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Brownian Dynamics Algorithm 

The position of each particle x is known at time t. In the case of concentration dependent 

sedimentation and diffusion coefficient, the displacement due to sedimentation, ΔxSed, and 

diffusion, ΔxBrow, are given by: 

 𝑥(𝑡 + ∆t) = 𝑥(𝑡) + ∆x𝑆𝑒𝑑 + ∆x𝐵𝑟𝑜𝑤  (1) 

 ∆x𝑆𝑒𝑑 = 𝑥(𝑡)[𝑒𝑥𝑝(𝑠(𝑐)𝜔2∆𝑡) − 1] (2) 

 < ∆𝑥𝐵𝑟𝑜𝑤
2 >= 2𝐷(𝑐)∆𝑡 (3) 

The concentration dependence is implemented by correcting the sedimentation and diffusion 

coefficient to the local concentration cj. This concentration is calculated based on the number 

of particles in each small compartment in the discretized cell, the so-called bins. 

For the calculation of the local (bin) concentration, the volume of each individual subsection 

of the cell is considered (as indicated in the subsequent figure). Furthermore, the volume 

increase towards the bottom of the centrifugal cell (Vbin#1 < Vbin#2) is taken into account 

within our algorithm. With this, we ensure that radial diluation effects are properly described.  

 

Figure S1: Schematic 2D representation of a sector-shaped AUC cell with meniscus positions rm and bottom 

position rb. The cell is subdivided in several bins with width Δr in order to calculate local concentrations and to 

produce output data. This representation is taken from literature and adapted for the purpose of the illustration.1 
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Simulation of ideal sedimentation behavior 

For a thorough illustration, we performed SV AUC simulations via our BD algorithm for the 

lysozyme model system and the same experimental values as in the main manuscript 

considering ideal sedimentation behavior only. Obtained profiles for ideal sedimentation 

profiles are given in the subsequent figure. 

 

Figure S2: Left: Simulations from the BD algorithm (data points) and fit from numerical solutions of Lamm’s Equation 

(straight lines) for ideal sedimentation behavior of the Lysozyme model system. The residual pattern shows no differences. 
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Taylor Series Approximation up to third order 

As the movement of nanoparticles in a centrifugal field ought to be described, the 

displacement of a particle in a single time step is extended by a deterministic sedimentation 

displacement and thus considerably larger. Therefore, higher order terms will be considered 

for the local diffusion coefficient and the resulting displacement of the particles. This will 

enable to model larger displacements. The resulting expression is given as: 

 
∆𝑥𝐵𝑟𝑜𝑤 = ±√2𝐷[𝑥(𝑡)]∆𝑡 + 𝛼

𝑑𝐷(𝑐𝑗)

𝑑𝑥
∆𝑡 ±

𝛼2

√2
√𝐷

𝑑2𝐷(𝑐𝑗)

𝑑𝑥2
∆𝑡1.5 +

𝛼3

3
𝐷

𝑑3𝐷(𝑐𝑗)

𝑑𝑥3
∆𝑡2 (4) 

 

First Derivative 

 𝜕𝐷

𝜕𝑥
=

𝜕𝐷

𝜕𝑐
∙
𝜕𝑐

𝜕𝑥
 (5) 

 

Second Derivative 

 𝜕2𝐷

𝜕𝑥2
=

𝜕

𝜕𝑥
[
𝜕𝐷

𝜕𝑐
∙
𝜕𝑐

𝜕𝑥
] 

(6) 

 

 𝜕2𝐷

𝜕𝑥2
= [

𝜕

𝜕𝑥
(
𝜕𝐷

𝜕𝑐
)] ∙

𝜕𝑐

𝜕𝑥
+

𝜕𝐷

𝜕𝑐
∙ [

𝜕

𝜕𝑥
(
𝜕𝑐

𝜕𝑥
)] 

(7) 

 

 𝜕2𝐷

𝜕𝑥2
=

𝜕2𝐷

𝜕𝑐2
∙
𝜕𝑐

𝜕𝑥
∙
𝜕𝑐

𝜕𝑥
+

𝜕𝐷

𝜕𝑐
∙
𝜕2𝑐

𝜕𝑥2
 

(8) 
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 𝜕2𝐷

𝜕𝑥2
=

𝜕2𝐷

𝜕𝑐2
∙ (

𝜕𝑐

𝜕𝑥
)
2

+
𝜕𝐷

𝜕𝑐
∙
𝜕2𝑐

𝜕𝑥2
 

(9) 

 

Third Derivative 

 𝜕2𝐷

𝜕𝑥2
= 𝐼 + 𝐼𝐼 

(10) 

 

 𝜕3𝐷

𝜕𝑥3
=

𝜕

𝜕𝑥
𝐼 +

𝜕

𝜕𝑥
𝐼𝐼 

(11) 

 

 𝜕

𝜕𝑥
𝐼 =

𝜕

𝜕𝑥
[
𝜕2𝐷

𝜕𝑐2
∙ (

𝜕𝑐

𝜕𝑥
)
2

] 
(12) 

 

 𝜕

𝜕𝑥
𝐼 =

𝜕

𝜕𝑥
[
𝜕2𝐷

𝜕𝑐2
∙ (

𝜕𝑐

𝜕𝑥
)
2

] 
(13) 

 

 𝜕

𝜕𝑥
𝐼 =

𝜕3𝐷

𝜕𝑐3
∙ (

𝜕𝑐

𝜕𝑥
)
3

+ 2
𝜕2𝐷

𝜕𝑐2
∙
𝜕𝑐

𝜕𝑥
∙
𝜕2𝑐

𝜕𝑥2
 

(14) 

 

 

 𝜕

𝜕𝑥
𝐼𝐼 =

𝜕

𝜕𝑥
[
𝜕𝐷

𝜕𝑐
∙
𝜕2𝑐

𝜕𝑥2
] 

(15) 

 

 𝜕

𝜕𝑥
𝐼𝐼 =

𝜕2𝐷

𝜕𝑐2
∙
𝜕𝑐

𝜕𝑥
∙
𝜕2𝑐

𝜕𝑥2
+

𝜕𝐷

𝜕𝑐
∙
𝜕3𝑐

𝜕𝑥3
 

(16) 
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 𝜕3𝐷

𝜕𝑥3
=

𝜕3𝐷

𝜕𝑐3
∙ (

𝜕𝑐

𝜕𝑥
)
3

+ 2
𝜕2𝐷

𝜕𝑐2
∙
𝜕𝑐

𝜕𝑥
∙
𝜕2𝑐

𝜕𝑥2
+

𝜕2𝐷

𝜕𝑐2
∙
𝜕𝑐

𝜕𝑥
∙
𝜕2𝑐

𝜕𝑥2
+

𝜕𝐷

𝜕𝑐
∙
𝜕3𝑐

𝜕𝑥3
 

(17) 

 

 

Derivation of Diffusion coefficient over concentration 

 𝑑𝐷(𝑐𝑗)

𝑑𝑐𝑗
= 𝐷0

𝛽 − 𝑘𝑠

(1 + 𝑘𝑠𝑐𝑗  )
2) 

(18) 

 𝑑2𝐷(𝑐𝑗)

𝑑𝑐𝑗2
= 𝐷0

2(𝛽 − 𝑘𝑠)𝑘𝑠

(1 + 𝑘𝑠𝑐𝑗  )
3) 

(19) 

 𝑑3𝐷(𝑐𝑗)

𝑑𝑐𝑗3
= 𝐷0

6(𝛽 − 𝑘𝑠)𝑘𝑠
2

(1 + 𝑘𝑠𝑐𝑗  )
4  

(20) 
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Iterative test of Equation 12 in main manuscript 

 

Figure S3: Diffusion coefficient as input to Equation 12 in the main manuscript. The diffusion coefficient is calculated from 

numerous iterations as depicted in Figure 1 of the main manuscript. 
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Underlying theory of the evaluation tool SEDANAL 

At the meniscus and cell base, the sedimentation and diffusion fluxes are equal to zero. 

Therefore no solute can cross the meniscus or base of the cell, hence defining the boundary 

conditions of the numerical solution. In the case of ideal sedimentation and no interactions, 

such as chemical reactions, between concurrently sedimenting species, there is a separate 

Partial Differential Equation (PDE) for each species. Thus, the finite-element method (FEM) 

formulation to Lamm’s Equation for the ideal case is given by Todd and Haschemeyer2: 

  𝐺𝑐+ = 𝑍 𝑎𝑛𝑑 𝑍 = 𝐻𝑐− 

𝑤𝑖𝑡ℎ 𝐺 = (𝐵 + ∆𝑡(𝐷0𝐴
1 − 𝑠0𝜔

2𝐴2)) 

(21) 

A1 and A2 are tridiagonal matrices which are only dependent upon the grid chosen for the 

FEM. The components of the vector c are concentrations at each grid point (+ and – refer the 

start and end of each time step). Non-ideality is introduced as hydrodynamic and 

thermodynamic, with the coefficients BM and ks. The diffusion and sedimentation 

coefficients are functions of concentration, so at each radial grid point: 

 𝑠 = 𝑠0(1 − 𝜃)𝑎𝑛𝑑 𝐷 = 𝐷0(1 − 𝜀) 

𝑤𝑖𝑡ℎ 𝜀 =
𝑄 − 𝑃

1 + 𝑄
𝑎𝑛𝑑 𝜃 = 𝑄/(1 + 𝑄) 

𝑤𝑖𝑡ℎ 𝑃 = (2𝐵𝑀 ∙ 𝑐)𝑎𝑛𝑑 𝑄 = 𝑘𝑠 ∙ 𝑐 

(22) 

Once ε and Θ are known for each radial grid point, the vectors CU, CV, CW and CA are 

computed as: 

 𝑐𝑖
𝑈 = 𝑐𝑖+1 + 1𝜃𝑖 

𝑎𝑛𝑑 𝑐𝑖
𝑉 = 𝑐𝑖𝜃𝑖 

(23) 
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𝑎𝑛𝑑 𝑐𝑖
𝑊 = 𝑐𝑖𝜃𝑖+1 

𝑎𝑛𝑑 𝑐𝑖
A = 𝑐𝑖𝜀𝑖 

The correction for non-ideality, y, is given by: 

 𝑦 = ∆𝑡(𝐷0(𝑈𝐶𝑈 + 𝑉𝐶𝑉 + 𝑊𝐶𝑊)

− 𝑠0𝜔
2𝐴2𝐶𝐴 

(24) 

U, V, and W are tridiagonal matrices dependent only on the grid. The correction for non-

ideality is added to Z, so: 

  𝑍 = 𝐵𝑐− + 𝑦 (25) 

In case of chemical reactions, SEDANAL perform alternating steps in the of 

sedimentation/diffusion and chemical kinetics/equilibria. The algorithm analyses SE data by 

fitting sedimentation data to an equation of the form: 

 

𝑦 − 𝑦0 = ∑𝐴𝑖exp (𝑘𝑀𝑖𝜉 + 2∑ 𝐵𝑗𝑐𝑗
𝑛𝑠

𝑗=1

𝑛𝑠

𝑖=1

 

𝑤𝑖𝑡ℎ 𝐴𝑖 = 𝑐𝑖(𝑟𝑚)𝛾𝑖 𝑎𝑛𝑑 𝜉 =
𝑟2

2
−

𝑟𝑚
2

2
 

(26) 

(27) 

Here, y is the signal and y0 an offset. The term 𝟐∑ 𝑩𝒋𝒄𝒋
𝒏𝒔
𝒋=𝟏  in the exponential contains the 

Non-Ideality of species j. The extinction coefficient of species i is denoted γi. 

 

Brownian Dynamics Simulations - Ideal Sedimentation behavior 
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Figure S4: Time for equilibrium. The rmsd is calculated based on the difference of each scan and the first scan 

 

Figure S5 (a) Simulated SE profiles from BD simulation (straight lines) and the theoretically 

calculated ideal SE profiles (dashed lines) (b) Residuals of the profiles in (a) between the 

simulated and the theoretically calculated profiles. 
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Table S1: Parameters for ideal SE BD simulations. Values of further BD simulations with 

more species present are shown alongside the retrieved molar masses from SEDANAL. 

 Rotor velocity/  Min,BD Mout,SA Deviation 

# rpm kDa kDa % 

1 12000 

100 

100.44 0.44 

2 13000 100.833 0.83 

3 14000 100.44 0.44 

4 15000 100.71 0.71 

5 16000 100.84 0.84 

6 7600 - 22000 50/100 51.87/103.67 3.37/3.57 

7 6200 - 20000 100/150 102.70/167.54 2.70/11.69 

8 6200 - 22000 50/150 50.73/154.71 1.45/3.14 
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Derivation of non-ideal sedimentation equilibrium 

 
𝐽𝐷⃗⃗  ⃗ = (−(1 − 𝛼)𝑐

𝑑𝐷

𝑑𝑟
− 𝐷

𝑑𝑐

𝑑𝑟
)𝑒𝑟⃗⃗  ⃗ (28) 

 

 𝐽𝑆⃗⃗⃗  = 𝑐𝑠𝑤2𝑟 ⋅ 𝑒𝑟⃗⃗  ⃗ (29) 

     

 𝐷 = 𝐷0(
1+𝛽𝑐

1+𝑘𝑠𝑐
) mit 𝛽 = 2𝐵𝑀 − �̅� (30) 

 

 𝑑𝐷

𝑑𝑟
=

𝑑𝐷

𝑑𝑐

𝑑𝑐

𝑑𝑟
= 𝐷0𝑐 (

𝛽(1 + 𝑘𝑠𝑐) − (1 + 𝛽𝑐)𝑘𝑠

(1 + 𝑘𝑠𝑐)2
)

𝑑𝑐

𝑑𝑟
 (31) 

 

 𝐽𝐷⃗⃗  ⃗ + 𝐽𝑠⃗⃗ = 0 (32) 

 

 
(1 − 𝛼)𝐷0𝑐 (

𝛽(1 + 𝑘𝑠𝑐) − (1 + 𝛽𝑐)𝑘𝑠

(1 + 𝑘𝑠𝑐)2
)

𝑑𝑐

𝑑𝑟
+ 𝐷0 (

1 + 𝛽𝑐

1 + 𝑘𝑠𝑐
)
𝑑𝑐

𝑑𝑟
=

=
𝑠0𝑐

1 + 𝑘𝑠𝑐
𝜔2𝑟 

(33) 

 

 
(1 − 𝛼)𝐷0 (

𝛽(1 + 𝑘𝑠𝑐) − (1 + 𝛽𝑐)𝑘𝑠

1 + 𝑘𝑠𝑐
)

𝑑𝑐

𝑑𝑟
+ 𝐷0 (

1 + 𝛽𝑐

𝑐
)
𝑑𝑐

𝑑𝑟
= 𝑠0𝜔

2𝑟 (34) 

 

 
[(1 − 𝛼) (𝛽 −

𝑘𝑠 + 𝛽𝑘𝑠𝑐

1 + 𝑘𝑠𝑐
) +

1

𝑐
+ 𝛽]𝑑𝑐 =

𝑠0

𝐷0
𝜔2𝑟𝑑𝑟 (35) 
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 𝑘𝑠 + 𝛽𝑘𝑠𝑐

1 + 𝑘𝑠𝑐
=

𝑘𝑠

1 + 𝑘𝑠𝑐
+

𝛽𝑘𝑠𝑐 + 𝛽 − 𝛽

1 + 𝑘𝑠𝑐
=

𝑘𝑠

1 + 𝑘𝑠𝑐
+

𝛽(1 + 𝑘𝑠𝑐)

1 + 𝑘𝑠𝑐
−

𝛽

1 + 𝑘𝑠𝑐

=
𝑘𝑠 − 𝛽

1 + 𝑘𝑠𝑐
+ 𝛽 

(36) 

 

 
∫

𝑘𝑠 − 𝛽

1 + 𝑘𝑠𝑐
𝑑𝑐 =

(𝑘𝑠 − 𝛽)

𝑘𝑠
∙ ln(1 + 𝑘𝑠𝑐) + 𝐶 (37) 

 

 
[(1 − 𝛼) (−

𝑘𝑠 − 𝛽

1 + 𝑘𝑠𝑐
) +

1

𝑐
+ 𝛽]𝑑𝑐 =

𝑠0

𝐷0
𝜔2𝑟𝑑𝑟 (38) 

 

 
∫ … = ∫ …

𝑟

𝑟0

𝑐

𝑐0

 (39) 

 

 
−(1 − 𝛼)

𝑘𝑠 − 𝛽

𝑘𝑠
𝑙𝑛 (

1 + 𝑘𝑠𝑐(𝑟)

1 + 𝑘𝑠𝑐(𝑟0)
) + 𝑙𝑛 (

𝑐(𝑟)

𝑐(𝑟0)
) + 𝛽(𝑐(𝑟) − 𝑐(𝑟0))

=
1

2

𝑠0

𝐷0
𝜔2(𝑟2 − 𝑟0

2) 

(40) 
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Accordance of NI SE BD simulations and the analytical solution of equation 7 of the 

main manuscript 

 

Figure S6(a) Simulated SE profiles by the BD algorithm for different values of α for a model system with a 

molar mass of 100 kDa and the non-ideality parameters ks = 250 mL g-1 and BM = 75 mL g-1 (straight lines) and 

numerically calculated profiles (dashed lines) The rotor speed was set to 12000 rpm. (b) Residuals of the profiles 

in (a). 
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Inclusion and exclusion of hydrodynamic non-ideality throughout BD simulations  

 

Figure S7:(left) Simulated SE profiles with no hydrodynamic non-ideality (dashed line, ks  = 0 mL g-1) and 

including hydrodynamic non-ideality (straight line, ks  = 100 mL g-1) for a theoretical model system with a 

molar mass M = 100 kDa at a rotor speed of 12000 rpm. (right) Residuals of the profiles in (a). 
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Results from BD simulation describing the space-dependent diffusion coefficient with a 

Taylor Series Approximation up to third order 

 

Figure S8(Left): Retrieved values from data analysis of SE BD forward simulations in SEDANAL along the 

input values to the BD simulations. (Right):Retrieved values from data analysis of SV BD forward simulations in 

SEDANAL (open circles) along the input values to the BD simulations (square symbols). The results from the 

slope-analysis are presents as cross-symbols. 
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Analysis of the slope from BD simulations 

 

Figure S9: (Right) Apparent reciprocal Sedimentation coefficient versus loading concentration. (Left). Apparent 

diffusion coefficient is shown as a function of the loading concentration. Data are shown along with the 

theoretically calculated values for the known parameters. Values were extracted from the ideal single species 

model of SEDFIT. 
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Analysis of the slope from experimental data 

 

Figure S10: Apparent reciprocal sedimentation coefficient as a function of the loading concentration for the 

model system lysozyme. The slope gives ks. 
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Experimental Data for Membrane Osmometry 

 

Figure S11: Results from membrane Osmometry measurements different lysozyme concentrations. Linear fits 

yield the second virial coefficient alongside the molar mass at infinite dilution. 
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Correlation of non-ideality parameters from SV-AUC experiments and DLVO theory 

In the context of the DLVO theory, the interaction potential φ(x) is calculated from 

considering three contributions, namely an electrostatic potential, a Van-der-Waals (VDW) 

potential and an osmotic potential.3 Details of the calculation are presented in the ESI. 

 𝜑(𝑟) = 𝜑𝑜𝑠𝑚(𝑟)+𝜑𝑒𝑙(𝑟) + 𝜑𝑉𝐷𝑊(𝑟) (41) 

The osmotic potential is a function of the minimal distance between two protein molecules, 

which can be approximated by: 

 𝑥23 =
𝑥𝑃 + 𝑥𝑠 + 𝑙0

2
 (42) 

Here xP is the protein diameter, xS the diameter of the salt and lo the minimal distance, which 

is derived based on the data of van Oss lo as 0.1568 nm4. The salt diameter for sodium 

chloride is equal to 0.18 nm. The protein diameter is taken to be the hydrodynamic diameter. 

Consequently, the potentials can be expressed as:5 

 𝜑𝑜𝑠𝑚(𝑟) = −
4

3
𝜋𝑟23

3 𝜌𝑠,𝑁𝑘𝐵𝑇 (1 −
3𝑥

4𝑥23
+

𝑥

16𝑥23
3 ) 

 

(43) 

 𝜑𝑒𝑙(𝑟) =
𝑍2𝑒2exp ((𝑥𝑃 − 𝑥))

4𝜋𝜀0𝜀𝑟𝑥(1 + 𝜅𝑥𝑃/2)2
 

 

(44) 

 𝜑𝑉𝐷𝑊(𝑟) = −
𝐴𝐻

12
[

𝑥𝑃
2

𝑥2 − 𝑥𝑃
2 +

𝑥𝑃
2

𝑥2
+ 2ln (1 −

𝑥𝑃
2

𝑥2
)] 

 

(45) 

The Debye length κ, which is a function of the ionic strength, is calculated from the well-

known debye-Hückel theory.6 The number density of the salt ions is denoted as ρS,N. Z is the 

number of charges on a protein molecule. For the calculations in the framework of this 
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manuscript, the values for Z were adapted from literature, based on the data from Haynes.7 

The Hamaker constant AH for lysozyme was taken from literature as 3.3x10-20 J.8 For the 

purpose of this manuscript, the interaction potentials for lysozyme in a 10 mM NaCl solution 

were calculated at different pH values and corresponding number of charges for a lysozyme 

molecule. The potentials as a function of the separation distance are shown in the main 

manuscript. 
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Simulated profiles for the interplay of hydrodynamic / thermodynamic non-ideality with 

solvent compressibility 

 

Figure S12: All parameters are given in the main manuscript. Profiles from BD simulations for model particles 

in toluene including solvent compressibility and concentration-dependent non-ideality are shown. Left: 

simulated profiles at 20,000 rpm. Right: Simulated profiles at 60,000 rpm. 
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