institute of Biomedical Technologies, National Research Council of Italy, 20090 Segrate (Milano), Italy

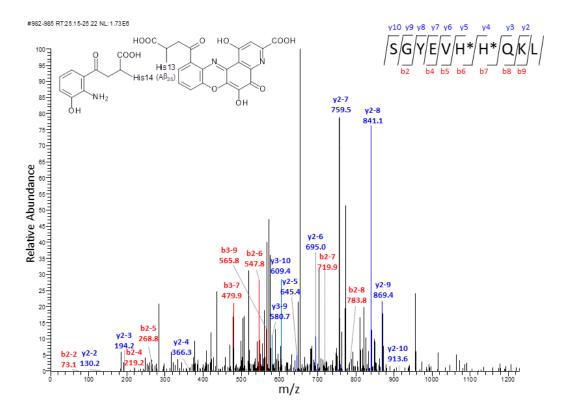
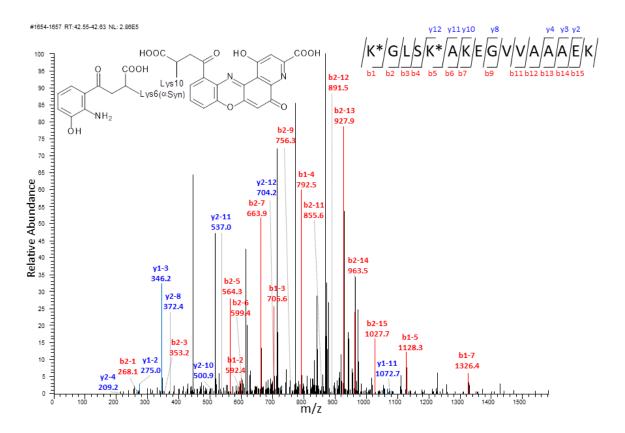

	pag S2 pag S3 514
Ĩ	pag S4
Figure S3. MS/MS spectrum of the α Syn adducts with 3OHKyn at Lys6 and Xan at Lys10 p	pag S5
Figure S4. MS/MS spectrum of Aβ16 oxidized at His13	pag S6
Figure S5. Derivative absorption spectrum of 3OHKyn	pag S7
Figure S6. Derivative absorption spectrum of oxidized 3OHKyn	pag S7
Figure S7. Derivative absorption spectrum of 3OHKyn-αSyn	pag S7
Figure S8. Absorption spectra of oxidized 3OHKyn, 3OHKyn-A β_{16} and A β_{16}	pag S8
Figure S9. Absorption spectra of oxidized 3OHKyn, $3OHKyn-\alpha Syn_6$ and αSyn_6	pag S8
Figure S10. Absorption spectra of oxidized 3OHKyn, $3OHKyn-\alpha Syn_{15}$ and αSyn_{15}	pag S8
Figure S11. Proton NMR spectra of $A\beta_{16}$ and $3OHKyn-A\beta_{16}$	pag S9
Figure S12. Proton NMR spectra of α Syn ₆ and 3OHKyn- α Syn ₆	pag S9
Figure S13. Proton NMR spectra of α Syn ₁₅ and 3OHKyn- α Syn ₁₅ pa	ag S10

Table S1. Residues of α Syn, A β_{16} , and A β_{28} , identified by LC-MS/MS in the conjugates 3OHKyn-Cu-A β_{16} , 3OHKyn-Fe-A β_{16} , 3OHKyn-Cu-A β_{28} , 3OHKyn-Fe-A β_{28} , 3OHKyn-Cu- α Syn, and 3OHKyn-Fe- α Syn, as adducts with 3OHKyn (+207), Xan (+406), HXan (+408), and OHXan (+422) corresponding to the nucleophilic attack of Lys/His side chains to the unsaturated ketone obtained upon deamination of the amino acid side chain of the kynurenine derivative, with Xan (+423), and DHQCA (+235) corresponding to the nucleophilic attack of His/Lys side chains to the quinones, and as oxidized by oxygen addition (+16).


Conjugates	3OHKyn	Xan-	HXan-aa	OHXan-	Xan-	DHQCA-	oxidation
	-aa	aa(A)		aa	aa(B)	aa	
	(+207)	(+406)	(+408)	(+422)	(+423)	(+235)	(+16)
3OHKyn-Cu-Aβ ₁₆		H13	H6 H13	H13	H14		H13 Y10
			H14				
3OHKyn-Fe-Aβ ₁₆		H13	H6 H13	H13	H14		H13 Y10
			H14				
3OHKyn-Cu-Aβ ₂₈		H13	H6 H13	H13 H14	H14		H13 Y10
			H14				
3OHKyn-Fe-Aβ ₂₈		H13	H6 H13	H13 H14	H14		H13 Y10
			H14				
3OHKyn-Cu-αSyn	K21 K23	K21 K23		K23		K23	M116
		K45					M127
3OHKyn-Fe-αSyn	K21 K23	K21 K23		K23		K23	M116
		K45					M127

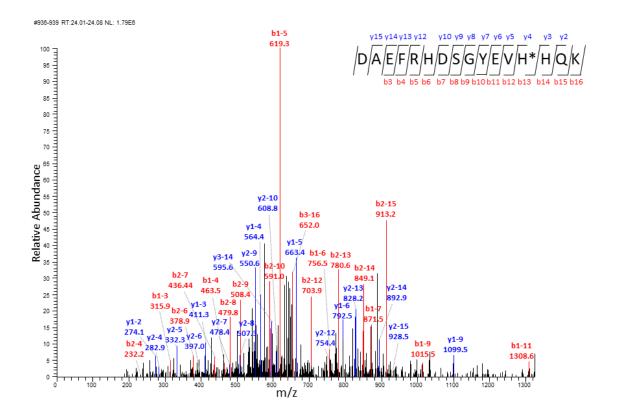

Figure S1. MS/MS spectrum of the m/z 659.7 peak assigned to the 3-16 peptide of $A\beta_{16}$ in a triple-charged state containing the adduct with 3OHKyn at His13 (peptide mass of 1975.8 amu, corresponding to a mass increase of 207 amu with respect to the unmodified peptide). The assignment of the y (in blue) and b (in red) ion series, in mono-, double-, or triple-charged states, is shown. Above the spectrum, the sequence of the peptide is shown with an asterisk on the modified residue and with the summary of the y and b ions found in the spectrum.

Figure S2. MS/MS spectrum of the m/z 610.0 peak assigned to the 8-17 peptide of $A\beta_{28}$ in a triple-charged state containing the adducts with OHXan at His13 and 3OHKyn at His14 (peptide mass of 1826.3 amu, corresponding to a mass increase of (422+207) amu with respect to the unmodified peptide). The assignment of the y (in blue) and b (in red) ion series, in double- or triple-charged states, is shown. Above the spectrum, the sequence of the peptide is shown with an asterisk on each modified residue and with the summary of the y and b ions found in the spectrum.

Figure S3. MS/MS spectrum of the m/z 734.0 peak assigned to the 6-21 peptide of α Syn in a triple-charged state containing the adducts with 3OHKyn at Lys6 and Xan at Lys10 (peptide mass of 2198.8 amu, corresponding to a mass increase of (207+406) amu with respect to the unmodified peptide). The assignment of the y (in blue) and b (in red) ion series, in mono- or double-charged states, is shown. Above the spectrum, the sequence of the peptide is shown with an asterisk on each modified residue and with the summary of the y and b ions found in the spectrum.

Figure S4. MS/MS spectrum of the m/z 657.3 peak assigned to the $A\beta_{16}$ peptide in a triplecharged state containing oxidized His13 (peptide mass of 1970.0 amu, corresponding to a mass increase of 16 amu with respect to the unmodified peptide). The assignment of the y (in blue) and b (in red) ion series, in mono-, double-, or triple-charged states, is shown. Above the spectrum, the sequence of the peptide is shown with an asterisk on the modified residue and with the summary of the y and b ions found in the spectrum.

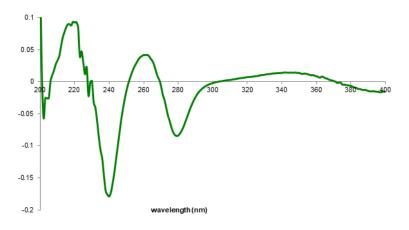


Figure S5. Derivative absorption spectrum of 3OHKyn.

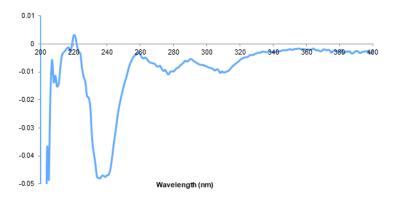
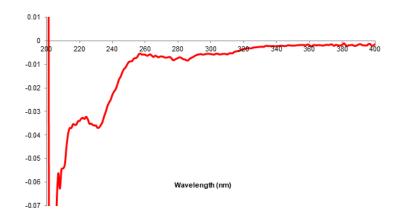



Figure S6. Derivative absorption spectrum of oxidized 3OHKyn.

Figure S7. Derivative absorption spectrum of 3OHKyn-αSyn.

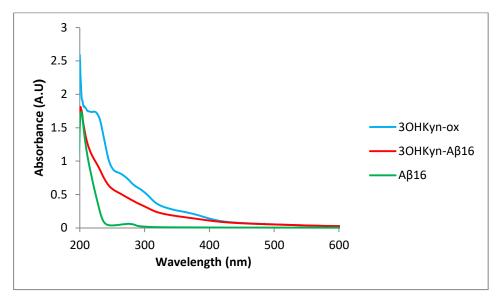


Figure S8. Absorption spectra of oxidized 3OHKyn, 3OHKyn-A β_{16} and A β_{16} .

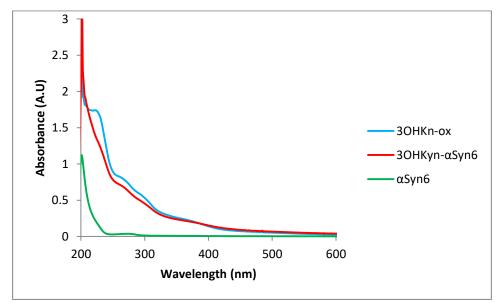


Figure S9. Absorption spectra of oxidized 3OHKyn, 3OHKyn-aSyn₆ and aSyn₆.

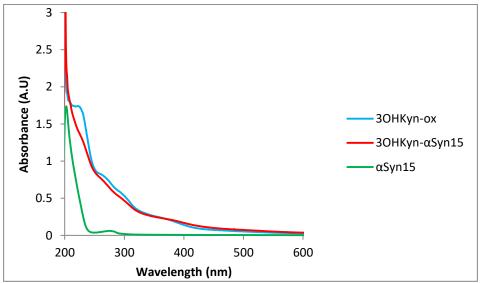


Figure S10. Absorption spectra of oxidized 3OHKyn, $3OHKyn-\alpha Syn_{15}$ and αSyn_{15} .

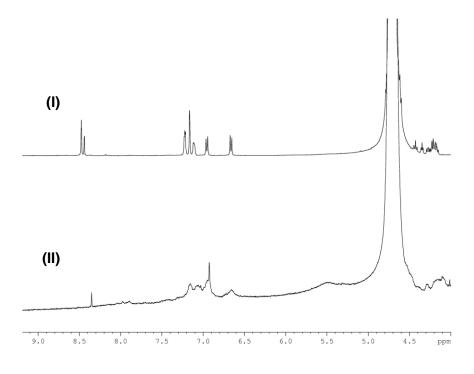


Figure S11. Proton NMR spectra of (I) $A\beta_{16}$ and (II) $3OHKyn-A\beta_{16}$.

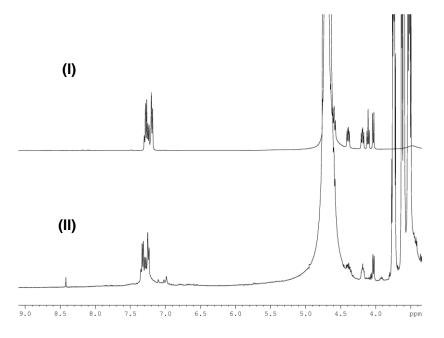


Figure S12. Proton NMR spectra of (I) α Syn₆ and (II) 3OHKyn- α Syn₆.

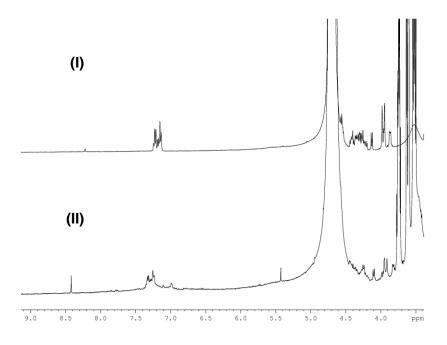


Figure S13. Proton NMR spectra of (I) α Syn₁₅ and (II) 3OHKyn- α Syn₁₅.