Ultra-trace metal speciation analysis by coupling of sector-field ICP-MS to high-resolution size exclusion and reversed-phase liquid chromatography

Hendrik Küpper^{1,2*}, Syed Nadeem Hussain Bokhari¹, Noelia Jaime-Pérez¹, Lyudmila Lyubenova¹, Nermeen Ashraf¹, Elisa Andresen¹.

 Biology Center of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic

University of South Bohemia, Department of Experimental Plant Biology, Branišovská
31/1160, 370 05 České Budějovice, Czech Republic

* Author for correspondence: Hendrik Küpper <hendrik.kuepper@umbr.cas.cz>

Supporting information

Table of contents

Tables S1. Examples ICP-MS methods optimised for the measurements shown in this work.

Figure S1. Analysis of copper abundance in an LH1 preparation from Rhodospirillum rubrum grown on 2 μ M Cu²⁺.

Figure S2. Measurement of a [Cd]-Chl standard.

Tables S1. Description of contents: This supplement describes the technical parameters for adjusting the ICP-MS in order to yield optimal performance for the different tasks described here.

Cu method for aqueous buffer and organic matrix

Total time: 60 min Runs: 505 Passes: 1 Tune in aqueous buffer and with desolvating unit Tune with methanol and acetone with spray chamber and no desolvating unit Resolution: Medium A palvte Mass window Samples/peak

Analyte	Mass window %	Samples/peak	Segment duration (Seconds)
Mg ²⁴	140	20	1.96
Cu ⁶³	125	20	2.00
Zn ⁶⁶	125	20	2.00

La method for aqueous buffer

Total time: 270 min Runs: 1795 Passes: 1 Tune in aqueous buffer Resolution: Medium

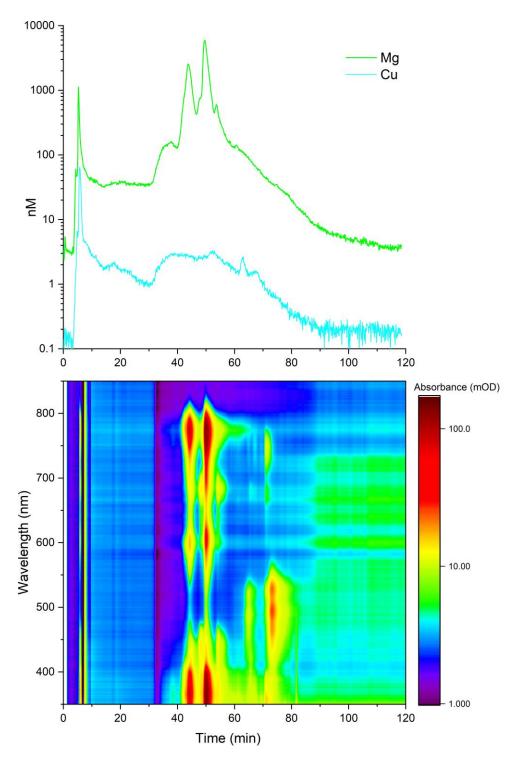
Analyte	Mass window	Samples/peak	Segment duration
	%		(Seconds)
Mg ²⁴	125	20	0.625
P ³¹	125	20	0.625
S ³²	125	20	0.625
Ca ⁴⁴	125	20	0.625
Mn ⁵⁵	125	20	0.600
Fe ⁵⁶	125	20	0.600
Co ⁵⁹	125	20	0.625
Cu ⁶³	125	20	1.000
Zn ⁶⁶	125	20	0.625
La ¹³⁹	125	20	1.750

Cd method for organic matrix

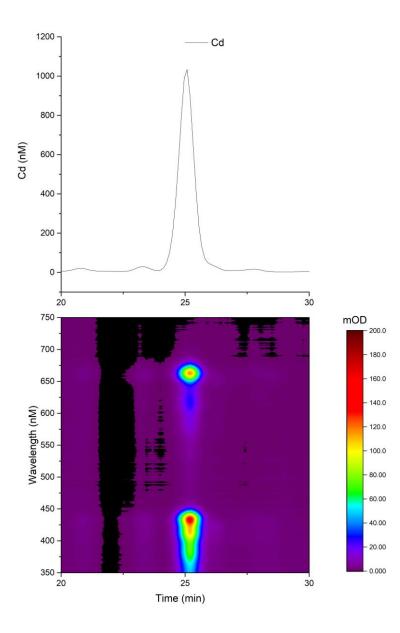
Total time: 60 min Runs: 505 Passes: 1 Tune with methanol and acetone with spray chamber and no desolvating unit Resolution: Medium

Analyte	Mass window %	Samples/peak	Segment duration (Seconds)
Mg ²⁴	140	20	1.96
Cd ¹¹¹	125	20	2.00
Zn ⁶⁶	125	20	2.00

Cd method for aqueous buffer Total time: 270 min Runs: 1260 Passes: 1 Tune in aqueous buffer and desolvating unit Resolution: Medium


Analyte	Mass window	Samples/peak	Segment duration
	%		(Seconds)
Mg ²⁴	140	20	1.4000
P ³¹	125	20	0.500
S ³²	125	20	2.500
Fe ⁵⁶	125	20	0.250
Co ⁵⁹	125	20	1.250
Cu ⁶³	125	20	0.250
Zn ⁶⁶	125	20	0.250
Mo ⁹⁵	125	20	1.000
Cd ¹¹¹	125	20	5.000

Cr method for aqueous buffer


Total time: 270 min Runs: 1160 Passes: 1 Tune in aqueous buffer and desolvating unit Resolution: Medium

Analyte	Mass window %	Samples/peak	Segment duration (Seconds)
Mg^{24}	140	20	1.4000
P^{31}	125	20	0.500
S^{32}	125	20	2.500
Fe ⁵⁶	125	20	0.250
Co ⁵⁹	125	20	1.250
Cu ⁶³	125	20	0.250
Zn ⁶⁶	125	20	0.250
Mo ⁹⁵	125	20	1.000
Cr ⁵²	125	20	5.000

Figure S1. Analysis of copper abundance in an LH1 preparation from *Rhodospirillum rubrum* grown on 2 μ M Cu²⁺. Acetone extract from the protein preparation of a replicate experiment. The separation was performed on a metal-free PRP-C18 2.1x250 mm column, leading to a much lower background of Cu than the originally used C18 column with steel housing (Fig. 8b), but otherwise confirming the Cu binding to the pigments (Fig. 8b).

Figure S2. Description of contents: This supplement shows the HPLC-ICPMS measurement of a [Cd]-Chl standard that was prepared by Küpper et al. (2007). The separation was performed on a C18 4.6x250 mm column as described in more detail in the methods section for pigment HPLC-ICPMS

