Enantioselective Formal Synthesis of (+)-Cycloclavine and Total Synthesis of

(+)-5-epi-Cycloclavine

Wei Wang,[†] Yang Mi,[†] Xiao-Ping Cao,^{*†} and Zi-Fa Shi^{*†}

 † State Key Laboratory of Applied Organic Chemistry and College of Chemistry &

Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China

* E-mail: caoxplzu@163.com

* E-mail: shizf@lzu.edu.cn

Table of Contents

1. Comparison of ¹ H and ¹³ C NMR data of (\pm)-cycloclavine (in the ref. 4c), (+)-cycloclavine	•
(in the ref. 4a), and (+)-cycloclavine [(1) in this work]	S2
2. Comparison of 1 H NMR spectra of (±)-cycloclavine (in the ref. 4c), (+)-cycloclavine (in	
the ref. 4a), and (+)-cycloclavine [(1) in this work]	S 3
3. Comparison of 13 C NMR spectra of (±)-cycloclavine (in the ref. 4c), (+)-cycloclavine (in	
the ref. 4a), and (+)-cycloclavine [(1) in this work]	S 4
4. Comparison of ¹ H and ¹³ C NMR data of (\pm) -5- <i>epi</i> -cycloclavine (in the ref. 4c) and	
(+)-5- <i>epi</i> -cycloclavine [(2) in this work]	S5
5. Comparison of ¹ H NMR spectra of (\pm) -5- <i>epi</i> -cycloclavine (in the ref. 4c) and	
(+)-5-epi-cycloclavine [(2) in this work, 400 MHz and 600 MHz]	S 6
6. Comparison of 13 C NMR spectra of (±)-5- <i>epi</i> -cycloclavine (in the ref. 4c) and	
(+)-5-epi-cycloclavine [(2) in this work, 100 MHz and 150 MHz]	S 7
7. Tabulated summary of synthesis of cycloclavine, 5-epi-cycloclavine, Szántay's amine,	
and Wipf's lactam	S 8
8. Experimental section	S9
9. ¹ H and ¹³ C NMR spectra of compounds: 7, 8, 11, 5, NOE spectra of 5, 7-endo-trig	
cyclization product, 3, NOE spectra of 3, 12, 13, 1, 15, 16, 18, and 2	S21
10. X-ray structure of compound 15 (CCDC 1882003)	S38
11. Grignard addition on reaction scale	S38
12. ChemBio 3D of compound 5	S38
13. HPLC spectra of (±)-9 and (+)-9	S39
14. HPLC spectra of (±)-2 and (+)-2	S40

1. Comparison of ¹H and ¹³C NMR data of (\pm)-cycloclavine (in the ref. 4c), (+)-cycloclavine (in the ref. 4a), and (+)-cycloclavine [(1) in this work]

(\pm) -cycloclavine (in the ref. 4c)	(+)-cycloclavine (in the ref. 4a)	(+)-cycloclavine [(1) in this work]
(700 MHz, CDCl ₃)	(500 MHz, CDCl ₃)	(600 MHz, CDCl ₃)
δ (ppm)	δ (ppm)	δ (ppm)
7.92 (br s, 1H)	7.89 (br s, 1H)	8.07 (br s, 1H)
7.15 (d, <i>J</i> = 8.4 Hz, 1H)	7.13 (dd, <i>J</i> = 8.0, 0.5 Hz, 1H)	7.14 (d, <i>J</i> = 7.8 Hz, 1H)
7.10 (app t, $J = 7.7$ Hz, 1H)	7.09 (app t, $J = 7.8$ Hz, 1H)	7.10 (app t, $J = 8.4$ Hz, 1H)
7.91 (s, 1H)	7.90 (app t, $J = 1.8$ Hz, 1H)	7.90 (s, 1H)
6.84 (d, <i>J</i> = 7.0 Hz, 1H)	6.82 (dd, <i>J</i> = 7.0, 0.5 Hz, 1H)	6.84 (d, <i>J</i> = 7.2 Hz, 1H)
3.17 (d, <i>J</i> = 9.1 Hz, 1H)	3.15 (d, <i>J</i> = 9.0 Hz, 1H)	3.20 (d, <i>J</i> = 9.0 Hz, 1H)
3.15 (dd, <i>J</i> = 14.0, 4.2 Hz, 1H)	3.13 (dd, <i>J</i> = 13.8, 3.8 Hz, 1H)	3.16 (dd, J = 14.4, 4.2 Hz, 1H)
2.79 (dd, <i>J</i> = 11.2, 3.5 Hz, 1H)	2.78 (dd, <i>J</i> = 11.5, 4.0 Hz, 1H)	2.82 (dd, J = 11.4, 4.2 Hz, 1H)
2.61 (t, <i>J</i> = 12.6 Hz, 1H)	2.63-2.57 (m, 1H)	2.64 (t, J = 12.6 Hz, 1H)
2.42 (d, <i>J</i> = 8.4 Hz, 1H)	2.40 (d, <i>J</i> = 8.5 Hz, 1H)	2.43 (d, J = 8.4 Hz, 1H)
2.37 (s, 3H)	2.36 (s, 3H)	2.39 (s, 3H)
1.70 (s, 3H)	1.69 (s, 3H)	1.71 (s, 3H)
1.61 (d, <i>J</i> = 2.8 Hz, 1H)	1.60 (d, <i>J</i> = 3.5 Hz, 1H)	1.64 (d, J = 3.0 Hz, 1H)
0.46 (d, <i>J</i> = 3.5 Hz, 1H)	0.45 (d, <i>J</i> = 3.5 Hz, 1H)	0.48 (d, J = 3.6 Hz, 1H)

(±)-cycloclavine (in the ref. 4c)	(+)-cycloclavine (in the ref. 4a)	(+)-cycloclavine [(1) in this work]		
(125 MHz, CDCl ₃)	(150 MHz, CDCl ₃)	(150 MHz, CDCl ₃)		
δ^1 (ppm)	δ^2 (ppm)	δ^3 (ppm)	$\delta^3 - \delta^1$ (ppm)	$\delta^3 - \delta^2$ (ppm)
135.4	135.6	135.3	-0.1	-0.3
133.5	133.7	133.6	-0.1	-0.1
128.7	128.8	128.7	0.0	-0.1
122.9	123.1	122.9	0.0	-0.2
118.1	118.2	118.1	0.0	-0.1
113.2	113.5	113.1	-0.1	-0.4
110.3	110.5	110.3	0.0	-0.2
107.9	108.1	108.0	0.1	-0.1
69.6	69.8	69.7	0.1	-0.1
65.6	65.7	65.5	-0.1	-0.2
39.9	40.1	39.9	0.0	-0.2
34.3	34.5	34.4	0.1	-0.1
27.8	27.9	27.7	-0.1	-0.2
24.9	25.1	24.9	0.0	-0.2
24.2	24.4	24.2	0.0	-0.2
16.5	16.6	16.4	-0.1	-0.2

2. Comparison of ¹H NMR spectra of (\pm)-cycloclavine (in the ref. 4c), (+)-cycloclavine (in the ref. 4a), and (+)-cycloclavine [(1) in this work]

the ref. 4a), and (+)-cycloclavine [(1) in this work]

(±)-5-epi-cycloclavine	(+)-5-epi-cycloclavine	(+)-5-epi-cycloclavine
(in the ref. 4c)	[(2) in this work]	[(2) in this work]
(600 MHz, CD ₂ Cl ₂)	(400 MHz, CD ₂ Cl ₂)	(600 MHz, CD ₂ Cl ₂)
δ (ppm)	δ (ppm)	δ (ppm)
8.04 (br s, 1H)	8.05 (br s, 1H)	8.04 (br s, 1H)
7.15–7.10 (m, 2H)	7.15–7.09 (m, 2H)	7.15–7.10 (m, 2H)
6.92 (dd, <i>J</i> = 1.8 Hz, 1H)	6.92 (t, <i>J</i> = 2.0 Hz, 1H)	6.92 (s, 1H)
6.58 (dd, <i>J</i> = 6.6, 0.6 Hz, 1H)	6.58 (dd, <i>J</i> = 6.4, 1.6 Hz, 1H)	6.58 (d, <i>J</i> = 6.6 Hz, 1H)
3.47 (dd, <i>J</i> = 10.8, 6.0 Hz, 1H)	3.46 (dd, <i>J</i> = 10.8, 5.6 Hz, 1H)	3.46 (dd, <i>J</i> = 10.8, 5.4 Hz, 1H)
3.01 (dd, <i>J</i> = 14.4, 6.0 Hz, 1H)	3.02 (dd, <i>J</i> = 14.4, 5.6 Hz, 1H)	3.01 (dd, <i>J</i> = 14.4, 5.4 Hz, 1H)
2.98 (d, <i>J</i> = 8.4 Hz, 1H)	2.97 (d, <i>J</i> = 8.8 Hz, 1H)	2.97 (d, <i>J</i> = 9.0 Hz, 1H)
2.66 (d, <i>J</i> = 9.0 Hz, 1H)	2.66 (d, <i>J</i> = 8.8 Hz, 1H)	2.66 (d, <i>J</i> = 8.4 Hz, 1H)
2.59 (ddd, <i>J</i> = 16.2, 11.4, 1.8 Hz, 1H)	2.59 (ddd, <i>J</i> = 16.4, 10.8, 1.6 Hz, 1H)	2.59 (ddd, <i>J</i> = 16.2, 10.8, 1.8 Hz, 1H)
2.48 (s, 3H)	2.48 (s, 3H)	2.48 (s, 3H)
1.57 (d, <i>J</i> = 3.0 Hz, 1H)	1.56 (d, <i>J</i> = 4.4 Hz, 1H)	1.56 (d, <i>J</i> = 3.6 Hz, 1H)
1.12 (s, 3H)	1.12 (s, 3H)	1.12 (s, 3H)
1.11 (d, $J = 4.2$ Hz, 1H)	1.11 (d, $J = 4.4$ Hz, 1H)	1.11 (d, $J = 4.2$ Hz, 1H)

4. Comparison of ¹H and ¹³C NMR data of (\pm) -5-*epi*-cycloclavine (in the ref. 4c) and (+)-5-*epi*-cycloclavine [(2) in this work]

(±)-5-epi-cycloclavine	(+)-5-epi-cyclocl	avine	(+)-5-epi-cycloclav	ine
(in the ref. 4c)	[(2) in this work]		[(2) in this work]	
(75 MHz, CDCl ₃)	(100 MHz, CDC	l ₃)	(150 MHz, CDCl ₃)	
δ^1 (ppm)	δ^2 (ppm)	δ^2 – δ^1 (ppm)	δ^3 (ppm)	$\delta^3 - \delta^1$ (ppm)
133.3	133.3	0.0	133.4	0.0
130.5	129.9	-0.6	129.9	-0.6
127.4	127.3	-0.1	127.3	-0.1
122.9	122.9	0.0	122.9	0.0
118.1	118.3	0.2	118.3	0.2
112.9	112.9	0.0	112.9	0.0
111.7	111.1	-0.6	111.1	-0.6
107.6	107.8	0.2	107.8	0.2
62.9	63.0	0.1	63.0	0.1
59.8	59.7	-0.1	59.7	-0.1
35.8	35.8	0.0	35.8	0.0
35.4	35.3	-0.1	35.3	-0.1
33.2	33.0	-0.2	33.0	-0.2
20.1	20.2	0.1	20.3	0.2
18.6	18.5	-0.1	18.5	-0.1
14.9	14.8	-0.1	14.8	-0.1

5. Comparison of 'H NMR spectra of (\pm) -5-*epi*-cycloclavine (in the ref. 4c) and (+)-5-*epi*-cycloclavine [(**2**) in this work, 400 MHz and 600 MHz]

(+)-5-epi-cycloclavine [(2) in this work, 100 MHz and 150 MHz]

main	starting material and	optical	compound	Ref.
author	key features	rotation		
Sz ánty	^{<i>a</i>} Uhle's ketone derivative	(±)	cycloclavine	4b
(2008)	^b cyclopropanation with diazomethane		8 steps, 1.1% overall yield	
Wipf	${}^{a}\beta$ -methallyl alcohol	(±)	cycloclavine	4c
(2011)	^b intramolecular Diels-Alder cycloaddition		14 steps, 1.2% overall yield	
		(±)	5-epi-cycloclavine	4c
			17 steps, 2.3% overall yield	
	^a allene	(-)	cycloclavine	4a, 4h
(2017)	^b asymmetric cyclopropanation of allene		8 steps, 7.1% overall yield	
(2019)	^b intermolecular [4 + 2] cycloaddition	(+)	cycloclavine	
			8 steps, 4.2% overall yield	
		chiral	Wipf's lactam	
			7 steps, 4.8% overall yield	
Brewer	^{<i>a</i>} Uhle's ketone	(±)	cycloclavine	4d
(2014)	^b ring fragmentation		14 steps, 2.1% overall yield	
	^b 1,3-dipolar cycloaddition			
Cao	^{<i>a</i>} indole aldehyde	(±)	Szántay's amine	4e
(2014)	^b aza-Cope–Mannich cyclization		7 steps, 27.4% overall yield	
	^b radical-alkene cyclization			
(2017)	^{<i>a</i>} 4-bromoindole	(+)	Szántay's amine	4g
	^b asymmetric induction by Ellman's sulinimine		11 steps, 19.7% overall yield	
	^b Ru-catalyzed isomerization C=C bond			
Opatz	^{<i>a</i>} 4-bromoindole	(±)	Szántay's amine	4f
(2016)	^b intermolecular Heck coupling		7 steps, 16.8% overall yield	
Basai	^{<i>a</i>} 4-bromoindole	(+)	Szántay's amine	4i
(2018)	^b Heck cyclization, ^b late-stage ester-aminolysis		18 steps, 25.5% overall yield	
Dong	^a 2-iodoresorcinol		cycloclavine	4j
(2018)	^b tandem C–N bond coupling/allylic alkylation	(-)	10 steps, 30% overall yield	
	^b C–C activation, ^b cyclopropanation			
Cao	^{<i>a</i>} 4-bromoindole	(+)	cycloclavine	
	^b Grignard addition, ^b Hecking couping		13 steps, 2.0% overall yield	
	^b cyclopropanation, ^b ester-aminolysis reaction	(+)	5-epi-cycloclavine	
	^b formal [3 + 2] cycloaddition		14 steps, 3.3% overall yield	
^a starting	material: known compound or commercially avail	able. ^b key fe	eatures	

7. Tabulated summary of synthesis of cycloclavine, 5-epi-cycloclavine, Szántay's amine, and Wipf's lactam

8. Experimental section

General Information. All reactions that required anhydrous conditions were carried out by standard procedures under argon atmosphere. Commercially available reagents were used without further purification. The solvents were dried by distillation over appropriate drying reagents. The petroleum ether (PE) used had a boiling range of 60-90 °C. Reactions were monitored by thin-layer chromatography (TLC) on silica gel GF 254 plates. Column chromatography was performed through silica gel (200-300 mesh). IR spectra were recorded on an FT-IR spectrophotometer and reported in wavenumbers (cm⁻¹). ¹H, ¹³C NMR, and DEPT 135 spectra were recorded on a Bruker Avance-400 MHz (¹H: 400 MHz; ¹³C: 100 MHz) or a Varian Inova-600 MHz (¹H: 600 MHz; ¹³C: 150 MHz). Chemical shift values (δ) are given in ppm and coupling constants (J) in Hertz (Hz). Residual solvent signals in the ¹H and ¹³C NMR spectra were used as an internal reference (CDCl₃: δ H 7.26, δ C 77.0 ppm; acetone- d_6 : δ H 2.05, δ C 206.26, ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), br (broad), dd (doublet of doublets), q (quartet) and m (multiplet). Melting points were determined by use of a microscope apparatus and are uncorrected. High resolution mass spectra were obtained on a Thermo Fisher Scientific LTQ-Orbitrap-EDT instrument using electrospray ionization (ESI) technique. Analytical chiral high performance liquid chromatography (HPLC) was conducted on a Waters 1525/2998 instrument. Optical rotations were measured using a 0.1 mL cell with a 1 cm path length on automatic polarmeter and concentrations (c) were reported in mg/mL. The X-ray single-crystal determination was performed with a diffractometer working with graphite monochromated Mo Ka radiation.

(S)-N-((R)-1-(4-Bromo-1-tosyl-1H-indol-3-yl)but-3-en-2-yl)-2-methylpropane-2 -sulfinamide [7] and (S)-N-((S)-1-(4-Bromo-1-tosyl-1H-indol-3-yl)but-3-en-2-yl)-2-methylpropane-2-sulfinamide [8]. To a degassed solution of compound **9** (20.0 g, 40.5 mmol) in CH₂Cl₂ (200 mL) at -78 °C was added vinylmagnesium bromide (1.0 M solution in THF, 81 mL, 81 mmol). The reaction mixture was stirred at -78 °C for 8 h as monitored by TLC. After completion of the reaction, a saturated aqueous solution of NH₄Cl (30 mL) was slowly added dropwise with vigorous stirring. Stirring was continued for 10 min until all solid particles were dissolved. The reaction mixture

was concentrated under reduced pressure and extracted with CH_2Cl_2 (3 × 60 mL). The combined organic layer was washed with brine (70 mL), dried over Na₂SO₄, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 1/1) afforded compound 7 (8.5 g, 40%) as a yellow solid and compound 8 (10.5 g, 50%) as a yellow solid. Data for compound 7: $R_f = 0.23$ (petroleum ether/EtOAc = 3/1); Mp 60–62 °C; $[\alpha]_{D}^{25}$ +85.0 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.96 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.49 (s, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 8.0 Hz, 1H), 5.73 (ddd, J = 16.8, 10.4, 8.0 Hz 1H), 5.18 (d, J = 17.6 Hz, 1H), 5.16 (d, J = 9.6 Hz, 1H),4.26–4.20 (m, 1H), 3.35 (d, J = 2.8 Hz, 1H), 3.29–3.18 (m, 2H), 2.34 (s, 3H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 145.2 (C), 137.9 (CH), 136.3 (C), 134.6 (C), 129.8 (CH), 128.3 (C), 127.8 (CH), 126.7 (CH), 126.2 (CH), 125.5 (CH), 118.0 (C), 117.7 (CH₂), 114.2 (C), 112.7 (CH), 57.5 (CH), 55.4 (C), 32.9 (CH₂), 22.4 (CH₃), 21.4 (CH₃); IR (KBr, neat): 3421, 2958, 1641, 1373, 1174, 1057, 925, 813, 703, 672, 616 cm⁻¹; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{23}H_{28}BrN_2O_3S_2$ 523.0719; Found 523.0730. Data for compound 8: $R_f = 0.10$ (petroleum ether/EtOAc = 3/1); Mp 61–64 °C; $[\alpha]_{D}^{25}$ -37.0 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.96 (d, J = 8.3 Hz, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.46 (s, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.23 (d, J = 8.1 Hz, 2H), 7.12 (t, J = 8.1 Hz, 1H), 5.95 (ddd, J = 17.2, 10.4, 6.4 Hz, 1H),5.20 (d, J = 17.2 Hz, 1H), 5.17 (d, J = 10.4 Hz, 1H), 4.27–4.21 (m, 1H), 3.39–3.33 (m, 2H), 3.11 (dd, J = 14.5, 6.7 Hz, 1H), 2.35 (s, 3H), 1.07 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): *δ* 145.1 (C), 138.9 (CH), 136.1 (C), 134.7 (C), 129.7 (CH), 128.5 (C), 127.7 (CH), 126.6 (CH), 125.2 (CH), 118.7 (C), 116.8 (CH₂), 114.1 (C), 112.7 (CH), 59.6 (CH), 55.7 (C), 31.9 (CH₂), 22.2 (CH₃), 21.4 (CH₃), one aromatic CH signal was not recognized due to overlapping. IR (KBr, neat): 3420, 2960, 1641, 1372, 1175, 1057, 926, 813, 702, 672, 615 cm⁻¹; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₃H₂₈BrN₂O₃S₂ 523.0719; Found 523.0728.

(S)-N-((R)-1-(4-Bromo-1-tosyl-1H-indol-3-yl)but-3-en-2-yl)-N,2-dimethylpropane-2-sulfinamide [11]. To a degassed solution of sulfinamine 7 (2.4 g, 4.6 mmol) in dry THF (50 mL) at 0 $^{\circ}$ C was added a solution of KHMDS in THF (1.0 M, 6.9 mL, 6.9 mmol). After stirring for 5 min, MeI (0.86 mL, 13.8 mmol) was added to the solution.

The reaction mixture was allowed to react for 1 h at 0 $\,^{\circ}$ C as monitored by TLC. After completion of the reaction, a saturated aqueous solution of NH₄Cl (10 mL) was added. The reaction mixture was concentrated under reduced pressure and extracted with EtOAc (3 \times 20 mL). The combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 3/1) afforded compound **11** (2.0 g, 80%) as a colorless solid. $R_f = 0.20$ (petroleum ether/EtOAc = 3/1); Mp 154–157 °C; $[\alpha]_{D}^{25}$ $-3.0 (c \ 1.0, \ CH_2Cl_2);$ ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.89 (dd, J = 8.4, 0.8 Hz, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.41 (s, 1H), 7.34 (dd, J = 8.4, 0.8 Hz, 1H), 7.18 (d, J =8.0 Hz, 2H), 7.07 (t, J = 8.0 Hz, 1H), 5.87 (ddd, J = 17.6, 10.4, 7.2 Hz, 1H), 5.13 (d, J = 10.4 Hz, 1H), 4.96 (d, J = 17.2 Hz, 1H), 3.97 (q, J = 7.2 Hz, 1H), 3.33 (dd, J = 14.8, 6.0 Hz, 1H), 3.22 (dd, J = 14.8, 8.4 Hz, 1H), 2.61 (s, 3H), 2.30 (s, 3H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 145.0 (C), 136.2 (C), 136.0 (CH), 134.7 (C), 129.7 (CH), 128.5 (C), 127.7 (CH), 126.9 (CH), 126.6 (CH), 125.2 (CH), 118.5 (C), 118.1 (CH₂), 114.1 (C), 112.8 (CH), 66.4 (CH), 58.2 (C), 28.9 (CH₂), 28.0 (CH₃), 23.6 (CH₃), 21.4 (CH₃); IR (KBr, neat): 3420, 2955, 1641, 1466, 1413, 1372, 1174, 1132, 927, 703, 616 cm⁻¹; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₉BrN₂NaO₃S₂ 559.0695; Found 559.0706.

(*S*)-*N*,2-*Dimethyl*-*N*-((*R*)-5-*methylene*-1-tosyl-1,3,4,5-tetrahydrobenzo[cd]indol-4-yl) propane-2-sulfinamide [5] and (*S*)-*N*,2-*Dimethyl*-*N*-((*S*)-1-tosyl-3,4-dihydro-1*H*-cyclohepta[cd]indol-4-yl)propane-2-sulfinamide [7-endo-trig cyclization product]. To a degassed solution of **11** (700 mg, 1.3 mmol), K₂CO₃ (1.1 g, 7.8 mmol) and PPh₃ (138 mg, 0.52 mmol) in CH₃CN (100 mL) was added Pd(OAc)₂ (30 mg, 0.13 mmol) under an argon atmosphere. The reaction mixture was stirred under reflux for 20 h as monitored by TLC. After completion of the reaction, the mixture was concentrated and passed through a short column of silica gel (eluent: ethyl acetate) to remove the catalyst and inorganic salts. The combined eluent was concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 1/1) afforded compound **5** (190 mg, 32%) as a yellow liquid and **7-endo-trig cyclization product** (380 mg, 64%) as a yellow liquid. Data for compound **5**: $R_f = 0.23$ (petroleum ether/EtOAc = 1/1); $[\alpha]^{25}_{D} - 31.0$ (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, acetone-*d*₆,

25 °C): δ 7.84 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 7.6 Hz, 1H), 7.44–7.42 (m, 2H), 7.35 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 5.87 (s, 1H), 5.52 (d, J = 0.8 Hz, 1H),4.27-4.23 (m, 1H), 3.19 (ddd, J = 10.8, 9.2, 1.6 Hz, 1H), 3.03 (dd, J = 16.0, 4.8 Hz, 1H), 2.59 (s, 3H), 2.31 (s, 3H), 0.94 (s, 9H); 13 C NMR (100 MHz, acetone- d_6 , 25 °C): δ 146.3 (C), 141.4 (C), 136.4 (C), 134.6 (C), 131.0 (CH), 130.8 (C), 129.8 (C), 127.8 (CH), 126.9 (CH), 121.9 (CH), 119.1 (C), 118.5 (CH), 113.9 (CH), 113.0 (CH₂), 66.1 (CH), 58.6 (C), 28.5 (CH₃), 27.1 (CH₂), 23.8 (CH₃), 21.6 (CH₃); IR (KBr, neat): 3421, 2925, 1597, 1361, 1169, 1090, 1032, 911, 814, 734, 669 cm⁻¹; HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₂₄H₂₉N₂O₃S₂ 457.1614; Found 457.1622. Data for compound 7-endo-trig cyclization product: $R_f = 0.5$ (petroleum ether/EtOAc = 1/1); $[\alpha]^{24}_{D}$ -6.0 $(c \ 1.0, \ CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.83 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.30 (s, 1H), 7.22 (t, J = 8.0 Hz, 1H), 7.15 (d, J = 7.6 Hz, 2H),6.98 (d, J = 7.6 Hz, 1H), 6.48 (d, J = 12.0 Hz, 1H), 6.04 (dd, J = 12.0 Hz, 3.2 Hz, 1H),4.11–4.09 (m, 1H), 3.18–3.09 (m, 2H), 2.64 (s, 3H), 2.26 (s, 3H), 1.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 144.7 (C), 135.2 (C), 135.0 (C), 134.1 (CH), 130.3 (C), 129.7 (CH), 129.3 (CH), 128.3 (C), 126.6 (CH), 124.7 (CH), 124.3 (CH), 122.3 (CH), 119.7 (C), 112.6 (CH), 62.5 (CH), 58.1 (C), 32.4 (CH₂), 27.8 (CH₃), 23.3 (CH₃), 21.3 (CH₃); IR (KBr, neat): 3447, 2925, 1597, 1364, 1177, 1090, 1018, 925, 800, 734, 669 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₉N₂O₃S₂ 457.1614; Found 457.1618.

(1'S,2'S,4*R*)-*Ethyl*-4-((*S*)-*N*,2-*dimethylpropan*-2-*ylsulfinamido*)-2'-*methyl*-1-*tosyl*-3,4*dihydro*-1*H*-*spiro*[*benzo*[*cd*]*indole*-5,1'-*cyclopropane*]-2'-*carboxylate* [**3**]. To a degassed solution of *p*-acetamidobenzenesulfonyl azide (2.5 g, 10.4 mmol) and ethyl 2-methyl-3-oxobutanoate (1.0 g, 6.9 mmol) in MeCN (15 mL) at 0 °C was added DBU (1.6 mL, 10.4 mmol). The reaction mixture was stirred at room temperature for 24 h as monitored by TLC. After completion of the reaction, the reaction mixture was quenched with 1 N HCl (10 ml) and extracted with hexane (3 × 50 mL). The combined organic layer was washed with saturated NaHCO₃ (50 mL), brine (50 mL), dried over Na₂SO₄, filtrated and concentrated under reduced pressure. Flash column chromatography (pentane/Et₂O = 1/50) afforded ethyl 2-diazopropanoate (631 mg, 71%) as a yellow oil. To a degassed solution of Rh₂(TPA)₄ (0.8 mg, 0.00059mmol)

and compound 5 (270 mg, 0.59 mmol) in CH₂Cl₂ (20 mL) at room temperature was added ethyl 2-diazopropanoate (227 mg, 1.77 mmol) dissolved in CH₂Cl₂ (10 mL) at a rate of 1 mL/h as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 1/1) afforded compound 3 (180 mg, 55%) as a colorless foam. R_f = 0.23 (petroleum ether/EtOAc = 1/1); Mp 70–72 °C; $[\alpha]_{D}^{18}$ +84.0 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.79 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.0 Hz, 1H), 7.29–7.23 (m, 4H), 6.78 (d, J = 7.2 Hz, 1H), 4.19 (dq, J = 7.2, 1.6 Hz, 2H), 3.42 (t, J = 2.8 Hz, 1H), 3.07 (dd, J = 16.4, 2.4 Hz, 1H), 3.05 (dt, J = 16.0, 2.8 Hz, 1H), 2.39 (s, 3H), 2.36 (s, 3H), 2.27 (d, J = 6.4, 1H), 1.80 (d, J = 6.0, 1H), 1.27 (t, J = 7.2 Hz, 3H),1.06 (s, 3H), 0.35 (s, 9H); 13 C NMR (100 MHz, CDCl₃, 25 °C): δ 173.0 (C), 144.7 (C), 135.4 (C), 133.2 (C), 131.1 (C), 129.8 (CH), 129.0 (C), 126.8 (CH), 125.0 (CH), 120.5 (CH), 119.9 (CH), 117.2 (C), 111.8 (CH), 64.5 (CH), 61.2 (CH₂), 57.6 (C), 34.9 (C), 33.1 (C), 30.7 (CH₃), 25.9 (CH₂), 23.4 (CH₃), 22.9 (CH₂), 21.5 (CH₃), 16.6 (CH₃), 14.3 (CH₃). IR (KBr, neat): 3280, 2920, 2851, 1715, 1597, 1443, 1364, 1177, 1115, 1032, 667 cm⁻¹; HRMS (ESI-TOF) m/z: $[M + K]^+$ Calcd for C₂₉H₃₆KN₂O₅S₂ 595.1697; Found 595.1698.

(1*aS*, 3*aR*, 9*bS*)-1*a*, 3-*Dimethyl*-6-*tosyl*-3, 3*a*, 4, 6-*tetrahydro*-1*H*-*cyclopropa*[*c*]*indolo* [4,3-*ef*]*indol*-2(1*aH*)-*one* [**12**]. To a solution of **3** (180 mg, 0.32 mmol) in CH₂Cl₂ (20 mL) was added 4 N HCl/MeOH (0.65 mL) and stirred for 1 h at room temperature as monitored by TLC. After completion of the reaction, a saturated NaHCO₃ (20 mL)was added and extracted by CH₂Cl₂ (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. The crude product was dissolved in anhydrous methanol (10 mL). Then NaOH (130 mg, 3.2 mmol) was added and stirred for another 1 h as monitored by TLC. After completion of the reaction, the mixture was quenched with water and extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. The crude product was dissolved in anhydrous methanol (10 mL). Then NaOH (130 mg, 3.2 mmol) was added and stirred for another 1 h as monitored by TLC. After completion of the reaction, the mixture was quenched with water and extracted with EtOAc (3 × 20 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/ EtOAc = 2/1) afforded the lactam **12** (94 mg, 72% yield) as a colorless foam. *R_f* = 0.12 (petroleum ether/EtOAc = 2/1); Mp 105–107 °C; [α]²⁵_D –43.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.80 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 1.6 Hz, 1H), 7.26–7.22 (m, 3H), 6.92 (d, J = 7.6 Hz, 1H), 3.70 (dd, J = 12.0, 4.0 Hz, 1H), 3.23 (dd, J = 14.4, 4.0 Hz, 1H), 2.81 (s, 3H), 2.59 (ddd, J = 14.0, 12.0, 2.0 Hz, 1H), 2.36 (s, 3H), 1.80 (s, 3H), 1.14 (d, J = 3.6 Hz, 1H), 0.83 (d, J = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 178.3 (C), 144.9 (C), 135.3 (C), 133.7 (C), 133.1 (C), 130.6 (C), 129.9 (CH), 126.8 (CH), 125.7 (CH), 120.7 (CH), 117.3 (C), 114.3 (CH), 111.6 (CH), 60.6 (CH), 32.3 (C), 31.9 (C), 28.7 (CH₂), 27.4 (CH₃), 25.1 (CH₂), 21.6 (CH₃), 12.2 (CH₃). IR (KBr, neat): 3364, 2918, 1640, 1595, 1369, 1115, 1091, 991, 773, 753, 666 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₃N₂O₃S 407.1424; Found 407.1429.

(1aS,3aR,9bS)-1a,3-Dimethyl-3,3a,4,6-tetrahydro-1H-cyclopropa[c]indolo[4,3-ef]indol -2(1aH)-one [13]. To a solution of naphthalene (104 mg, 0.81 mmol) in previously degassed THF (5 ml) was added sodium (22.4 mg, 0.97 mmol). The mixture was stirred at room temperature for 2 h in order to obtain a dark green. Then to a degassed solution of compound 12 (33 mg, 0.081 mmol) in THF (10 mL) at -78 °C was added the freshly prepared solution of sodium naphthalenide (5 ml). The mixture was stirred for 10 min at this temperature as monitored by TLC. After completion of the reaction, a saturated NH₄Cl (10 mL) was added. The mixture was made basic with saturated NaHCO₃ (10 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. Flash column chromatography (CH₂Cl₂/MeOH = 15/1) afforded compound **13** (20 mg, 98%) as a colorless foam. R_f = 0.50 (CH₂Cl₂/MeOH = 15/1); Mp 203-205 °C; $[\alpha]^{18}_{D}$ -81.0 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 8.46 (br s, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.12 (t, J= 7.2 Hz, 1H), 7.01 (s, 1H), 6.81 (d, J = 6.8 Hz, 1H), 3.84 (dd, J = 12.0, 8.0 Hz, 1H), 3.30 (dd, J = 13.6, 8.0 Hz, 1H), 2.85 (s, 3H), 2.74–2.67 (m, 1H), 1.87 (s, 3H), 1.16 (d, J = 3.6 Hz, 1H), 0.90 (d, J = 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 178.9 (C), 133.5 (C), 132.7 (C), 128.1 (C), 122.9 (CH), 119.2 (CH), 110.7 (C), 110.1 (CH), 109.1 (CH), 61.5 (CH), 32.6 (C), 32.2 (C), 28.8 (CH₂), 27.4 (CH₃), 25.2 (CH₂), 12.3 (CH₃). IR (KBr, neat): 3278, 2926, 1671, 1593, 1457, 1161, 1092, 1032, 775, 748, 659 cm⁻¹; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₆H₁₇N₂O 253.1335; Found 253.1337.

(1aS,3aR,9bS)-1a,3-dimethyl-1a,2,3,3a,4,6-hexahydro-1H-cyclopropa[c]indolo[4,3eflindole [1]. To a solution of 13 (25.0 mg, 0.10 mmol) in THF (2.0 mL) under an argon atmosphere was cooled to 0 °C and treated with LiAlH₄ (0.50 mL, 1.0 M solution in Et₂O, 0.240 mmol). The reaction mixture was stirred at reflux in a sealed tube for 16 h, diluted with Et₂O, cooled to 0 $^{\circ}$ C and treated sequentially with H₂O (0.019 mL), aq 15% NaOH (0.019 mL) and H₂O (0.057 mL), warmed to r.t. and stirred for 15 min. MgSO₄ was added and the solution was stirred rigorously for 15 min, and filtered through a pad of Celite. The mixture was concentrated under reduced pressure and afforded compound 1 (21 mg, 89%) as a white soild. $R_f = 0.40$ (CH₂Cl₂/MeOH = 10/1); Mp 160–162 °C (dec.); $[\alpha]^{25}_{D}$ + 63.0 (c 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃, 25 °C): 8.07 (br s, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.10 (app t, J = 8.4 Hz, 1H), 7.90 (s, 1H), 6.84 (d, J = 7.2 Hz, 1H), 3.20 (d, J = 9.0 Hz, 1H), 3.16 (dd, J = 14.4, 4.2 Hz, 1H), 2.82 (dd, J = 11.4, 4.2 Hz, 1H), 2.64 (t, J = 12.6 Hz, 1H), 2.43 (d, J = 8.4 Hz, 1H), 2.39 (s, 3H), 1.71 (s, 3H), 1.64 (d, J = 3.0 Hz, 1H), 0.48 (d, J = 3.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃, 25 °C): δ135.3 (C), 133.6 (C), 128.7 (C), 122.9 (CH), 118.1 (CH), 113.1 (C), 110.3 (CH), 108.0 (CH), 69.7 (CH), 65.5 (CH₂), 39.9 (CH₃), 34.4 (C), 27.7 (C), 24.9 (CH₂), 24.2 (CH₂), 16.4 (CH₃). IR (KBr, neat): 3395, 2940, 2925, 1591, 1443, 1091, 780, 738 cm; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₆H₁₉N₂ 239.1549; Found 239.1547.

(S)-2-Methyl-N-((S)-5-methylene-1-tosyl-1,3,4,5-tetrahydrobenzo[cd]indol-4-yl)propa ne-2-sulfinamide [6] and (S)-2-methyl-N-((S)-1-tosyl-3,4-dihydro-1H-cyclohepta[cd] indol-4-yl)propane-2-sulfinamide [14]. To a degassed solution of 8 (12.0 g, 23 mmol), K_2CO_3 (19.0 g, 138 mmol) and PPh₃ (2.4 g, 9.2 mmol) in CH₃CN (1500 mL) was added Pd(OAc)₂ (0.52 g, 2.3 mmol) under an argon atmosphere. The reaction mixture was stirred under reflux for 20 h as monitored by TLC. After completion of the reaction, the residue was passed through a short column of silica gel (eluent: ethyl acetate) to remove the catalyst and inorganic salts. The combined eluent was concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 1/1) afforded crude compounds **6** and **14** (quantitative). According to the characteristic integral of ¹H NMR spectrum for crude products, compounds **6** and **14** were in proportion to 3 : 5. The mixture was used the next step without further purification.

(R)-2-Methyl-N-(1-tosyl-3,4-dihydro-1H-cyclohepta[cd]indol-4-yl)propane-2sulfonamide [15]. To a solution of sulfinamine 7 (100 mg, 0.19 mmol) in dry CH₂Cl₂ (50 mL) at 0 °C was added *m*-CPBA (66 mg, 0.38 mmol). The mixture was allowed to react for 1 h at room temperature as monitored by TLC. After completion of the reaction, the mixture was slowly added a mixture of saturated aqueous solution of Na₂SO₃ (5 mL) and saturated aqueous solution of Na₂CO₃ (5 mL). The organic layer was separated and washed with saturated aqueous solution of Na₂SO₃ (5 mL), water (10 mL), dried over Na₂SO₄, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 5/1) afforded crude intermediate, which was used the next step without further purification. To a degassed solution of the above crude intermediate and (o-tol)₃P (12 mg, 0.038 mmol) in Et₃N (15 mL) was added Pd(OAc)₂ (4.3 mg, 0.019 mmol) under an argon atmosphere. The reaction mixture was stirred under reflux for 2 h as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 3/1) afforded compound **15** (61 mg, 69%) as a yellow solid; $R_f = 0.50$ (petroleum ether/EtOAc = 2/1); Mp 183–186 °C; $[\alpha]_{D}^{25}$ +100.0 (c 1.0, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.88 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.43 (s, 1H), 7.29 (t, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0Hz, 2H), 7.05 (d, J = 7.6 Hz, 1H), 6.53 (d, J = 12.0 Hz, 1H), 6.04 (dd, J = 12.0, 6.0 Hz, 1H), 4.44–4.38 (m, 1H), 4.21 (d, J = 10.0 Hz, 1H), 3.23–3.13 (m, 2H), 2.33 (s, 3H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 145.0 (C), 135.3 (C), 135.0 (C), 133.3 (CH), 130.2 (C), 129.9 (CH), 128.2 (CH), 126.8 (C), 124.9 (CH), 124.8 (CH), 123.9 (CH), 118.5 (C), 113.1 (CH), 59.8 (CH), 52.6 (C), 34.8 (CH₂), 24.2 (CH₃), 21.5 (CH₃); one aromatic CH signal was not recognized due to overlapping. IR (KBr, neat): 3444, 2959, 2925, 1639, 1363, 1305, 1177, 1027, 916, 800, 675 cm⁻¹; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{23}H_{26}N_2NaO_4S_2$ 481.1226; Found 481.1234.

(S)-4-Methyl-N-(5-methylene-1-tosyl-1,3,4,5-tetrahydrobenzo[cd]indol-4-yl)-N-(2oxopropyl)benzenesulfonamide [16]. To a solution of crude mixture 6 and 14 (10.2 g) in CH₂Cl₂ (100 mL) was added 4 N HCl/dioxane (23.0 mL, 92.3 mmol). The mixture was stirred at room temperature for 1 h as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure. The mixture was dissolved in water and neutralized with 4 N NaOH solution to PH ~ 13. The resulting aqueous solution is extracted with EtOAc (3 \times 60 mL). The combined organic layer was washed with brine (60 mL), dried over Na₂SO₄, filtrated and concentrated under reduced pressure. The residue was used the next step without further purification. The above crude intermediate and TsCl (5.2 g, 27.6 mmol) was dissolved in CH₂Cl₂ (150 mL), which was added Et₃N (6.5 mL, 46 mmol). The reaction mixture was stirred at room temperature for 16 h as monitored by TLC. After completion of the reaction, water (100 mL) was added to the mixture and extracted with CH_2Cl_2 (3 \times 70 mL). The combined organic layer was washed with brine (100 mL), dried over Na₂SO₄, filtrated and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 3/1) afforded the crude compound (8.8 g) as a brown solid. The above crude intermediate was dissolved in acetone (100 mL), which was added Cs₂CO₃ (11.7 g, 35.8 mmol). The mixture was stirred at room temperature for 1 h and was added bromoacetone (3 mL, 35.8 mmol). The reaction was stirred at room temperature for 8 h as monitored by TLC. After completion of the reaction, the residue was passed through a short column of silica gel (eluent: ethyl acetate) to remove inorganic salts and concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 4/1) afforded compound 16 (3.3 g, 27%) for four steps) as a white solid. $R_f = 0.10$ (petroleum ether/EtOAc = 3/1); Mp 88–91 °C; $[\alpha]_{D}^{25}$ +34.0 (*c* 1.0, CH₂Cl₂); ¹H NMR (400 MHz, acetone-*d*₆, 25 °C): δ 7.85–7.80 (m, 5H), 7.38–7.32 (m, 7H), 5.72 (d, J = 1.6 Hz, 1H), 5.04 (d, J = 1.6 Hz, 1H), 4.81–4.77 (m, 1H), 4.43 (d, J = 18.8 Hz, 1H), 4.09 (d, J = 18.8 Hz, 1H), 3.13 (dd, J = 16.0, 5.6 Hz, 1H), 2.83–2.78 (m, 1H), 2.40 (s, 3H), 2.32 (s, 3H), 2.03 (s, 3H); ¹³C NMR (100 MHz, acetone-d₆, 25 °C): δ 203.7 (C), 146.3 (C), 144.4 (C), 139.1 (C), 139.0 (C), 136.3 (C), 134.5 (C), 131.0 (CH), 130.4 (CH), 130.1 (C), 129.0 (C), 128.6 (CH), 127.8 (CH), 126.9 (CH), 121.7 (CH), 118.6 (C), 118.3 (CH), 113.9 (CH), 112.2 (CH₂), 58.9 (CH), 54.3 (CH₂), 27.8 (CH₂), 26.8 (CH₃), 21.54 (CH₃), 21.50 (CH₃); IR

(KBr, neat): 3110, 3061, 1737, 1636, 1597, 1359, 1157, 917, 703, 667, 609 cm⁻¹; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{29}H_{29}N_2O_5S_2$ 549.1512; Found 549.1526.

(S)-4-Methyl-N-(5-methylene-1-tosyl-1,3,4,5-tetrahydrobenzo[cd]indol-4-yl)-N-(2-(2 -tosylhydrazono)propyl)benzenesulfonamide [4]. To a solution of compound **16** (100 mg, 0.18 mmol) in 10 mL (MeOH/CH₂Cl₂ = 4/1) was added tosylhydrazine (41 mg, 0.22 mmol) and one drop HCl. The resulting solution was stirred for 24 h at room temperature as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure and used the next step without further purification.

(1*a*S,3*a*S,9*b*S)-1a-*Methyl*-3,6-*ditosyl*-1a,2,3,3a,4,6-*hexahydro*-1*H*-*cyclopropa*[*c*]*indolo* [4,3-*ef*]*indole* [17] and (3*a*S,11*b*S)-3*a*-*Methyl*-5,8-*ditosyl*-3*a*,4,5,5*a*,6,8-*hexahydro*-1*H* -*indolo*[4,3-*ef*]*pyrazolo*[3,4-*c*]*indole* [18]. To a solution of the above crude product **4** in tolune (10 mL) was added K₂CO₃ (31 mg, 0.22 mmol). The resulting mixture was heated at 120 °C for 10 h as monitored by TLC. After completion of the reaction, the mixture was concentrated under reduced pressure. Flash column chromatography (petroleum ether/EtOAc = 10/1) afforded compound **17** (58 mg, 60%) as a white solid and compound **18** (8 mg, 8%) as a white solid. Compound **17** was used the next step with further purification. Data for compound **17**: $R_f = 0.60$ (petroleum ether/EtOAc = 3/1); Mp 117–119 °C. $[\alpha]^{25}_{D} + 213.0$ (*c* 1.0, CH₂Cl₂); HRMS (ESI-TOF) *m/z*: $[M + H]^+$ Calcd for C₂₉H₂₉N₄O₄S₂ 533.1563; Found 533.1575. Data for compound **18**: $R_f = 0.24$ (petroleum ether/EtOAc = 3/1); Mp 98–101 °C; $[\alpha]^{25}_{D} + 36.0$ (*c* 1.0, CH₂Cl₂); ¹H NMR (600 MHz, CDCl₃, 25 °C): δ 7.79–7.76 (m, 3H), 7.70 (d, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.28 (t, *J* = 7.8 Hz, 1H), 7.25–7.24 (m, 3H), 6.55 (d, *J* = 7.8 Hz, 2H),

1H), 5.13 (d, J = 18.6 Hz, 1H), 4.47 (d, J = 18.6 Hz, 1H), 4.25 (dd, J = 10.8, 6.6 Hz, 1H), 3.76 (d, J = 11.4 Hz, 1H), 3.43 (d, J = 12.0 Hz, 1H), 3.29 (dd, J = 16.2, 6.6 Hz, 1H), 2.72 (ddd, J = 12.0, 10.8, 1.2 Hz, 1H), 2.44 (s, 3H), 2.36 (s, 3H), 1.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 145.0 (C), 144.2 (C), 136.6 (C), 135.5 (C), 133.0 (C), 130.7 (C), 130.0 (CH), 129.9 (CH), 128.1 (C), 127.1 (CH), 126.8 (CH), 126.2 (CH), 120.9 (CH), 120.1 (CH), 115.2 (C), 112.3 (CH), 99.0 (C), 93.9 (CH₂), 64.3 (CH), 54.6 (CH₂), 52.7 (C), 23.3 (CH₂), 21.6 (CH₃), 20.2 (CH₃), one CH₃ signal was not recognized due to overlapping. IR (KBr, neat): 3426, 2964, 2920, 1644, 1430, 1362, 1166, 1092, 1030, 798, 667 cm⁻¹; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₂₉H₂₉N₄O₄S₂ 561.1625; Found 561.1631.

(1aS,3aS,9bS)-1a,3-Dimethyl-1a,2,3,3a,4,6-hexahydro-1H-cyclopropa[c]indolo[4,3-ef] indole [2]. To a solution of naphthalene (245 mg, 1.9 mmol) in previously degassed THF (10 ml) was added sodium (37 mg, 1.6 mmol). The mixture was stirred at room temperature for 2 h in order to obtain a dark green. To a degassed solution of compound 17 (80 mg, 0.15 mmol) in THF (10 mL) at -78 °C was added the freshly prepared solution of sodium naphthalenide (10 ml). The resultant mixture was stirred for 10 min at this temperature as monitored by TLC. After completion of the reaction, a saturated NH₄Cl (10 mL) was added. The mixture was made basic with saturated aqueous solution of NaHCO₃ (10 mL) and extracted with EtOAc (3 \times 20 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure to give a crude amine, which was used the next step without further purification. To a solution of this amine in MeOH (15 mL) were added AcOH (0.17 mL), NaBH₃CN (69 mg, 1.08 mmol), and formalin (0.098 mL, 1.2 mmol) at room temperature. The mixture was stirred for 2 h as monitored by TLC. After completion of the reaction, the mixture was quenched with saturated aqueous solution of NaHCO₃ (10 mL), concentrated under reduced pressure, and extracted with EtOAc (3 \times 10 mL). The combined organic layer was washed with saturated NaHCO₃ (10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. Flash column chromatography ($CH_2Cl_2/MeOH = 15/1$) afforded compound 2 (25 mg, 71%) as a colorless foam. $R_f = 0.50$ (CH₂Cl₂/MeOH = 10/1); Mp 151–154 °C; $[\alpha]^{25}_{D}$ +44.3 (*c* 0.7, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂), 25 °C): δ 8.05 (br s, 1H), 7.15–7.09 (m, 2H), 6.92 (t, J = 2.0 Hz, 1H), 6.58 (dd, J = 6.4, 1.6 Hz, 1H), 3.46 (dd, J = 10.8, 5.6 Hz, 1H), 3.02 (dd, J = 14.4, 5.6 Hz, 1H), 2.97 (d, J = 8.8 Hz, 1H), 2.66 (d, J = 8.8 Hz, 1H), 2.59 (ddd, J = 16.4, 10.8, 1.6 Hz, 1H), 2.48 (s, 3H), 1.56 (d, J = 4.4 Hz, 1H), 1.12 (s, 3H), 1.11 (d, J = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 133.3 (C), 129.9 (C), 127.3 (C), 122.9 (CH), 118.3 (CH), 112.9 (CH), 111.1 (C), 107.8 (CH), 63.0 (CH), 59.7 (CH₂), 35.8 (CH₃), 35.3 (C), 33.0 (C), 20.2 (CH₂), 18.5 (CH₂), 14.8 (CH₃). IR (KBr, neat): 3407, 2926, 1602, 1444, 1316, 1281, 1026, 799, 784, 744, 659 cm⁻¹; HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ Calcd for C₁₆H₁₉N₂ 239.1549; Found 239.1549.

9. ¹H and ¹³C NMR spectra of compounds: 7, 8, 11, 5, NOE spectra of 5, 7-endo-trig cyclization product, 3, NOE spectra of 3, 12, 13, 1, 15, 16, 18, and 2

Figure S1. ¹H NMR spectrum (CDCl₃, 400 MHz) and ¹³C NMR spectrum (CDCl₃, 100 MHz) of **7**.

Figure S2. ¹H NMR spectrum (CDCl₃, 400 MHz) and ¹³C NMR spectrum (CDCl₃, 100 MHz) of **8**.

Figure S3. ¹H NMR spectrum (CDCl₃, 400 MHz) and ¹³C NMR spectrum (CDCl₃, 100 MHz) of **11**.

Figure S4. ¹H NMR spectrum (acetone- d_6 , 400 MHz) and ¹³C NMR spectrum (acetone- d_6 , 100 MHz) of **5**.

Figure S5. Difference NOE spectra of **5** irradiating (acetone- d_6 , 600 MHz).

Figure S6. ¹H NMR spectrum (CDCl₃, 400 MHz) and ¹³C NMR spectrum (CDCl₃, 100 MHz) of **7**-*endo-trig* cyclization product.

Figure S7. ¹H NMR spectrum (CDCl₃, 400 MHz) and ¹³C NMR spectrum (CDCl₃, 100 MHz) of **3**.

Figure S8. Difference NOE spectra of 3 irradiating (CDCl₃, 600 MHz).

Figure S8. Difference NOE spectra of 3 irradiating (CDCl₃, 600 MHz).

Figure S9. ¹H NMR spectrum (CDCl₃, 400 MHz) and ¹³C NMR spectrum (CDCl₃, 100 MHz) of **12**.

Figure S10. ¹H NMR spectrum (CDCl₃, 400 MHz) and ¹³C NMR spectrum (CDCl₃, 100 MHz) of **13**.

Figure S11. ¹H NMR spectrum (CDCl₃, 600 MHz) and ¹³C NMR spectrum (CDCl₃, 150 MHz) of **1**.

Figure S12. ¹H NMR spectrum (CDCl₃, 400 MHz) and ¹³C NMR spectrum (CDCl₃, 100 MHz) of **15**.

Figure S13. ¹H NMR spectrum (acetone- d_6 , 400 MHz) and ¹³C NMR spectrum (acetone- d_6 , 100 MHz) of **16**.

Figure S14. ¹H NMR spectrum (CDCl₃, 600 MHz) and ¹³C NMR spectrum (CDCl₃, 150 MHz) of **18**.

Figure S15. ¹H NMR spectrum (CD₂Cl₂, 400 MHz) and ¹³C NMR spectrum (CDCl₃, 100 MHz) of **2**.

¹⁹⁰ 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm **Figure S16**. ¹H NMR spectrum (CD₂Cl₂, 600 MHz) and ¹³C NMR spectrum (CDCl₃, 150 MHz) of **2**.

10. X-ray structure of compound **15** (CCDC 1882003)

11. Grignard addition on reaction scale

entry	reaction scale	dr
1	0.20 g	1.38 : 1
2	0.50 g	1.50 : 1
3	5.40 g	1.23 : 1
4	20.0 g	1.25 : 1

12. ChemBio 3D of compound 5

13. HPLC spectra of (\pm) -9 and (+)-9

Channel: 2998; Channel Desc.: 2998 (210-400)nm; Processing Method: weiwang2014

	Channel	Retention Time (time)	Area (μv.s)	% Area	Height (µv)
1	2998 (210-400)nm	17.882	3363954	48.00	102785
2	2998 (210-400)nm	22.608	3644668	52.00	89962

	Channel	Retention	Area	% Area	Height
	Channel	Time (time)	(µv.s)	70 Alea	(µv)
1	2998 (210-400)nm	17.603	4388898	100.00	136108

The enantiomeric excess of (+)-**9** was determined using a chiral HPLC (AD-H column, *n*-hexane/*i*-PrOH = 90:10, 1 mL/min). Compound (\pm)-**9** was prepared as the similar procedure of (+)-**9**.

Channel: 2998; Channel Desc.: 2998 (210-400)nm; Processing Method: weiwang2014

		Channel	Retention	Area	% Area	Height
-	1	2000 (210, 400)	Time (time)	(μv.s)	16.55	(μv)
	I	2998 (210-400)	6.174	7289839	46.55	635026
	2	2998 (210-400)	7.337	8370376	53.45	693045

Channel: 2998; Channel Desc.: 2998 (210-400)nm; Processing Method: weiwang2014

	Channel	Retention Time (time)	Area (µv.s)	% Area	Height (uv)
1	2998 (210-400)	5.927	13238574	98.44	1156576
2	2998 (210-400)	7.076	210050	1.56	13280

The enantiomeric excess of (+)-2 was determined using a chiral HPLC (AD-H column, *n*-hexane/*i*-PrOH = 90:10, 1 mL/min). Compound (\pm)-2 was prepared as the similar procedure of (+)-2.