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The Supporting Information contains models to obtain suitable estimators for the drainage time of 
the film. Two asymptotic cases are analyzed: the film with immobilized surfaces and with fully mobile 
interphases.

Film with immobile interphases
For thin enough films, a low Reynolds flow develops and the quasi-stationary lubrication theory 

describes the drainage of the liquid on the film. Since the film has a spherical shape of radius R, we 
use the coordinate system (θ, ψ, y) in Figure S1. It is a spherical coordinate system located at the 
center of the spherical cup but the radial coordinate is replaced by the distance to the drop surface y. 
Axis z is extended along the axis of symmetry of the drop. For thin films, R is almost constant since 
the equilibrium forces on the drop determine it and the film weight is negligible (Princen 1962).

We assume an axisymmetric film whose geometry is defined by the thickness at each polar angle 
h(θ). Besides, we consider that this thickness is much smaller than the radius h << R. The phase inside 
the film and the one in the drop are called the continuous and dispersed phases, respectively. We 
assume that the interphase between the continuous and the dispersed is plane at infinity and it is 
located at z = 0 (Figure S1).

Fig. S1: Coordinate system

Since the film surfaces are immobile, the fluid in the bottom bulk of liquid is still and the pressure 
is hydrostatic. Using the Young-Laplace equation, the piezometric pressure inside the film p*f is:

(S1)𝑝 ∗ = 𝑝 ― 𝜌𝑔𝑧 = 𝑝0 + 𝜎
2
𝑅 +∆𝜌𝑔𝑧𝐶 +∆𝜌𝑔𝑅cos 𝜃



S2

In the previous equation, p is the pressure inside the film, p0 the pressure on the interphase at 
infinity (z = 0), σ the surface tension, Δρ = ρD – ρC the difference of densities between the dispersed 
and the continuous phases, respectively. zC is the coordinate of the spherical cap center.

Assuming a quasi-unidirectional flow parallel to the film surfaces, the piezometric pressure is 
almost constant in the radial direction and p* = p*(θ). The momentum equation in the θ direction is:

(S2)0 = ―
𝑝 ∗ ,𝜃

𝑅 + 𝜇𝑢𝜃,𝑦𝑦 = ∆𝜌𝑔sin 𝜃 + 𝜇𝑢𝜃,𝑦𝑦

ς,θ denotes the partial derivative of the generic variable ς with respect θ and uθ is the polar velocity 
of the continuous phase in the film. In this section, we assume that the gradients of surface tension are 
strong enough to absorb the tangential viscous stress at the film boundary and the interphase is 
immobile in the polar direction. The velocity profile is obtained by integrating equation (S2) with the 
boundary conditions uθ(y = 0) = uθ(y = h) = 0. The integration of this velocity profile gives the flow 
per unit length in the polar direction qθ:
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The so-called Reynolds equation is the continuity equation integrated along the y direction. The 
corresponding result in the current problem is:

(S4)ℎ,𝑡𝑅2sin 𝜃 + (𝑞𝜃𝑅sin 𝜃),𝜃 = 0⇒ℎ,𝑡sin 𝜃 + 𝛼(sin2𝜃ℎ3),𝜃 = 0 with 𝛼 =
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Equation (S4) requires the initial geometry of the film h 0(θ) = h(t = 0, θ). The analytical solution 
seems to be unaffordable. However, the approximation for small polar angles greatly simplifies this 
equation. Thus, it is reduced to the next expression.

(S5)ℎ,𝑡 + 𝛼(2ℎ3 + 3𝜃ℎ2ℎ,𝜃) = 0

Using the initial condition, the following equation gives the solution h (θ, t) in a parametric form.
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The parameter θ0 is the polar angle of the initial condition. This solution “spreads” the film 
thickness from the central zone (small θ) towards the periphery (large θ) while the propagated 
thickness h0 decreases to a new value, h. Since the initial thickness of the film decreases with the polar 
angle, (S6) implies that the film thickness is a decreasing function of θ at any time. However, the 
uniformity of the film thickness increases as time goes by.

The film thickness during the last stages of drainage is much smaller than the initial size (h << h0), 
leading to the next estimator of the film thickness at the periphery and for t → ∞.

(S7)ℎ ≃ (3
𝜇𝑅

∆𝜌𝑔𝑡)
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  valid for  𝑡 ≫ 3
𝜇𝑅

∆𝜌𝑔ℎ0
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with R being the radius of the spherical film. Princen (1963) calculated the shape of a drop placed 
on the interface by means of numerical methods, obtaining R in function of the radius of the free drop 
r = (3V / 4π) 1 / 3. The whole range of numerical results in Princen (1963) fit well to the proposed 
correlation (S8).

(S8)
𝑅
𝑟 = 0.68823exp [ ― (𝑐𝑟2)0.58893] +1.3575  with  𝑐 =

∆𝜌𝑔
𝜎
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Fig. S2: Radius of the spherical cap R vs. the size of the free drop r. Comparison of the Princen’s data 
and the proposed correlation.

Figure S2 compares Princen’s data with (S8). The ratio R / r varies from a value close to 2 in very 
small drops to about 1.3 for very large sizes.

The non-dimensional sizes of the drops in our study, cr2, lie in the interval (0.10, 1.2), inside the 
region where (S8) is valid.

Film with fully mobile surfaces
Assuming an ideal flow at the dispersed phase (drop and the bulk of liquid below) and no 

Marangoni effects, the tangential stress on the film surfaces is considered to be negligible. Thus, the 
profile of the polar velocity uθ inside the film should be constant, depending just on the polar angle. In 
addition, the film is completely drained in a finite time when ideal flow is considered, in contrast to 
the results of the viscous theory.

In this section, the spherical coordinate (θ, ψ, r) is more convenient. Here, r = R + y, i.e. the radial 
coordinate with origin at the center of the spherical film (Figure S1). The flow equations in this 
spherical coordinate system are:

(S9)Continuity:  
1
𝑟2(𝑟2𝑢𝑟),𝑟 +

1
𝑟sin 𝜃(𝑢𝜃sin 𝜃),𝜃 = 0

(S10)θ momentum eq.:  𝜌(𝑢𝜃,𝑡 + 𝑢𝑟𝑢𝜃,𝑟 +
𝑢𝜃

𝑟 𝑢𝜃,𝜃 ―
𝑢𝜃𝑢𝑟

𝑟 ) = ―
𝑝 ∗ ,𝜃

𝑟

(S11)r momentum eq.:  𝜌(𝑢𝑟,𝑡 + 𝑢𝑟𝑢𝑟,𝑟 +
𝑢𝜃

𝑟 𝑢𝑟,𝜃 ―
𝑢𝜃

2

𝑟 ) = ― 𝑝 ∗ ,𝑟

Estimations of the order of magnitude lead to ignore the smallest terms. The equations are 
simplified as follows:

(S12)θ momentum eq.:  𝜌(𝑢𝜃,𝑡 +
𝑢𝜃

𝑅 𝑢𝜃,𝜃) = ―
𝑝 ∗ ,𝜃

𝑅

(S13)r momentum eq.:  ∆𝑟𝑝 ∗ ~𝜌𝑈𝜃
2ℎ

𝑅 ≪ 𝜌𝑈𝜃
2~∆𝜃𝑝 ∗ ⇒𝑝 ∗ (𝜃,𝑟) ≃ 𝑝 ∗ (𝜃)

Integrating the continuity equation (S9) along the r coordinate along with the kinematic condition 
h,t = ur(r = R + h) – ur(r = R) and assuming R + h ≈ R, we recover eq. (S4) with the polar flow per unit 
length and the polar gradient pressure given by the next equations:

(S14)𝑞𝜃 = ∫𝑅 + ℎ
𝑅 𝑢𝜃𝑑𝑟 ≃ 𝑢𝜃ℎ  and  𝑝 ∗ ,𝜃 = ―∆𝜌𝑔𝑅sin 𝜃

The proper initial conditions are:
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(S15)ℎ(𝜃,𝑡 = 0) = ℎ0(𝜃)  and  𝑢𝜃(𝜃,𝑡 = 0) = 𝑢0(𝜃)

The solution must satisfy equations (S12), (S4) with the expressions of qθ and p*,θ in eq. (S14) as 
well as the initial conditions (S15). Again, the problem is too complex to get a general analytical 
solution.

Next calculations aim at calculating the order of the drainage time. From the integrated continuity 
equation (S4) we obtain:

(S16)𝑇~
ℎ

ℎ,𝑡~
𝑅

𝑈𝜃

T and Uθ are the characteristic drainage time and polar velocity, respectively. The following 
approximation is obtained using the polar momentum equation:

(S17)𝜌𝑈𝜃
2~∆𝜃𝑝 ∗ ~

𝑤𝑎𝑝𝑝

𝜃2𝑅2~∆𝜌𝑔𝑅

with wapp denoting the apparent weight of the drop Δρg4πR3/3. Substituting eq. (S17) in (S16), we 
obtain the final estimator:

(S18)𝑇~( 𝜌
∆𝜌

𝑅
𝑔)
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