Supporting Information

Improved Synthesis of the Nav1.7 Inhibitor GDC-0276 via a Highly Regioselective S_NAr Reaction

Andreas Stumpf,^{*,†} Zhigang Ken Cheng,[†] Danial Beaudry,[†] Remy Angelaud[†] and Francis Gosselin[†]

[†]Department of Small Molecule Process Chemistry, Genentech, Inc.,1 DNA Way, South San Francisco, CA 94080, USA

Table of Contents

Scheme S1. <i>GDC-0276 Synthetic Scheme 1st Generation</i> Sector	-5
Scheme S2. <i>GDC-0276 Synthetic Scheme 2nd Generation</i> Sector	-5
Figure S-1.1. ¹ H NMR (600 MHz, CDCl ₃) spectrum of <i>t-butyl 4-((-adamantan-1-yl)methoxy)-chloro-2-fluorobenzoate</i> 5 .	.5- -6
Figure S-1.2. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of <i>t</i> -butyl <i>4-((-adamantan-1-yl)methoxy 5-chloro-2-fluorobenzoate</i> 5 .	v)- -7
Figure S-1.3. ¹ H NMR (500 MHz, CDCl ₃) spectrum of <i>4-((-adamantan-1-yl)methoxy)-cyclopropyl-2-fluorobenzoic acid</i> 2 .	.5- -8
Figure S-1.4. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of <i>4-((-adamantan-1-yl)methoxy)-cyclopropyl-2-fluorobenzoic acid</i> 2 .	.5- -9
Figure S-1.5. HSQC spectrum of <i>4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzo acid</i> 2 . S-1)ic 10
Figure S-1.6. HMBC spectrum of <i>4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzo acid</i> 2 . S-1)ic 11
Figure S-1.7. COSY spectrum of <i>4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzo acid</i> 2 . S-1)ic 12
Figure S-1.8. ¹ H NMR (500 MHz, CDCl ₃) spectrum of <i>t-butyl (azetidin-1-ylsulfonyl)carbama</i> 12. S-1	ıte 13

Figure S-1.9. ¹³C NMR (125 MHz, CDCl₃) spectrum of *t-butyl (azetidin-1-ylsulfonyl)carbamate*12.S-14

Figure S-1.10. HSQC spectrum of t-butyl (azetidin-1-ylsulfonyl)carbamate 12.S-15

Figure S-1.11. HMBC spectrum of t-butyl (azetidin-1-ylsulfonyl)carbamate 12.S-16

Figure S-1.12. COSY spectrum of t-butyl (azetidin-1-ylsulfonyl)carbamate 12.S-17

Figure S-1.13. ¹H NMR (500 MHz, CDCl₃) spectrum of *azetidine-1-sulfonamide* **3**. S-18

Figure S-1.14. ¹³C NMR (125 MHz, CDCl₃) spectrum of *azetidine-1-sulfonamide* **3**. S-19

Figure S-1.15. ¹H NMR (500 MHz, CDCl₃) spectrum of 3-((N-(4-(-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13S-20

Figure S-1.16. ¹³C NMR (125 MHz, CDCl₃) spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-
5-cyclopropyl-2-fluorobenzoate)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-
(-(-adamantan-1-yl)methoxy)-5-
S-21

Figure S-1.17. HSQC spectrum of3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propylfluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.S-22

Figure S-1.18. HMBC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.fluorobenzoate 13.S-23

Figure S-1.19. H-N HSQC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.S-24

Figure S-1.20. H-N HMBC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.S-25

Figure S-1.21. DFQ-COSY spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propylfluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.S-26

Figure S-1.22. ¹H NMR (500 MHz, CDCl₃) spectrum of *3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl <i>4-(((3r,5r,7r)-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate* **14**

Figure S-1.23. 13C NMR (125 MHz, CDCl3) spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-
5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-
2-fluorobenzoyl)sulfamoyl)amino)propyl) 4-((-adamantan-1-yl)methoxy)-5-
cyclopropyl-2-fluorobenzoate 14.S-28

Figure S-1.24. HSQC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 14.S-29

Figure S-1.25. HMBC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 14.S-30

Figure S-1.26. DFQ-COSY spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoatefuorobenzoyl)sulfamoyl)amino)propyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoatefuorobenzoyl)sulfamoyl)amino)propyl5-cyclopropyl-2-fluorobenzoatefuorobenzoyl)sulfamoyl)amino)propyl5-cyclopropyl-2-fluorobenzoatefuorobenzoate14.S-31

Figure S-1.27. HRMS spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 14.S-32

Figure S-1.28. ¹H NMR (500 MHz, CDCl₃) spectrum of (adamantan-1-yl)methyl 4-((-
adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate 6.S-33Figure S-1.29. ¹³C NMR (150 MHz, CDCl₃) spectrum of (adamantan-1-yl)methyl 4-((-
adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate 6.S-34

Figure S-1.30. HSQC spectrum of (adamantan-1-yl)methyl 4-((-adamantan-1-yl)methoxy)-5chloro-2-fluorobenzoate 6. S-35

Figure S-1.31. HMBC spectrum of (adamantan-1-yl)methyl 4-((-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate 6.S-36

Figure S-1.32. DQF-COSY spectrum of (*adamantan-1-yl*)*methyl* 4-((-*adamantan-1-yl*)*methoxy*)-5-chloro-2-fluorobenzoate **6**. **S-37**

Figure S-1.33. LCMS data for 6.

FigureS-2.1.¹HNMR(500MHz,CDCl₃)spectrumof*1-((2-chloro-5-fluorophenoxy)methyl)adamantane*fluorophenoxy)methyl)adamantane20.S-39

FigureS-2.2.13CNMR(125MHz,CDCl3)spectrumof1-((2-chloro-5-fluorophenoxy)methyl)adamantanefluorophenoxy)methyl)adamantane20.S-40

Figure S-2.3. HSQC spectrum of *1-((2-chloro-5-fluorophenoxy)methyl)adamantane* 20. S-41

Figure S-2.4. HMBC spectrum of *1-((2-chloro-5-fluorophenoxy)methyl)adamantane* 20. S-42

Figure S-2.5. COSY spectrum of 1-((2-chloro-5-fluorophenoxy)methyl)adamantane 20. S-43

Figure S-2.6.¹HNMR(500MHz,CDCl₃)spectrum of*l-((4-bromo-2-chloro-5-fluorophenoxy)methyl)adamantanefluorophenoxy)methyl)adamantane*18.S-44

S-3

S-38

Figure S-2.7. ¹³C NMR (125 MHz, CDCl₃) spectrum of *1-((4-bromo-2-chloro-5-fluorophenoxy)methyl)adamantane* **18**. **S-45**

Figure S-2.8. HSQC spectrum of 1-((4-bromo-2-chloro-5-fluorophenoxy)methyl)adamantane 18.S-46

Figure S-2.9. HMBC spectrum of *1-((4-bromo-2-chloro-5-fluorophenoxy)methyl) adamantane* **18**.

Figure S-2.10. COSY spectrum of *1-((4-bromo-2-chloro-5-fluorophenoxy)methyl)* adamantane **18**.

Figure S-2.11. ¹H NMR (500 MHz, CDCl₃) spectrum of *methyl 4-((-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate* **23**. **S-49**

Figure S-2.12. ¹³C NMR (125 MHz, CDCl₃) spectrum of *methyl 4-((-adamantan-1-yl)methoxy)-*5-chloro-2-fluorobenzoate **23**. **S-50**

Figure S-2.13. HSQC spectrum of *methyl* 4-((-adamantan-1-yl)methoxy)-5-chloro-2*fluorobenzoate* 23. S-51

Figure S-2.14. HMBC spectrum of *methyl* 4-((-adamantan-1-yl)methoxy)-5-chloro-2fluorobenzoate 23. S-52

Figure S-2.15. COSY spectrum of *methyl* 4-((-adamantan-1-yl)methoxy)-5-chloro-2fluorobenzoate 23. S-53

Figure S-2.16. ¹H NMR (500 MHz, CDCl₃) spectrum of *benzyl (azetidin-1-ylsulfonyl)carbamate*16.S-54

FigureS-2.17.¹³CNMR(125MHz, CDCl₃)spectrum ofbenzyl(azetidin-1-ylsulfonyl)carbamate 16.S-55

Figure S-2.18. ¹H NMR (600 MHz, C₆D₆) spectrum of 4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamide GDC-0276. S-56

Figure S-2.19. ¹³C NMR (150 MHz, C_6D_6) spectrum of 4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamide GDC-0276. S-57

Figure S-2.20. HSQC spectrum of 4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5cyclopropyl-2-fluorobenzamide GDC-0276. S-58

Figure S-2.21. HMBC spectrum of 4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5cyclopropyl-2-fluorobenzamide GDC-0276. S-59

Figure S-2.22. DQF-COSY spectrum of 4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamide GDC-0276. S-60

Table S1. Solubility Data for Cbz Sulfamide 16 and Sulfamide 3	S-61
--	-------------

Figure S-2.23. DSC for *cyclopropylboronic acid*

S-62

S-47

S-48

 Figure S-2.24. Derivatization of CSI (10) and 15
 S-63

Figure S-2.25. LCMS data for 21 and 22.

Figure S-2.26. LCMS data for 24.

Scheme S2. GDC-0276 Synthetic Scheme 2nd Generation

S-5

S-64

S-65

Figure S-1.1. ¹H NMR (600 MHz, CDCl₃) spectrum of *t*-butyl 4-((-adamantan-1-yl)methoxy)-5chloro-2-fluorobenzoate **5**.

Figure S-1.2. ¹³C NMR (150 MHz, CDCl₃) spectrum of *t-butyl 4-((-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate* **5**.

Figure S-1.3. ¹H NMR (500 MHz, CDCl₃) spectrum of *4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid* **2**.

Figure S-1.4. ¹³C NMR (125 MHz, CDCl₃) spectrum of *4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid* **2**.

Figure S-1.5. HSQC spectrum of *4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid* **2**.

Figure S-1.6. HMBC spectrum of *4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid* **2**.

Figure S-1.7. COSY spectrum of *4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid* **2**.

Figure S-1.8. ¹H NMR (500 MHz, CDCl₃) spectrum of *t-butyl (azetidin-1-ylsulfonyl)carbamate* **12**.

Figure S-1.9. ¹³C NMR (125 MHz, CDCl₃) spectrum of *t-butyl (azetidin-1-ylsulfonyl)carbamate* **12**.

Figure S-1.10. HSQC spectrum of *t*-butyl (azetidin-1-ylsulfonyl)carbamate 12.

Figure S-1.11. HMBC spectrum of *t*-butyl (azetidin-1-ylsulfonyl)carbamate 12.

Figure S-1.12. COSY spectrum of *t*-butyl (azetidin-1-ylsulfonyl)carbamate 12.

Figure S-1.13. ¹H NMR (500 MHz, CDCl₃) spectrum of *azetidine-1-sulfonamide* **3**.

Figure S-1.14. ¹³C NMR (125 MHz, CDCl₃) spectrum of *azetidine-1-sulfonamide* **3**.

Figure S-1.15. ¹H NMR (500 MHz, DMSO-D6) spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.

Figure S-1.16. ¹³C NMR (125 MHz, DMSO-D6) spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl 4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate **13**.

Figure S-1.17. HSQC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2fluorobenzoyl)sulfamoyl)amino)propyl 4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2fluorobenzoate 13.

Figure S-1.18. HMBC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.

Figure S-1.19. H-N HSQC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.

Figure S-1.20. H-N HMBC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.

Figure S-1.21. DFQ-COSY spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 13.

Figure S-1.22. ¹H NMR (500 MHz, DMSO-D6) spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl)amino)propyl 4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 14.

Figure S-1.23. ¹³C NMR (125 MHz, DMSO-D6) spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 14.

Figure S-1.24. HSQC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 14.

Figure S-1.25. HMBC spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2fluorobenzoyl)sulfamoyl)(3-((N-(4-(((3r,5r,7r)-adamantan-1-yl)methoxy)-5-cyclopropyl-2fluorobenzoyl)sulfamoyl)amino)propyl 4-((-adamantan-1-yl)methoxy)-5cyclopropyl-2-fluorobenzoate 14.

Figure S-1.26. DFQ-COSY spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propylfluorobenzoyl)sulfamoyl)amino)propyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl

Figure S-1.27. HRMS spectrum of 3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)(3-((N-(4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoyl)sulfamoyl)amino)propyl)amino)propyl4-((-adamantan-1-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate 14.

Figure S-1.28. ¹H NMR (500 MHz, CDCl₃) spectrum of (adamantan-1-yl)methyl 4-((-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate **6**.

Figure S-1.29. ¹³C NMR (150 MHz, CDCl₃) spectrum of (adamantan-1-yl)methyl 4-((-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate 6.

Figure S-1.30. HSQC spectrum of (*adamantan-1-yl*)*methyl* 4-((-*adamantan-1-yl*)*methoxy*)-5*chloro-2-fluorobenzoate* **6**.

Figure S-1.31. HMBC spectrum of (*adamantan-1-yl*)*methyl* 4-((-*adamantan-1-yl*)*methoxy*)-5*chloro-2-fluorobenzoate* **6**.

Figure S-1.32. DQF-COSY spectrum of (*adamantan-1-yl*)*methyl* 4-((-*adamantan-1-yl*)*methoxy*)-5-chloro-2-fluorobenzoate **6**.

Figure S-1.33. LCMS data for 6.

Figure S-2.1. ¹H NMR (500 MHz, CDCl₃) spectrum of *1-((2-chloro-5-fluorophenoxy)methyl)adamantane* **20**.

-3200 -3000 -2800 -2600 -2400 -2200 -2000 -1800 -1600 18,19,20 11,12,13 15,16,17 -1400 -1200 -1000 -800 -600 14 -400 5 4 2 10 3 -200 -0 --200 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm) 50 40 30 20 10 0 -10

Figure S-2.2. ¹³C NMR (125 MHz, CDCl₃) spectrum of *1-((2-chloro-5-fluorophenoxy)methyl)adamantane* **20**.

Figure S-2.3. HSQC spectrum of *1-((2-chloro-5-fluorophenoxy)methyl)adamantane* 20.

Figure S-2.4. HMBC spectrum of *1-((2-chloro-5-fluorophenoxy)methyl)adamantane* 20.

Figure S-2.5. COSY spectrum of *1-((2-chloro-5-fluorophenoxy)methyl)adamantane* 20.

Figure S-2.6. ¹H NMR (500 MHz, CDCl₃) spectrum of *1-((4-bromo-2-chloro-5-fluorophenoxy)methyl)adamantane* **18**.

4000 -3500 -3000 -2500 -2000 -1500 2,7,8 4,6,9 1,3,10 -1000 11 -500 17 14 15 13 16 18 -0 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 f1 (ppm) 0 -10 30 20 60 50 40 10

Figure S-2.7. ¹³C NMR (125 MHz, CDCl₃) spectrum of *1-((4-bromo-2-chloro-5-fluorophenoxy)methyl)adamantane* **18**.

Figure S-2.8. HSQC spectrum of *1-((4-bromo-2-chloro-5-fluorophenoxy)methyl)adamantane* **18**.

Figure S-2.9. HMBC spectrum of *1-((4-bromo-2-chloro-5-fluorophenoxy)methyl)adamantane* **18**.

Figure S-2.10. COSY spectrum of *1-((4-bromo-2-chloro-5-fluorophenoxy)methyl)adamantane* **18**.

Figure S-2.11. ¹H NMR (500 MHz, CDCl₃) spectrum of *methyl 4-(()-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate* **23**.

-700 -650 -600 -550 -500 -450 5,10 2 -400 -350 -300 -250 -200 -150 11 23 21 17 13 -100 15 18 14 16 -50 11 and with the painting thirt had to be a state of the balance -0 --50 170 160 150 140 130 120 110 100 f1 (ppm) -10 230 220 210 200 190 180 20 10 0 90 80 70 60 50 40 30

Figure S-2.12. ¹³C NMR (125 MHz, CDCl₃) spectrum of *methyl 4-((-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate* **23**.

Figure S-2.13. HSQC spectrum of *methyl* 4-((-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate **23**.

Figure S-2.14. HMBC spectrum of *methyl* 4-((-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate 23.

Figure S-2.15. COSY spectrum of *methyl* 4-((-adamantan-1-yl)methoxy)-5-chloro-2-fluorobenzoate **23**.

Figure S-2.16. ¹H NMR (500 MHz, CDCl₃) spectrum of *benzyl (azetidin-1-ylsulfonyl)carbamate* **16**.

Figure S-2.17. ¹³C NMR (125 MHz, CDCl₃) spectrum of *benzyl (azetidin-1-ylsulfonyl)carbamate* **16**.

Figure S-2.18. ¹H NMR (600 MHz, C₆D₆) spectrum of *4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamide GDC-0276.*

Figure S-2.19. ¹³C NMR (150 MHz, C₆D₆) spectrum of *4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamide GDC-0276.*

Figure S-2.20. HSQC spectrum of *4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamide GDC-0276.*

Figure S-2.21. HMBC spectrum of *4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamide GDC-0276.*

Figure S-2.22. DQF-COSY spectrum of *4-((-adamantan-1-yl)methoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamide GDC-0276.*

Table S1. Solubility Data for *Cbz Sulfamide* 16 and *Sulfamide* 3

	Pd/C, MeOH,	H ₂ N ₅ N
őő	H ₂	őồ
16		3

Entry ^a	Solvent	Solubility of 16 at 15 °C (mg/g)	Solubility of 3 at 15 °C (mg/g)
1	2-propanol	27.6	20.9
2	EtOH	71.1	43.1
3	iPrOAc	72.5	12.5
4	МеОН	285.0	108.4
5	2-MeTHF	387.1	28.3
6	Acetone	450.0	512.3

^a Solubility experiments were conducted by mixing substrates in closed vials with stir bars in solvent (2 mL, saturated mixtures) at 15 °C and stirring for 2 h. Then samples were taken from the vials and filtered. The clear solution was analyzed by HPLC to calculate the assay of substrates.

Figure S-2.23. DSC for cycloproyplboronic acid

Figure S-2.24. Derivatization of CSI (10) and 15

Dibenzylamine was added to the reaction and stirred for 5 min, then analyzed by HPLC for derivatives 24 and 25.

Figure S-2.25. LCMS Data of 21 and 22.

Proposed structure	м	MS	Frag- ments	remarks
۵Ĵ	294 Da	EI[M]+ = 294 Da	149, 159	
Exact Mass: 294.119		РСІ.СН4[M-H]* = 293 Da РСІ.СН4[M+ C ₂ H ₅]* = 321 Da РСІ.СН4[M+ C ₃ H ₅]* = 333 Da	149, 159, 175, 25 <u>9</u> , 275	
			ExactMass: 149, 133	
			ExactMase: 159.001	
			ExactMass: 259.150	
			Exact Mass: 275.120	
		PCI,C4H10[M-H]* = 293 Da PCI,C4H10[M+ C ₂ H ₅]* = 321 Da	149	

Figure S-2.26. LCMS Data of 24.

RT [min]	Sub- stance	Proposed structure	м	MS	MS/MS	remarks
4.3	NK		429.252 Da	Esi[M+H]* = 430.2594 Da Esi[2M+Na]* = 881.4935 Da	149.13, 218.08, 250.11, 282.13, 398.23	No isotopes Cl / Br
6.1	NK		405.207 Da	Esi[M+H]* = 406.2139 Da	149.13, 226.06, 258.09, 374.19	1x Cl
7.5	NK		518.204 Da	Esi[M+H]* = 519.2108 Da Esi[M+Na]* = 541.1889 Da Esi[2M+H]* = 1037.4118 Da Esi[2M+H]* = 1059.3952 Da		No isotopes CI / Br
9.5	NK	Exact Mass: 376.169	376.170 Da	Esi[M+Na]* = 399.1589 Da Esi[2M+Na]* = 775.3289 Da		No isotopes Cl / Br
15.1		Exact Mass: 352.124	352.125 Da	ESI[M+Na]* = 375.1137 Da ESI[2M+Na]* = 727.2393 Da	149.13, 181.07, 332.16, 344.17, 352.59	1x Cl

14.5		۵Å	294 Da	EI[M]* = 294 Da	149, 159
		Exact Mass. 294.119		$PCI,CH4[M-H]^* = 293 Da$ $PCI,CH4[M+C_2H_5]^* = 321 Da$	149, 159, 163, 173, 259, 275
				PCI,C4H10[M-H] ⁺ = 293 Da PCI,C4H10[M+ C_2H_5] [*] = 321 Da PCI,C4H10[M+ C_3H_5] [*] = 333 Da	149
14.6		لکم	294 Da	EI[M]* = 294 Da	149, 159
		LU		PCI,CH4[M-H]+ = 293 Da	149, 163,
		H ł		PCI,CH4[M+ C2H5]* = 321 Da	275
		Exact Mass: 294.119		IN IN COLUMN	110
-	6		x	PCI,C4H10[M]* = 294 Da	149
17.6		n	440 Da	EI[M] ⁺ = 440 Da	203, 239, 295
		PY		РСI СН4[M+H]* = 439 Da	135, 147,
		m f			175, 295,
		Ð		PCI,C4H10[M-H]* = 439 Da	135, <mark>2</mark> 95
		Exact Mass: 440.248	3		5. 5.

Side product **24** could not be traced back to the corresponding dibromo side product in the starting material for the carbonylation, as this species was absent.