1	Supporting Information			
2 3 4	Association of Aryl Organophosphate Flame Retardants Triphenyl Phosphate and 2-Ethylhexyl Diphenyl Phosphate with Human Blood Triglyceride and Total Cholesterol Levels			
5				
6	Fanrong Zhao, Yu Li, Shiyi Zhang, Mengyu Ding, and Jianying Hu*			
7	Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences,			
8	Peking University, Beijing 100871, China			
9				
10	Corresponding author:			
11	*Jianying Hu, College of Urban and Environmental Sciences, Peking University,			
12	Beijing 100871, China, TEL & FAX: 86-10-62765520, e-mail:			
13	hujy@urban.pku.edu.cn			

14

15	Standards and reagents. Diester metabolites, dibutyl phosphate (DNBP), and di(2-
16	ethylhexyl) phosphate (DEHP) were purchased from TCI Corp. (Tokyo, Japan). Bis(2-
17	chloroethyl) phosphate (BCEP), bis(2-butoxyethyl) phosphate (BBOEP) and the
18	internal standards including BCEP-d ₈ , DNBP-d ₁₈ , and DPHP-d ₁₀ were obtained from
19	Toronto Research Chemicals Inc. (Toronto, Ontario, Canada).
20	Solvents including LC-MS grade of <i>n</i> -hexane, acetonitrile, and methanol (MeOH)
21	and pesticide residue grade of ethyl acetate and dichloromethane were obtained from
22	Fisher Chemicals (New Jersey, USA). Formic acid (HPLC grade) was from Dikma
23	Technologies Inc. (California, USA). Sep-Pak® Silica (3 cm ³ , 200 mg), Sep-Pak® C18
24	(3 cm ³ , 200 mg), and Oasis WAX (3 cm ³ , 60 mg) solid phase extraction (SPE)
25	cartridges were purchased from Waters (Milford, MA, USA). β -Glucuronidase/aryl
26	sulfatase enzyme was obtained from Merck (KGaA, Darmstadt, Germany). Ultrapure
27	water was prepared using a Milli-Q Synthesis water purification system (Millipore,
28	Bedford, MA, USA).

S2

Analytaa	LODs	Re	Matrix		
Analytes	(ng/mL)	Low	Medium	High	effect
BCEP	0.25	74±10	81±5	77 ± 4	-12.3%
BCIPP	0.08	83 ± 9	79 ± 3	80 ± 8	-11.2%
BDCIPP	0.1	81 ± 5	76 ± 9	85 ± 6	-10.8%
DNBP	0.22	89± 8	91 ± 6	94 ± 7	4.3%
BBOEP	0.04	84 ± 9	90 ± 7	91 ± 5	-5.5%
DEHP	0.01	85±11	87 ± 9	90 ± 3	-3.8%

Table S1. Limits of detection (LODs), recoveries, and matrix effects of OPFR metabolites in urine samples.

OPFR metabolites		BCEP	5-OH-EHDPP	3-OH-MDTP	4-OH-TPHP	DPHP	DNBP
BCEP	r	1					
	<i>p</i> -value	-					
5-OH-EHDPP	r	0.128	1				
	<i>p</i> -value	0.040*	-				
3-OH-MDTP	r	-0.014	0.180	1			
	<i>p</i> -value	0.424	0.011 *	-			
4-OH-TPHP	r	0.185	0.148	0.021	1		
	<i>p</i> -value	0.003**	0.067	0.788	-		
DPHP	r	0.300	0.220	-0.118	0.451	1	
	<i>p</i> -value	<0.001**	0.003**	0.098	<0.001**	-	
DNBP	r	0.347	0.074	0.015	0.240	0.346	1
	<i>p</i> -value	<0.001**	0.236	0.233	<0.001**	<0.001**	-

 Table S2. Pearson correlation coefficients (r) of log-transformed urinary OPFR metabolites concentrations.

Statistically significant (*p < 0.05 , **p < 0.01).

	TC ^a	TG ^a
5-OH-EHDPP	4.8% (3.6% - 6.0%)	9.4% (6.9% - 11.9%)
4-OH-TPHP	1.5% (0.7% - 2.3%)	4.3% (3.1% - 5.5%)
DPHP	0.05% (-0.32% - 0.42%)	0.5% (0.1% - 1.0%)

Table S3. Percentage changes (95% CI) for total cholesterol (TC) and triglyceride (TG) levels per 0.1 ng/mL increase in urinary concentrations of OPFR metabolites.

^aAll models are adjusted for BMI, gender, age, household income, alcohol intake, and tobacco use.

Figure S1. Structures of 11 OPFRs along with their full chemical names and abbreviations.

Figure S2. Changes in TC and TG with increasing creatinine-uncorrected quartiles of OPFR metabolites. Quartile 1 (Q1) is the lowest, and Q4 is the highest. All models are adjusted for BMI, gender, age, household income, alcohol intake, and tobacco use. The p trends for TC and TG levels across the quartiles of OPFR metabolites are presented.

Reference

1. Zhao, F. R.; Kang, Q. Y.; Zhang, X. H.; Liu, J. Y.; Hu, J. Y., Urinary biomarkers for assessment of human exposure to monomeric aryl phosphate flame retardants. *Environ. Int.* **2019**, *124*, 259-264.