Enantioselective Formal Synthesis of (+)-Cycloclavine and Total Synthesis of

(+)-5-epi-Cycloclavine

Wei Wang, ${ }^{\dagger}$ Yang Mi, ${ }^{\dagger}$ Xiao-Ping Cao, ${ }^{*}{ }^{\dagger}$ and $\mathrm{Zi}-\mathrm{Fa}$ Shi ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ State Key Laboratory of Applied Organic Chemistry and College of Chemistry \& Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
* E-mail: caoxplzu@163.com
* E-mail: shizf@lzu.edu.cn

Table of Contents

1. Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (\pm)-cycloclavine (in the ref. 4 c), (+)-cycloclavine (in the ref. 4a), and (+)-cycloclavine [(1) in this work]
2. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of (\pm)-cycloclavine (in the ref. 4 c), (+)-cycloclavine (in the ref. 4a), and (+)-cycloclavine [(1) in this work] S3
3. Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of (\pm)-cycloclavine (in the ref. 4c), (+)-cycloclavine (in the ref. 4 a$)$, and (+)-cycloclavine [(1) in this work] S4
4. Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (\pm)-5-epi-cycloclavine (in the ref. 4 c) and (+)-5-epi-cycloclavine [(2) in this work] S5
5. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of (\pm)-5-epi-cycloclavine (in the ref. 4 c) and (+)-5-epi-cycloclavine [(2) in this work, 400 MHz and 600 MHz] S6
6. Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of (\pm)-5-epi-cycloclavine (in the ref. 4 c) and (+)-5-epi-cycloclavine [(2) in this work, 100 MHz and 150 MHz] S7
7. Tabulated summary of synthesis of cycloclavine, 5-epi-cycloclavine, Szántay’s amine, and Wipf's lactam S8
8. Experimental section S9
9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds: $\mathbf{7}, \mathbf{8}, \mathbf{1 1}, \mathbf{5}$, NOE spectra of $\mathbf{5 , 7}$-endo-trig cyclization product, $\mathbf{3}$, NOE spectra of $\mathbf{3}, 12,13,1,15,16,18$, and 2 S21
10. X-ray structure of compound 15 (CCDC 1882003) S38
11. Grignard addition on reaction scale S38
12. ChemBio 3D of compound 5 S38
13. HPLC spectra of $(\pm)-9$ and (+)-9 S39
14. HPLC spectra of (\pm)-2 and (+)-2 S40
15. Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (\pm)-cycloclavine (in the ref. 4 c), (+)-cycloclavine (in the ref. 4 a), and (+)-cycloclavine [(1) in this work]

(\pm)-cycloclavine (in the ref. 4 c$)$	$(+)$-cycloclavine (in the ref. 4 a$)$	$(+$)-cycloclavine [(1) in this work]
$\left.(700 \mathrm{MHz}, \mathrm{CDCl})_{3}\right)$	$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\left.(600 \mathrm{MHz}, \mathrm{CDCl})_{3}\right)$
$\delta(\mathrm{ppm})$	$\delta(\mathrm{ppm})$	$\delta(\mathrm{ppm})$
$7.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$	$7.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$	$8.07(\mathrm{br}, 1 \mathrm{H})$
$7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$	$7.13(\mathrm{dd}, J=8.0,0.5 \mathrm{~Hz}, 1 \mathrm{H})$	$7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$
$7.10(\mathrm{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$	$7.09(\mathrm{app} \mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$	$7.10(\mathrm{app} \mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$
$7.91(\mathrm{~s}, 1 \mathrm{H})$	$7.90(\mathrm{app} \mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$	$7.90(\mathrm{~s}, 1 \mathrm{H})$
$6.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$	$6.82(\mathrm{dd}, J=7.0,0.5 \mathrm{~Hz}, 1 \mathrm{H})$	$6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$
$3.17(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$	$3.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$	$3.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$
$3.15(\mathrm{dd}, J=14.0,4.2 \mathrm{~Hz}, 1 \mathrm{H})$	$3.13(\mathrm{dd}, J=13.8,3.8 \mathrm{~Hz}, 1 \mathrm{H})$	$3.16(\mathrm{dd}, \mathrm{J}=14.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$
$2.79(\mathrm{dd}, J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H})$	$2.78(\mathrm{dd}, J=11.5,4.0 \mathrm{~Hz}, 1 \mathrm{H})$	$2.82(\mathrm{dd}, \mathrm{J}=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$
$2.61(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$	$2.63-2.57(\mathrm{~m}, 1 \mathrm{H})$	$2.64(\mathrm{t}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H})$
$2.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$	$2.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$	$2.43(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$
$2.37(\mathrm{~s}, 3 \mathrm{H})$	$2.36(\mathrm{~s}, 3 \mathrm{H})$	$2.39(\mathrm{~s}, 3 \mathrm{H})$
$1.70(\mathrm{~s}, 3 \mathrm{H})$	$1.69(\mathrm{~s}, 3 \mathrm{H})$	$1.71(\mathrm{~s}, 3 \mathrm{H})$
$1.61(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$	$1.60(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$	$1.64(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H})$
$0.46(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$	$0.45(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$	$0.48(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H})$

(\pm)-cycloclavine (in the ref. 4c) ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	(+)-cycloclavine (in the ref. 4a) $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	(+)-cycloclavine [(1) in this work]		
		(150 MH	l_{3})	
$\delta^{1}(\mathrm{ppm})$	δ^{2} (ppm)	$\delta^{3}(\mathrm{ppm})$	$\delta^{3}-\delta^{1}(\mathrm{ppm})$	$\delta^{3}-\delta^{2}(\mathrm{ppm})$
135.4	135.6	135.3	-0.1	-0.3
133.5	133.7	133.6	-0.1	-0.1
128.7	128.8	128.7	0.0	-0.1
122.9	123.1	122.9	0.0	-0.2
118.1	118.2	118.1	0.0	-0.1
113.2	113.5	113.1	-0.1	-0.4
110.3	110.5	110.3	0.0	-0.2
107.9	108.1	108.0	0.1	-0.1
69.6	69.8	69.7	0.1	-0.1
65.6	65.7	65.5	-0.1	-0.2
39.9	40.1	39.9	0.0	-0.2
34.3	34.5	34.4	0.1	-0.1
27.8	27.9	27.7	-0.1	-0.2
24.9	25.1	24.9	0.0	-0.2
24.2	24.4	24.2	0.0	-0.2
16.5	16.6	16.4	-0.1	-0.2

2. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of (\pm)-cycloclavine (in the ref. 4c), (+)-cycloclavine (in the ref. 4 a), and (+)-cycloclavine [(1) in this work]

3. Comparison of ${ }^{13} \mathrm{C}$ NMR spectra of (\pm)-cycloclavine (in the ref. 4 c), (+)-cycloclavine (in the ref. 4 a), and (+)-cycloclavine [(1) in this work]
4. Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of (\pm)-5-epi-cycloclavine (in the ref. 4 c) and (+)-5-epi-cycloclavine [(2) in this work]

(\pm-5-epi-cycloclavine	(+)-5-epi-cycloclavine	(+)-5-epi-cycloclavine
(in the ref. 4c)	[(2) in this work]	[(2) in this work]
($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)	($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)	($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)
$\delta(\mathrm{ppm})$	$\delta(\mathrm{ppm})$	$\delta(\mathrm{ppm})$
8.04 (br s, 1H)	8.05 (br s, 1H)	8.04 (br s, 1H)
7.15-7.10 (m, 2H)	7.15-7.09 (m, 2H)	7.15-7.10 (m, 2H)
6.92 (dd, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$	6.92 (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$	6.92 (s, 1H)
6.58 (dd, $J=6.6,0.6 \mathrm{~Hz}, 1 \mathrm{H})$	$6.58(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$	$6.58(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$
3.47 (dd, $J=10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H})$	3.46 (dd, $J=10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H})$	3.46 (dd, $J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H})$
3.01 (dd, $J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H})$	3.02 (dd, $J=14.4,5.6 \mathrm{~Hz}, 1 \mathrm{H})$	3.01 (dd, $J=14.4,5.4 \mathrm{~Hz}, 1 \mathrm{H})$
2.98 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$	2.97 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$	2.97 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$
2.66 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$	2.66 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$	2.66 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$
2.59 (ddd, $J=16.2,11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$	2.59 (ddd, $J=16.4,10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$	2.59 (ddd, $J=16.2,10.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$
2.48 (s, 3H)	2.48 (s, 3H)	2.48 (s, 3H)
1.57 (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$	1.56 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$	1.56 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$
1.12 (s, 3H)	1.12 (s, 3H)	1.12 (s, 3H)
$1.11(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$	$1.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$	$1.11(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$

(\pm-5-epi-cycloclavine (in the ref. 4 c)	(+)-5-epi-cycloclavine		(+)-5-epi-cycloclavine	
	[(2) in this work]		[(2) in this work]	
$\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)	(100 MH		(150 MHz	
$\delta^{1}(\mathrm{ppm})$	$\delta^{2}(\mathrm{ppm})$	$\delta^{2}-\delta^{1}(\mathrm{ppm})$	$\delta^{3}(\mathrm{ppm})$	$\delta^{3}-\delta^{1}(\mathrm{ppm})$
133.3	133.3	0.0	133.4	0.0
130.5	129.9	-0.6	129.9	-0.6
127.4	127.3	-0.1	127.3	-0.1
122.9	122.9	0.0	122.9	0.0
118.1	118.3	0.2	118.3	0.2
112.9	112.9	0.0	112.9	0.0
111.7	111.1	-0.6	111.1	-0.6
107.6	107.8	0.2	107.8	0.2
62.9	63.0	0.1	63.0	0.1
59.8	59.7	-0.1	59.7	-0.1
35.8	35.8	0.0	35.8	0.0
35.4	35.3	-0.1	35.3	-0.1
33.2	33.0	-0.2	33.0	-0.2
20.1	20.2	0.1	20.3	0.2
18.6	18.5	-0.1	18.5	-0.1
14.9	14.8	-0.1	14.8	-0.1

5. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of (\pm)-5-epi-cycloclavine (in the ref. 4c) and (+)-5-epi-cycloclavine [(2) in this work, 400 MHz and 600 MHz]

7. Tabulated summary of synthesis of cycloclavine, 5-epi-cycloclavine, Szántay's amine, and Wipf’s lactam

8. Experimental section

General Information. All reactions that required anhydrous conditions were carried out by standard procedures under argon atmosphere. Commercially available reagents were used without further purification. The solvents were dried by distillation over appropriate drying reagents. The petroleum ether (PE) used had a boiling range of $60-90{ }^{\circ} \mathrm{C}$. Reactions were monitored by thin-layer chromatography (TLC) on silica gel GF 254 plates. Column chromatography was performed through silica gel (200-300 mesh). IR spectra were recorded on an FT-IR spectrophotometer and reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and DEPT 135 spectra were recorded on a Bruker Avance- $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$ or a Varian Inova-600 $\mathrm{MHz}\left({ }^{1} \mathrm{H}: 600 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 150 \mathrm{MHz}\right)$. Chemical shift values (δ) are given in ppm and coupling constants (J) in Hertz (Hz). Residual solvent signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were used as an internal reference $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H} 7.26, \delta \mathrm{C} 77.0 \mathrm{ppm}\right.$; acetone- d_{6} : $\delta \mathrm{H} 2.05, \delta \mathrm{C} 206.26, \mathrm{ppm})$. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), br (broad), dd (doublet of doublets), q (quartet) and m (multiplet). Melting points were determined by use of a microscope apparatus and are uncorrected. High resolution mass spectra were obtained on a Thermo Fisher Scientific LTQ-Orbitrap-EDT instrument using electrospray ionization (ESI) technique. Analytical chiral high performance liquid chromatography (HPLC) was conducted on a Waters $1525 / 2998$ instrument. Optical rotations were measured using a 0.1 mL cell with a 1 cm path length on automatic polarmeter and concentrations (c) were reported in $\mathrm{mg} / \mathrm{mL}$. The X-ray single-crystal determination was performed with a diffractometer working with graphite monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation.

7

8
(S)-N-((R)-1-(4-Bromo-1-tosyl-1H-indol-3-yl)but-3-en-2-yl)-2-methylpropane-2 -sulfinamide [7] and (S)-N-((S)-1-(4-Bromo-1-tosyl-1H-indol-3-yl)but-3-en-2-yl)-2-methylpropane-2-sulfinamide [8]. To a degassed solution of compound 9 (20.0 g , $40.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added vinylmagnesium bromide (1.0 M solution in THF, $81 \mathrm{~mL}, 81 \mathrm{mmol}$). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 8 h as monitored by TLC. After completion of the reaction, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was slowly added dropwise with vigorous stirring. Stirring was continued for 10 min until all solid particles were dissolved. The reaction mixture
was concentrated under reduced pressure and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The combined organic layer was washed with brine (70 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc $=1 / 1)$ afforded compound $7(8.5 \mathrm{~g}, 40 \%)$ as a yellow solid and compound 8 ($10.5 \mathrm{~g}, 50 \%$) as a yellow solid. Data for compound 7: $R_{f}=0.23$ (petroleum ether/EtOAc $=3 / 1$); Mp $60-62{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+85.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.96$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (s, $1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (ddd, $J=16.8,10.4,8.0 \mathrm{~Hz} 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.26-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 145.2$ (C), $137.9(\mathrm{CH}), 136.3$ (C), 134.6 (C), $129.8(\mathrm{CH}), 128.3(\mathrm{C}), 127.8(\mathrm{CH}), 126.7(\mathrm{CH}), 126.2(\mathrm{CH}), 125.5(\mathrm{CH}), 118.0$ (C), $117.7\left(\mathrm{CH}_{2}\right), 114.2(\mathrm{C}), 112.7(\mathrm{CH}), 57.5(\mathrm{CH}), 55.4(\mathrm{C}), 32.9\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{3}\right)$, $21.4\left(\mathrm{CH}_{3}\right)$; IR (KBr, neat): 3421, 2958, 1641, 1373, 1174, 1057, 925, 813, 703, 672, $616 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ 523.0719; Found 523.0730. Data for compound 8: $\mathrm{R}_{f}=0.10$ (petroleum ether/EtOAc $=3 / 1$); Mp $61-64{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-37.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.96(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.12(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{ddd}, J=17.2,10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.33(\mathrm{~m}$, 2H), 3.11 (dd, $J=14.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 ($\mathrm{s}, 3 \mathrm{H}$), 1.07 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 145.1(\mathrm{C}), 138.9(\mathrm{CH}), 136.1(\mathrm{C}), 134.7(\mathrm{C}), 129.7(\mathrm{CH}), 128.5(\mathrm{C})$, $127.7(\mathrm{CH}), 126.6(\mathrm{CH}), 125.2(\mathrm{CH}), 118.7(\mathrm{C}), 116.8\left(\mathrm{CH}_{2}\right), 114.1(\mathrm{C}), 112.7(\mathrm{CH})$, $59.6(\mathrm{CH}), 55.7(\mathrm{C}), 31.9\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$, one aromatic CH signal was not recognized due to overlapping. IR (KBr, neat): 3420, 2960, 1641, 1372, 1175, 1057, 926, 813, 702, 672, $615 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}: ~[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ 523.0719; Found 523.0728.

(S)-N-((R)-1-(4-Bromo-1-tosyl-1H-indol-3-yl)but-3-en-2-yl)-N,2-dimethylpropane-2-sulfinamide [11]. To a degassed solution of sulfinamine $7(2.4 \mathrm{~g}, 4.6 \mathrm{mmol})$ in dry THF (50 mL) at $0{ }^{\circ} \mathrm{C}$ was added a solution of KHMDS in THF ($1.0 \mathrm{M}, 6.9 \mathrm{~mL}, 6.9$ $\mathrm{mmol})$. After stirring for $5 \mathrm{~min}, \mathrm{MeI}(0.86 \mathrm{~mL}, 13.8 \mathrm{mmol})$ was added to the solution.

The reaction mixture was allowed to react for 1 h at $0^{\circ} \mathrm{C}$ as monitored by TLC. After completion of the reaction, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The reaction mixture was concentrated under reduced pressure and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc $=3 / 1$) afforded compound $11(2.0 \mathrm{~g}, 80 \%)$ as a colorless solid. $R_{f}=0.20$ (petroleum ether/EtOAc $=3 / 1$); $\mathrm{Mp} 154-157^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}$ $-3.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.89(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (ddd, $J=17.6,10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J$ $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=14.8$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=14.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 145.0(\mathrm{C}), 136.2(\mathrm{C}), 136.0(\mathrm{CH}), 134.7(\mathrm{C})$, $129.7(\mathrm{CH}), 128.5(\mathrm{C}), 127.7(\mathrm{CH}), 126.9(\mathrm{CH}), 126.6(\mathrm{CH}), 125.2(\mathrm{CH}), 118.5(\mathrm{C})$, $118.1\left(\mathrm{CH}_{2}\right), 114.1(\mathrm{C}), 112.8(\mathrm{CH}), 66.4(\mathrm{CH}), 58.2(\mathrm{C}), 28.9\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{3}\right), 23.6$ $\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (KBr, neat): 3420, 2955, 1641, 1466, 1413, 1372, 1174, 1132, 927, 703, $616 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{NaO}_{3} \mathrm{~S}_{2}$ 559.0695; Found 559.0706.

5

7-endo-trig cyclization product
(S)-N,2-Dimethyl-N-((R)-5-methylene-1-tosyl-1,3,4,5-tetrahydrobenzo[cd]indol-4-yl) propane-2-sulfinamide [5] and (S)-N,2-Dimethyl-N-((S)-1-tosyl-3,4-dihydro-1H-cyclohepta[cd]indol-4-yl)propane-2-sulfinamide [7-endo-trig cyclization product]. To a degassed solution of $\mathbf{1 1}(700 \mathrm{mg}, 1.3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 7.8 \mathrm{mmol})$ and PPh_{3} ($138 \mathrm{mg}, 0.52 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2}(30 \mathrm{mg}, 0.13 \mathrm{mmol})$ under an argon atmosphere. The reaction mixture was stirred under reflux for 20 h as monitored by TLC. After completion of the reaction, the mixture was concentrated and passed through a short column of silica gel (eluent: ethyl acetate) to remove the catalyst and inorganic salts. The combined eluent was concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc $=1 / 1$) afforded compound 5 ($190 \mathrm{mg}, 32 \%$) as a yellow liquid and 7 -endo-trig cyclization product ($380 \mathrm{mg}, 64 \%$) as a yellow liquid. Data for compound 5: $R_{f}=0.23$ (petroleum ether/EtOAc $=1 / 1$); $[\alpha]^{25}{ }_{\mathrm{D}}-31.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, acetone- d_{6},
$\left.25^{\circ} \mathrm{C}\right): \delta 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.27-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.19$ (ddd, $J=10.8,9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- $d_{6}, 25{ }^{\circ} \mathrm{C}$): $\delta 146.3$ (C), 141.4 (C), 136.4 (C), 134.6 (C), 131.0 (CH), 130.8 (C), 129.8 (C), 127.8 $(\mathrm{CH}), 126.9(\mathrm{CH}), 121.9(\mathrm{CH}), 119.1(\mathrm{C}), 118.5(\mathrm{CH}), 113.9(\mathrm{CH}), 113.0\left(\mathrm{CH}_{2}\right), 66.1$ $(\mathrm{CH}), 58.6(\mathrm{C}), 28.5\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$; IR (KBr, neat): 3421, 2925, 1597, 1361, 1169, 1090, 1032, 911, 814, 734, $669 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ 457.1614; Found 457.1622. Data for compound 7-endo-trig cyclization product: $R_{f}=0.5$ (petroleum ether/EtOAc $=1 / 1$); $[\alpha]^{24}{ }_{\mathrm{D}}-6.0$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.11-4.09 (m, 1H), 3.18-3.09 (m, 2H), 2.64 (s, 3H), $2.26(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 144.7$ (C), $135.2(\mathrm{C}), 135.0(\mathrm{C}), 134.1(\mathrm{CH}), 130.3$ (C), $129.7(\mathrm{CH}), 129.3(\mathrm{CH}), 128.3(\mathrm{C}), 126.6(\mathrm{CH}), 124.7(\mathrm{CH}), 124.3(\mathrm{CH}), 122.3$ $(\mathrm{CH}), 119.7(\mathrm{C}), 112.6(\mathrm{CH}), 62.5(\mathrm{CH}), 58.1(\mathrm{C}), 32.4\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right)$, $21.3\left(\mathrm{CH}_{3}\right)$; IR (KBr, neat): 3447, 2925, 1597, 1364, 1177, 1090, 1018, 925, 800, 734, $669 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}$ 457.1614; Found 457.1618.

(1'S, 2'S,4R)-Ethyl-4-((S)-N,2-dimethylpropan-2-ylsulfinamido)-2'-methyl-1-tosyl-3,4-dihydro-1H-spiro[benzo[cd]indole-5,1'-cyclopropane]-2'-carboxylate [3]. To a degassed solution of p-acetamidobenzenesulfonyl azide ($2.5 \mathrm{~g}, 10.4 \mathrm{mmol}$) and ethyl 2-methyl-3-oxobutanoate ($1.0 \mathrm{~g}, 6.9 \mathrm{mmol}$) in $\mathrm{MeCN}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DBU ($1.6 \mathrm{~mL}, 10.4 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 24 h as monitored by TLC. After completion of the reaction, the reaction mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{ml})$ and extracted with hexane ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Flash column chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O}=1 / 50$) afforded ethyl 2-diazopropanoate (631 mg , 71%) as a yellow oil. To a degassed solution of $\mathrm{Rh}_{2}(\mathrm{TPA})_{4}(0.8 \mathrm{mg}, 0.00059 \mathrm{mmol})$
and compound $5(270 \mathrm{mg}, 0.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at room temperature was added ethyl 2-diazopropanoate ($227 \mathrm{mg}, 1.77 \mathrm{mmol}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at a rate of $1 \mathrm{~mL} / \mathrm{h}$ as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc $=1 / 1$) afforded compound $3(180 \mathrm{mg}, 55 \%)$ as a colorless foam. $R_{f}=$ 0.23 (petroleum ether/EtOAc $=1 / 1$); Mp 70-72 ${ }^{\circ} \mathrm{C} ;[\alpha]^{18}{ }_{\mathrm{D}}+84.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 6.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dq}, J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=16.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~d}, J=6.4,1 \mathrm{H}), 1.80(\mathrm{~d}, J=6.0,1 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 173.0(\mathrm{C})$, 144.7 (C), 135.4 (C), 133.2 (C), 131.1 (C), 129.8 (CH), 129.0 (C), $126.8(\mathrm{CH}), 125.0$ $(\mathrm{CH}), 120.5(\mathrm{CH}), 119.9(\mathrm{CH}), 117.2(\mathrm{C}), 111.8(\mathrm{CH}), 64.5(\mathrm{CH}), 61.2\left(\mathrm{CH}_{2}\right), 57.6$ (C), $34.9(\mathrm{C}), 33.1(\mathrm{C}), 30.7\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$, $16.6\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right)$. IR (KBr, neat): $3280,2920,2851,1715,1597,1443,1364$, 1177, 1115, 1032, $667 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M} \mathrm{+} \mathrm{~K}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{KN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ 595.1697; Found 595.1698.

(1aS,3aR,9bS)-1a,3-Dimethyl-6-tosyl-3,3a,4,6-tetrahydro-1H-cyclopropa[c]indolo [4,3-ef]indol-2(1aH)-one [12]. To a solution of $\mathbf{3}(180 \mathrm{mg}, 0.32 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ $\mathrm{mL})$ was added $4 \mathrm{~N} \mathrm{HCl} / \mathrm{MeOH}(0.65 \mathrm{~mL})$ and stirred for 1 h at room temperature as monitored by TLC. After completion of the reaction, a saturated NaHCO_{3} (20 $\mathrm{mL})$ was added and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The crude product was dissolved in anhydrous methanol (10 mL). Then $\mathrm{NaOH}(130 \mathrm{mg}, 3.2 \mathrm{mmol})$ was added and stirred for another 1 h as monitored by TLC. After completion of the reaction, the mixture was quenched with water and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/ EtOAc $=2 / 1$) afforded the lactam 12 ($94 \mathrm{mg}, 72 \%$ yield) as a colorless foam. $R_{f}=0.12$ (petroleum ether/EtOAc = 2/1); Mp $105-107{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-43.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}$, 1 H), 3.23 (dd, $J=14.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.59$ (ddd, $J=14.0,12.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 178.3$ (C), 144.9 (C), 135.3 (C), 133.7 (C), 133.1 (C), $130.6(\mathrm{C}), 129.9(\mathrm{CH}), 126.8(\mathrm{CH}), 125.7(\mathrm{CH}), 120.7(\mathrm{CH}), 117.3(\mathrm{C}), 114.3$ $(\mathrm{CH}), 111.6(\mathrm{CH}), 60.6(\mathrm{CH}), 32.3(\mathrm{C}), 31.9(\mathrm{C}), 28.7\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{2}\right)$, $21.6\left(\mathrm{CH}_{3}\right), 12.2\left(\mathrm{CH}_{3}\right)$. IR (KBr, neat): 3364, 2918, 1640, 1595, 1369, 1115, 1091, 991, 773, 753, $666 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ 407.1424; Found 407.1429.

(1aS,3aR,9bS)-1a,3-Dimethyl-3,3a,4,6-tetrahydro-1H-cyclopropa[c]indolo[4,3-ef]indol -2(1aH)-one [13]. To a solution of naphthalene ($104 \mathrm{mg}, 0.81 \mathrm{mmol}$) in previously degassed THF (5 ml) was added sodium ($22.4 \mathrm{mg}, 0.97 \mathrm{mmol}$). The mixture was stirred at room temperature for 2 h in order to obtain a dark green. Then to a degassed solution of compound $\mathbf{1 2}(33 \mathrm{mg}, 0.081 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added the freshly prepared solution of sodium naphthalenide (5 ml). The mixture was stirred for 10 min at this temperature as monitored by TLC. After completion of the reaction, a saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The mixture was made basic with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=15 / 1\right)$ afforded compound $\mathbf{1 3}(20 \mathrm{mg}, 98 \%)$ as a colorless foam. R_{f} $=0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=15 / 1\right) ; \mathrm{Mp} 203-205{ }^{\circ} \mathrm{C} ;[\alpha]^{18}{ }_{\mathrm{D}}-81.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 8.46$ (br s, 1H), 7.22 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.12 (t, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.30(\mathrm{dd}, J=13.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.16$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ 178.9 (C), 133.5 (C), 132.7 (C), 128.1 (C), 122.9 (CH), 119.2 (CH), 110.7 (C), 110.1 $(\mathrm{CH}), 109.1(\mathrm{CH}), 61.5(\mathrm{CH}), 32.6(\mathrm{C}), 32.2(\mathrm{C}), 28.8\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{2}\right)$, $12.3\left(\mathrm{CH}_{3}\right)$. IR (KBr, neat): 3278, 2926, 1671, 1593, 1457, 1161, 1092, 1032, 775, $748,659 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$ 253.1335; Found 253.1337.

1
(1aS,3aR,9bS)-1a,3-dimethyl-1a, 2,3,3a,4,6-hexahydro-1H-cyclopropa[c]indolo[4,3effindole [1]. To a solution of $\mathbf{1 3}(25.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF (2.0 mL) under an argon atmosphere was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{LiAlH}_{4}(0.50 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 0.240 \mathrm{mmol}$). The reaction mixture was stirred at reflux in a sealed tube for 16 h, diluted with $\mathrm{Et}_{2} \mathrm{O}$, cooled to $0{ }^{\circ} \mathrm{C}$ and treated sequentially with $\mathrm{H}_{2} \mathrm{O}(0.019 \mathrm{~mL})$, aq $15 \% \mathrm{NaOH}(0.019 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.057 \mathrm{~mL})$, warmed to r.t. and stirred for 15 min . MgSO_{4} was added and the solution was stirred rigorously for 15 min , and filtered through a pad of Celite. The mixture was concentrated under reduced pressure and afforded compound $\mathbf{1}(21 \mathrm{mg}, 89 \%)$ as a white soild. $R_{f}=0.40\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=10 / 1\right)$; Mp $160-162{ }^{\circ} \mathrm{C}$ (dec.); $[\alpha]^{25}{ }_{\mathrm{D}}+63.0$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): 8.07 (br s, 1H), $7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{app} \mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}$, $1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{dd}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.48(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(150$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 135.3(\mathrm{C}), 133.6(\mathrm{C}), 128.7(\mathrm{C}), 122.9(\mathrm{CH}), 118.1(\mathrm{CH}), 113.1$ (C), $110.3(\mathrm{CH}), 108.0(\mathrm{CH}), 69.7(\mathrm{CH}), 65.5\left(\mathrm{CH}_{2}\right), 39.9\left(\mathrm{CH}_{3}\right), 34.4(\mathrm{C}), 27.7(\mathrm{C})$, $24.9\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{2}\right), 16.4\left(\mathrm{CH}_{3}\right)$. IR (KBr, neat): 3395, 2940, 2925, 1591, 1443, 1091, 780, 738 cm ; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2}$ 239.1549; Found 239.1547.

6

14
(S)-2-Methyl-N-((S)-5-methylene-1-tosyl-1,3,4,5-tetrahydrobenzo[cd]indol-4-yl)propa ne-2-sulfinamide [6] and (S)-2-methyl-N-((S)-1-tosyl-3,4-dihydro-1 H-cyclohepta[cd] indol-4-yl)propane-2-sulfinamide [14]. To a degassed solution of $\mathbf{8}(12.0 \mathrm{~g}, 23 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (19.0 g, 138 mmol) and $\mathrm{PPh}_{3}(2.4 \mathrm{~g}, 9.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1500 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2}(0.52 \mathrm{~g}, 2.3 \mathrm{mmol})$ under an argon atmosphere. The reaction mixture was stirred under reflux for 20 h as monitored by TLC. After completion of the reaction, the residue was passed through a short column of silica gel (eluent: ethyl acetate) to remove the catalyst and inorganic salts. The combined eluent was concentrated under reduced pressure. Flash column chromatography (petroleum
ether/EtOAc = 1/1) afforded crude compounds $\mathbf{6}$ and $\mathbf{1 4}$ (quantitative). According to the characteristic integral of ${ }^{1} \mathrm{H}$ NMR spectrum for crude products, compounds 6 and 14 were in proportion to $3: 5$. The mixture was used the next step without further purification.

(R)-2-Methyl-N-(1-tosyl-3,4-dihydro-1H-cyclohepta[cd]indol-4-yl)propane-2sulfonamide [15]. To a solution of sulfinamine $7(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $m-\mathrm{CPBA}(66 \mathrm{mg}, 0.38 \mathrm{mmol})$. The mixture was allowed to react for 1 h at room temperature as monitored by TLC. After completion of the reaction, the mixture was slowly added a mixture of saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$ and saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$. The organic layer was separated and washed with saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$, water (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc $=5 / 1$) afforded crude intermediate, which was used the next step without further purification. To a degassed solution of the above crude intermediate and $(o-t o l){ }_{3} \mathrm{P}(12 \mathrm{mg}, 0.038 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2}(4.3 \mathrm{mg}, 0.019 \mathrm{mmol})$ under an argon atmosphere. The reaction mixture was stirred under reflux for 2 h as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc $=3 / 1$) afforded compound $15(61 \mathrm{mg}, 69 \%)$ as a yellow solid; $R_{f}=0.50$ (petroleum ether/EtOAc $=2 / 1$); $\mathrm{Mp} 183-186{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}$ $+100.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 145.0(\mathrm{C}), 135.3$ (C), $135.0(\mathrm{C})$, $133.3(\mathrm{CH}), 130.2(\mathrm{C}), 129.9(\mathrm{CH}), 128.2(\mathrm{CH}), 126.8(\mathrm{C}), 124.9(\mathrm{CH}), 124.8(\mathrm{CH})$, $123.9(\mathrm{CH}), 118.5(\mathrm{C}), 113.1(\mathrm{CH}), 59.8(\mathrm{CH}), 52.6(\mathrm{C}), 34.8\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{3}\right), 21.5$ $\left(\mathrm{CH}_{3}\right)$; one aromatic CH signal was not recognized due to overlapping. IR (KBr , neat): 3444, 2959, 2925, 1639, 1363, 1305, 1177, 1027, 916, 800, $675 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}_{2} 481.1226$; Found 481.1234.

(S)-4-Methyl-N-(5-methylene-1-tosyl-1,3,4,5-tetrahydrobenzo[cd]indol-4-yl)-N-(2oxopropyl)benzenesulfonamide [16]. To a solution of crude mixture 6 and 14 (10.2 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $4 \mathrm{~N} \mathrm{HCl} /$ dioxane $(23.0 \mathrm{~mL}, 92.3 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure. The mixture was dissolved in water and neutralized with 4 N NaOH solution to $\mathrm{PH} \sim 13$. The resulting aqueous solution is extracted with EtOAc $(3 \times 60 \mathrm{~mL})$. The combined organic layer was washed with brine (60 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. The residue was used the next step without further purification. The above crude intermediate and $\mathrm{TsCl}(5.2 \mathrm{~g}, 27.6 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150$ $\mathrm{mL})$, which was added $\mathrm{Et}_{3} \mathrm{~N}(6.5 \mathrm{~mL}, 46 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 16 h as monitored by TLC. After completion of the reaction, water $(100 \mathrm{~mL})$ was added to the mixture and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 70 \mathrm{~mL})$. The combined organic layer was washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc $=3 / 1$) afforded the crude compound $(8.8 \mathrm{~g})$ as a brown solid. The above crude intermediate was dissolved in acetone $(100 \mathrm{~mL})$, which was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(11.7 \mathrm{~g}, 35.8 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and was added bromoacetone $(3 \mathrm{~mL}, 35.8 \mathrm{mmol})$. The reaction was stirred at room temperature for 8 h as monitored by TLC. After completion of the reaction, the residue was passed through a short column of silica gel (eluent: ethyl acetate) to remove inorganic salts and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc $=4 / 1$) afforded compound 16 ($3.3 \mathrm{~g}, 27 \%$ for four steps) as a white solid. $R_{f}=0.10$ (petroleum ether/EtOAc $=3 / 1$); Mp 88-91 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+34.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- $d_{6}, 25{ }^{\circ} \mathrm{C}$): δ $7.85-7.80(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 7 \mathrm{H}), 5.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (dd, $J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, acetone- $\left.d_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta 203.7$ (C), 146.3 (C), 144.4 (C), 139.1 (C), $139.0(\mathrm{C}), 136.3(\mathrm{C}), 134.5(\mathrm{C}), 131.0(\mathrm{CH}), 130.4(\mathrm{CH}), 130.1(\mathrm{C}), 129.0(\mathrm{C}), 128.6$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 121.7(\mathrm{CH}), 118.6(\mathrm{C}), 118.3(\mathrm{CH}), 113.9(\mathrm{CH}), 112.2$ $\left(\mathrm{CH}_{2}\right), 58.9(\mathrm{CH}), 54.3\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 21.54\left(\mathrm{CH}_{3}\right), 21.50\left(\mathrm{CH}_{3}\right)$; IR
(KBr, neat): 3110, 3061, 1737, 1636, 1597, 1359, 1157, 917, 703, 667, $609 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ 549.1512; Found 549.1526.

(S)-4-Methyl-N-(5-methylene-1-tosyl-1,3,4,5-tetrahydrobenzo[cd]indol-4-yl)-N-(2-(2 -tosylhydrazono)propyl)benzenesulfonamide [4]. To a solution of compound $\mathbf{1 6}$ (100 $\mathrm{mg}, 0.18 \mathrm{mmol})$ in $10 \mathrm{~mL}\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=4 / 1\right)$ was added tosylhydrazine (41 mg , 0.22 mmol) and one drop HCl . The resulting solution was stirred for 24 h at room temperature as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure and used the next step without further purification.

17

(1aS,3aS,9bS)-1a-Methyl-3,6-ditosyl-1a,2,3,3a,4,6-hexahydro-1H-cyclopropa[c]indolo [4,3-ef]indole [17] and (3aS, 11bS)-3a-Methyl-5,8-ditosyl-3a,4,5,5a,6,8-hexahydro-1H -indolo[4,3-ef]pyrazolo[3,4-c]indole [18]. To a solution of the above crude product 4 in tolune (10 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(31 \mathrm{mg}, 0.22 \mathrm{mmol})$. The resulting mixture was heated at $120^{\circ} \mathrm{C}$ for 10 h as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 10/1) afforded compound $17(58 \mathrm{mg}, 60 \%)$ as a white solid and compound $\mathbf{1 8}(8 \mathrm{mg}, 8 \%)$ as a white solid. Compound $\mathbf{1 7}$ was used the next step with further purification. Data for compound 17: $R_{f}=0.60$ (petroleum ether/EtOAc $=$ 3/1); Mp 117-119 ${ }^{\circ} \mathrm{C} .[\alpha]^{25}{ }_{\mathrm{D}}+213.0\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ 533.1563; Found 533.1575. Data for compound 18: $R_{f}=0.24$ (petroleum ether/EtOAc $=3 / 1$); Mp 98-101 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+36.0\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.79-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.13(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=10.8,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=16.2,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.72$ (ddd, $J=12.0,10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (s, 3H), 2.36 (s, 3H), 1.16 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 145.0$ (C), 144.2 (C), 136.6 (C), 135.5 (C), $133.0(\mathrm{C}), 130.7(\mathrm{C}), 130.0(\mathrm{CH}), 129.9(\mathrm{CH}), 128.1(\mathrm{C}), 127.1(\mathrm{CH}), 126.8(\mathrm{CH})$, $126.2(\mathrm{CH}), 120.9(\mathrm{CH}), 120.1(\mathrm{CH}), 115.2(\mathrm{C}), 112.3(\mathrm{CH}), 99.0(\mathrm{C}), 93.9\left(\mathrm{CH}_{2}\right)$, $64.3(\mathrm{CH}), 54.6\left(\mathrm{CH}_{2}\right), 52.7(\mathrm{C}), 23.3\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{3}\right)$, one CH_{3} signal was not recognized due to overlapping. IR (KBr, neat): 3426, 2964, 2920, 1644, 1430, 1362, 1166, 1092, 1030, 798, $667 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ 561.1625; Found 561.1631.

(1aS,3aS,9bS)-1a,3-Dimethyl-1a,2,3,3a,4,6-hexahydro-1H-cyclopropa[c]indolo[4,3-ef] indole [2]. To a solution of naphthalene ($245 \mathrm{mg}, 1.9 \mathrm{mmol}$) in previously degassed THF (10 ml) was added sodium ($37 \mathrm{mg}, 1.6 \mathrm{mmol}$). The mixture was stirred at room temperature for 2 h in order to obtain a dark green. To a degassed solution of compound $17(80 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added the freshly prepared solution of sodium naphthalenide (10 ml). The resultant mixture was stirred for 10 min at this temperature as monitored by TLC. After completion of the reaction, a saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The mixture was made basic with saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure to give a crude amine, which was used the next step without further purification. To a solution of this amine in $\mathrm{MeOH}(15 \mathrm{~mL})$ were added $\mathrm{AcOH}(0.17 \mathrm{~mL}), \mathrm{NaBH}_{3} \mathrm{CN}(69 \mathrm{mg}, 1.08 \mathrm{mmol})$, and formalin (0.098 mL , 1.2 mmol) at room temperature. The mixture was stirred for 2 h as monitored by TLC. After completion of the reaction, the mixture was quenched with saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, concentrated under reduced pressure, and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layer was washed with saturated NaHCO_{3} $(10 \mathrm{~mL})$ and brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated under reduced pressure. Flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=15 / 1\right)$ afforded compound $2(25 \mathrm{mg}, 71 \%)$ as a colorless foam. $R_{f}=0.50\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=\right.$ $10 / 1$); Mp $151-154{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+44.3\left(c 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$,
$\left.25^{\circ} \mathrm{C}\right): \delta 8.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=6.4$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=10.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{ddd}, J=16.4,10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, $1.56(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 133.3(\mathrm{C}), 129.9(\mathrm{C}), 127.3(\mathrm{C}), 122.9(\mathrm{CH}), 118.3(\mathrm{CH}), 112.9(\mathrm{CH})$, $111.1(\mathrm{C}), 107.8(\mathrm{CH}), 63.0(\mathrm{CH}), 59.7\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{3}\right), 35.3(\mathrm{C}), 33.0(\mathrm{C}), 20.2\left(\mathrm{CH}_{2}\right)$, $18.5\left(\mathrm{CH}_{2}\right), 14.8\left(\mathrm{CH}_{3}\right)$. IR (KBr , neat): 3407, 2926, 1602, 1444, 1316, 1281, 1026, 799, 784, 744, $659 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2}$ 239.1549; Found 239.1549.
9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds: 7, 8, 11, 5, NOE spectra of 5, 7-endo-trig cyclization product, $\mathbf{3}$, NOE spectra of $\mathbf{3}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1}, \mathbf{1 5}, 16,18$, and 2

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) of 7.

M $\mathrm{O}_{0} \mathrm{O}_{0}^{\circ}$	No ${ }_{0}^{\circ}$	∞
추̇	¢i	$\stackrel{-}{m}$
V		

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) of $\mathbf{8}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) of $\mathbf{1 1}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum (acetone- $d_{6}, 400 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR spectrum (acetone- $d_{6}, 100 \mathrm{MHz}$) of 5 .

Figure S5. Difference NOE spectra of 5 irradiating (acetone- $d_{6}, 600 \mathrm{MHz}$).

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) of 7-endo-trig cyclization product.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) of $\mathbf{3}$.

Figure S8. Difference NOE spectra of $\mathbf{3}$ irradiating $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) of $\mathbf{1 2}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) of $\mathbf{1 3}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 150 MHz) of $\mathbf{1}$.

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) of $\mathbf{1 5}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum (acetone- $d_{6}, 400 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR spectrum (acetone- $d_{6}, 100 \mathrm{MHz}$) of $\mathbf{1 6}$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 150 MHz) of 18.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) of 2.

2

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, 150 MHz) of 2.
10. X-ray structure of compound 15 (CCDC 1882003)

11. Grignard addition on reaction scale

entry	reaction scale	dr
1	0.20 g	$1.38: 1$
2	0.50 g	$1.50: 1$
3	5.40 g	$1.23: 1$
4	20.0 g	$1.25: 1$

12. ChemBio 3D of compound $\mathbf{5}$

13. HPLC spectra of $(\pm)-\mathbf{9}$ and (+)-9

Channel: 2998; Channel Desc.: 2998 (210-400)nm; Processing Method: weiwang2014

	Channel	Retention Time (time)	Area $(\mu v . s)$	$\%$ Area	Height (μv)
1	$2998(210-400) \mathrm{nm}$	17.882	3363954	48.00	102785
2	$2998(210-400) \mathrm{nm}$	22.608	3644668	52.00	89962

Channel: 2998; Channel Desc.: 2998 (210-400)nm; Processing Method: weiwang2014

	Channel	Retention Time (time)	Area $(\mu \mathrm{v.s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400) \mathrm{nm}$	17.603	4388898	100.00	136108

The enantiomeric excess of (+)-9 was determined using a chiral HPLC (AD-H column, n-hexane $/ i-\operatorname{PrOH}=90: 10,1 \mathrm{~mL} / \mathrm{min}$). Compound $(\pm)-9$ was prepared as the similar procedure of (+)-9.

Channel: 2998; Channel Desc.: 2998 (210-400)nm; Processing Method: weiwang2014

	Channel	Retention Time (time) $)$	Area $(\mu \mathrm{v} . \mathrm{s})$	\% Area	Height $(\mu \mathrm{v})$
1	$2998(210-400)$	6.174	7289839	46.55	635026
2	$2998(210-400)$	7.337	8370376	53.45	693045

Channel: 2998; Channel Desc.: 2998 (210-400)nm; Processing Method: weiwang2014

	Channel	Retention Time (time)	Area $(\mu \mathrm{v} . \mathrm{s})$	$\%$ Area	Height $(\mu \mathrm{v})$
1	$2998(210-400)$	5.927	13238574	98.44	1156576
2	$2998(210-400)$	7.076	210050	1.56	13280

The enantiomeric excess of (+)-2 was determined using a chiral HPLC (AD-H column, n-hexane $/ i-\operatorname{PrOH}=90: 10,1 \mathrm{~mL} / \mathrm{min}$). Compound (\pm)-2 was prepared as the similar procedure of (+)-2.

