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Materials and Methods

Modelling electrical cellular response

We collected previously published experimental data and grouped them into five categories:

adherent animal cells, non-adherent animal cells, yeast cells, bacteria, and other (tissues and

bio-membranes). To visualize the entire dataset, we plot it in Figure 1 in the manuscript,

which shows that electrical properties tend to form small clusters and sometimes have a

significant overlap between different cell types. A larger dataset is necessary for further

investigation with more sophisticated models, as they simply overfit the dataset presented in

this work. Note, that a portion of the works did not include conductance of the membranes

and a dielectric constant of the nucleoplasm (shown with the corresponding zero values). We

exclude them from the modelling of the corresponding properties.

Correlation analysis. Although correlation between cytoplasm and culture medium is

frequently reported in the literature, we did not find a strong evidence of consistent linear

relationship between the variables. Moreover, no strong relationship between conductiv-

ity and permittivity (as well as conductance and capacitance) within any cell component

was found. We, therefore, proceed with univariate analysis of each dielectric property of

individual cell components.

Univariate analysis. Each electrical property is modelled as a random variable. Given

clustered structure of the data shown in Figure 1 in the manuscript and knowing that bio-

logical diversity in cellular electrical response is driven by complex unobservable processes

inside the cell, parametric modelling is a natural choice. Moreover, parametric models have

physical interpretations, generalize better with small training datasets, and provide sufficient

power when mixed together. A larger dataset is necessary for further investigation with more

sophisticated models, as they simply overfit the dataset presented in this work. In our analy-

sis, we choose candidate models as the closest to the observations on Cullen and Frey graph1
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constructed using non-parametric bootstrap with 2000 iterations. To mitigate inherent con-

straints on functional forms of the parametric approach, we employ a comprehensive list

of distributions including log-normal, normal, gamma, exponential, Weibull, t-distribution,

inverse Gaussian (Wald), inverse normal, and inverse log-normal. Although more sophisti-

cated statistical models were expected to produce a superior fit of biological diversity, they

tend to overfit the data and result in poor generalization measured by cross-validation.

For each candidate distribution, we fit a mixture model by applying Expectation-Maximization

(EM) algorithm.2 At E-step, we estimate weights of the mixture components by maximiz-

ing the weighted log-likelihood for given model parameters. At M-step, we maximize the

weighted log-likelihood to get new parameter estimates. To choose a proper number of mix-

ture components without overfitting, we use 5-fold cross validation and pick the one with the

largest out-of-sample log-likelihood. As an alternative to cross-validation, we use the gap

statistics3 of complete-linkage hierarchical clustering. Interestingly, both methods always

suggested the same number of mixture components. To ensure global convergence, we run

each optimization 50 times with different weights initialization and take the best performing

models. In each run, we initialize the mixture weights with either K-Means, hierarchical

clustering, or random uniform (continuous and discrete) assignment.

When the data is insufficient for EM algorithm to converge in 1000 iterations, we use

hard cluster assignment of each data point. Similarly to the previous procedure, we use K-

Means, hierarchical clustering and random uniform (discrete) cluster assignment. We, then,

fit a parametric model with Maximum Likelihood Estimation (MLE) for each cluster.

To reject the models we conduct non-parametric Kolmogorov-Smirnov (KS) test, and

calculate the corresponding p-values (confidence level of 0.1) of the simulated bootstrapping

of the KS-statistics as was suggested in literature.4 To choose the best performing model,

we carefully analyze the quantile-quantile (Q-Q) plots and compare Bayesian information

criterion (BIC).
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Finite-Element Method FEM subdivides a large problem into smaller subdomains that

are called finite elements. The systems of equations that model the finite elements are then

combined into the entire model. FEM gives accurate representation of complex geometries,

allows dissimilar material properties, and captures local effects. We employ COMSOL Mul-

tiphysics’s AC/DC module in frequency domain to solve current conservation equation based

on Ohm’s law. Built-in discretization engine takes a randomly generated cell shape, places

it onto a predefined array of microelectrodes, and builds an appropriate mesh (see Figure

S2 (F)). To numerically solve the corresponding partial differential equations (PDEs), we

use flexible generalized minimal residual method (FGMRES), an iterative procedure that

gives an efficient trade-off between computational cost and solution quality. Our approach

is easily scaled up to thousands of concurrent simulations and provides high quality results.

Experimental study

Microelectrode array. We designed a microelectrode array (MEA) of eight golden elec-

trodes with pitch of 11 µm (see Figure S4). MEA was fabricated at Nanoelectronics Research

Facility at UCLA. A layer of 20 nm of Ti and 100 nm of Au was vacuum-evaporated on fused

silica wafer (100 mm in diameter) and the electrodes were patterned with the conventional

lift-off process. On top of the metal, we deposited a passivation layer of 500 nm of silicon

dioxide with plasma-enhanced chemical vapor deposition (PECVD). To pattern the passi-

vation layer, we employed deep reactive ion etching. We made circular openings of 4 µm in

diameter at the center of the MEA and square contact pads of 5 mm at the edges. The wafer

was diced into 25-by-25 mm square dies and each of them was cleaned in ultrasonic bath

of acetone with subsequent deionized water wash, nitrogen blow and thermal dehydration.

On top of the MEAs we designed 500 microliter (µL) wells of polydimethylsiloxane (PDMS)

to allow long-term cell culturing. In addition, MEAs were connected to the intermediate

printed-circuit board (PCB) with conductive silver epoxy adhesive (MG Chemicals). The

intermediate PCB was connected to switching PCB that contained analog multiplexers and
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interfaces for vector network analyzer (VNA, HP 8753ES) and a computer. The computer

was controlling stimulation power of the VNA, switching between the electrodes, and fetching

data via General-Purpose Interface Bus (GPIB, Agilent 82357B).

HeLa cell line. Human cervical carcinoma (HeLa AC-free, Sigma-Aldrich) cells were

grown at 37 °C in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10%

fetal bovine serum (FBS) and 100 units/mL penicillin, and 100 µg/mL streptomycin (PS).

Cells were regularly passaged to maintain exponential growth. Twenty-four hours before

staining and electrical measurements, we trypsinized HeLa cells, diluted them 1 : 5 with fresh

DMEM medium without antibiotics, centrifuged, and suspended into fresh DMEM with 10%

FBS and 1% PS. Then, we transferred 10 µL of the cell suspension (2 ·105 cells/mL concen-

tration) to the MEA device with the attached PDMS well (500 µL). To enable the long-term

incubation we added 390 µL of fresh DMEM medium with 10% FBS and 1% PS and left the

cells in the incubator for 24 hours at 37 °C and 5% CO2. The cells appeared healthy and

attached thereafter. During the incubation, the entire assembly of MEA, PDMS well, and

the intermediate PCB was enclosed in a small vented Petri dish. After the incubation, the

well was gently desiccated and washed with DMEM medium. To stain the cell nuclei, we

added 20 µL of 2 µg/ml Hoechst 33342 (Invitrogen) solution and incubated the cells for 25

minutes at 37 °C. We then gently desiccated the well and washed it with DMEM medium. To

stain the cell membrane, 20 µl of 5 µg/ml of WGA Alexa Fluor®488 conjugate (Invitrogen)

solution were added, and cells were incubated for another 10 minutes at 37 °C. After the last

incubation, the well was gently desiccated, washed, and filled with a fresh DMEM medium

with 10% FBS and 1% PS. We imaged the cells with fluorescent microscopy before and after

the electrical measurements and observed no visible changes in structure, shape, and location

caused by the electrical measurements. A single human cervical carcinoma (HeLa) cell at

the middle of MEA, stained with green membrane and blue nucleus, is depicted in Figure

S4.
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Table S1: Computational complexity associated with levels of detail of cell geometry

Metric Realistic Proposed Naive

Average degrees of freedom (entire model) 1,119,844 237,525 118,062
Mesh size of the cell, elements 113,402 15,880 5,297
Time to solve [min,max], sec. [570, 635] [114, 127] [54, 60]
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1: procedure Main
2: initialize ∆p, kc, λ, c0, z, ε, θ,∆A,∆V,Rcell, an, bn, cn
3: Am ← 4πR2

cell, Vcyto ←
4
3
π(R3

cell − anbncn)

4: ρ0 ← max{x : x2 − cn
tan θ

x− c2n
3
− 4(R3

cell−anbncn)(1+∆V )

3cn
= 0}

5: φ← [−π, π)
6: stochastically initialize protrusions ρ∗ at angles φ∗

7: for all zi do
8: for all φ do

9: ρ(φ)←
{
x :

√
ρ20

sin2 θ
− x2 − ρ0

tan θ
+ Π

(
x

2an

)
·
(
cn

√
1− x2

a2n

)
− zi = 0

}
10: end for
11: for all φ∗ do

12: ρ(φ)← ρ∗
√

ρ20
sin2 θ

−
(
zi + ρ0

tan θ

)2
13: end for
14: ρOPT (zi)← OPT(ρ(φ), φ∗)
15: end for

16: V ←
∑
j ∆zj

∑
i

ρ2ij∆φi

2

17: A← πρ2
0 +

∑
j ∆zj

∑
i ρij∆φi

18: if
|A−Am|
Am

> ∆A then

19: ca ←
(Am+∆A

A

)1/2
20: ρOPT ← ρOPT · ca
21: end if

22: if
|V−Vcyt|
Vcyt

> ∆V then

23: cv ←
(Vcyt+∆V

V

)1/3
24: ρOPT ← ρOPT · cv
25: end if
26: surf ← transform ρOPT into a surface with cubic spline interpolation
27: obj ← convert surf into a solid return obj
28: end procedure
29: procedure OPT(ρ(φ), φ∗)
30: for all φ do
31: H(φ)← 1

ρ(φ)

32: K(φ)← 1
ρ(φ)

33: end for
34: err ←∞
35: while err > ε do
36: for all φj ∈ φ \ φ∗ do

37: ∆ρ←
∣∣∣1− mean(ρ(φj−1...j+1))

ρ(φj)

∣∣∣+ c0N (0, 1)

38: if
∣∣∣∆ρ−ρ(φj)

ρ(φj)

∣∣∣ > γ then

39: ∆ρ← γ
40: end if
41: ρ(φj)← ρ(φj) · (1 + ∆ρ)
42: end for
43: for all φ do
44: H(φ)← 1

ρ(φ)

45: K(φ)← 1
ρ(φ)

46: end for
47: err ←

∣∣∆p− 2λH + kc(2H + c0)(2H2 − c0H − 2K) + 2kc∇2H
∣∣

48: end whilereturn ρ(φ)
49: end procedure

Figure S1: Pseudocode for cell geometry generation
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Figure S2: Examples of the cell geometries: (A) isotropic spreading, (B-C) anisotropic spreading, (D)
assembly of cells, (E) cell structure schematic, (F) finite-element mesh

Figure S3: Electrical Double Layer (EDL): (A) physical structure and (B) its lumped-element
model
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Figure S4: Experimental verification of the model with EIS measurements and FEM simulations of a HeLa
cell on 8-electrode array
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