Flexible coordination of N,P-Donor Ligands in Aluminum Dimethyl and Dihydride Complexes

Rosalyn L. Falconer, Gary S. Nichol, Michael J. Cowley*

Supporting information

Contents

ŀ
ŀ
;
;
;
ļ
;
)
;
;
)
)
)
;

Supplementary Tables and Figures

Table S1. Selected experimental and calcul	ated parameters for 5a-c at two levels of theory.
IR data are from solid state measurements	(solution phase in parentheses).

		Al–N (Å)	AI-P (Å)	N–AI–P (°)	<i>V</i> (AI–H) (cm ⁻¹)
	experimental	-	-	-	1810, 1786 (1816)
5a	M062X/6,31G+(d,p)/Lanl2DZ	1.943	2.514	84.80	1863, 1845
	M062X/Def2SVPP	-	-	-	-
	experimental	1.8972(15)	2.4442(7)	87.47(5)	1831, 1816 (1821)
5b	M062X/6,31G+(d,p)/Lanl2DZ	1.944	2.509	84.78	1862, 1852
	M062X/Def2SVPP	1.918	2.478	85.89	1938, 1930
	experimental	1.892(2)	2.4790(10)	86.60(6)	1825, 1801 (1829)
5c	M062X/6,31G+(d,p)/Lanl2DZ	1.943	2.514	84.80	1863, 1845
	M062X/Def2SVPP	1.916	2.486	85.72	1939, 1922

Figure S1. Relaxed potential energy surface scan of **5c** with the Al–P bond distance increased in 0.1 Å increments, using κ^2 -NP **3c** as the initial geometry (at B3LYP/6,31G level).

A relaxed potential energy surface scan of κ^2 -NP **5c** (at B3LYP/6,31G level for computational efficiency) in which the P–Al distance was increased in 0.15 Å increments revealed two potential isomers of **5c**, both at higher energy and both displaying no coordination to the phosphine centre (Figure S1). κ^2 -*N*,*N* **5c** shows a 'slipped' coordination of the phosphine in which one of the P-N units coordinates to the aluminium centre through a nitrogen. κ^1 -N **5c** is a high energy 3-coordinate aminoaluminum dihydride species. Both isomers were re-optimised at M062X/6,31G+(d,p)/Lanl2DZ (Table S2).

Table S2. Relative energies and calculated/experimental values for $v_{(AI-H)}$ for isomers of **5c.** Experimental IR data are from solid state measurements (solution phase in parentheses).

		Relative energy (kcal mol ⁻¹)	<i>V</i> (AI–H) (cm ⁻¹)
	experimental	-	1825, 1801 (1829)
KINP 5C	M062X/6,31G+(d,p)/Lanl2DZ	0	1863, 1845
κ²-NN 5c	M062X/6,31G+(d,p)/Lanl2DZ	-0.82	1860, 1813
κ¹-Ν 5c	M062X/6,31G+(d,p)/Lanl2DZ	22.58	1934, 1922

General Considerations

All manipulations were carried out under an argon atmosphere using standard Schlenk or glovebox techniques. Reactions were carried out in glass Schlenk tubes, which were dried for 16 hours at 110 °C before use. Solvents were obtained from an inert solvent purification system and stored over 4 Å molecular sieves. C_6D_6 and d_8 -THF were dried over potassium then vacuum distilled and stored over 4 Å molecular sieves. Ambient temperature NMR spectra were recorded on Bruker PRO 500 MHz, AVA 400, 500 or 600MHz spectrometers. ¹H and ¹³C spectra were referenced to residual solvent signals. ³¹P NMR spectra were referenced to an external standard of 85% H₃PO₄ in H₂O. Mass spectra were acquired either using a SolariX FT-ICR MS (12 T) (Bruker UK Ltd) equipped with an APPI source (1 mM toluene solutions) or a Thermo Mat 900 XP high resolution double focussing sector mass spectrometer (solid samples, EI). Infrared spectroscopy was performed using a PerkinElmer Spectrum 65 spectrometer (hexane solutions), or a Shimadzu IRSpirit Fourier Transform Spectrometer (solid state, performed inside a glovebox) to identify the AI-H stretching frequencies.

Imine precursor **S1**¹, chlorophosphines PCI(N^tBu)₂SiMe₂² and PCI(N^tBuCH₂)₂,³ ligands **1b** and **1c**² and [H₃Al·NMe₃]⁴ were synthesised according to literature procedures. SiMe₂(NH^tBu)₂ was synthesised according to a modified literature procedure (described below). *Tert*-butylamine was dried over calcium hydride and vacuum distilled prior to use. LiAlH₄ was purified by extraction with diethyl ether and filtration to afford a white solid, which was stored under an inert atmosphere. Trimethylammonium chloride was dried under vacuum at 50 °C for 3 hours prior to use. All other reagents were purchased from commercial suppliers and used without further purification.

Precursor Synthesis

SiMe₂(NH^tBu)₂

Synthesised according to a modified literature preparation.⁵ To a vigorously stirred solution of dimethylchlorosilane (3 mL, 0.025 mol) in pentane (150 mL) at 0 °C, *tert*-butylamine (12 mL, 0.114 mol, 4.6 eq.) was added dropwise. A white precipitate was formed immediately. The mixture was stirred for 16 hours at room temperature, filtered and the solvent and excess amine removed by fractional distillation to afford the product as a colourless oil (5.1 mL, 86%). ¹H NMR spectroscopic analysis was consistent with literature reports.

¹H NMR (C₆D₆, 600 MHz, 300 K): 0.18 (s, 6H, SiCH₃), 0.53 (br s, 2H, NH), 1.19 (s, 19H, CH_{3tBu}).

Ligand 1a-c Synthesis

1b and **1c** were synthesised according to literature procedure.² This procedure was also modified and applied to the synthesis of **1a**:

To a solution of imine **S1** (4.00 g, 0.015 mol) in THF (50 mL) cooled to -78 °C, ⁿBuLi (2.5 M in hexanes, 6.0 mL, 0.015 mol, 1.0 eq) was added dropwise. The solution was warmed to room temperature and allowed to stir for 2 hours. The resultant yellow mixture was cooled to -78 °C and di*-tert*-butylchlorophosphine (2.8 mL, 0.015 mol) added dropwise. The reaction mixture was stirred at room temperature for 16 hours to afford a clear yellow solution. The solvent was removed *in vacuo* and the resultant oil washed with acetonitrile (2 x 40 mL), dried under vacuum, dissolved in pentane and filtered. The pentane was removed *in vacuo* to afford the product as a white solid (4.40 g, 72%). Multinuclear (¹H, ¹³C, ³¹P) NMR spectroscopic analysis was consistent with literature reports.¹

¹H NMR (C₆D₆, 600 MHz, 300 K): δ 1.01 (dm, ²J_{HH} = 10.0 Hz, 1H, ¹/₂CH_{2Norb}), 1.16 (m, 1H, ¹/₂CH_{2CbridgeheadCN}), 1.19 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.24 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.28 (m, 1H, ¹/₂CH_{2CbridgeheadCP}), 1.29 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.30 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.31 (d, ³J_{HP} = 10.9 Hz, 9H, CH_{3tBu}), 1.34 (m, 1H, ¹/₂CH_{2CbridgeheadCN}), 1.40 (d, ³J_{HP} = 11.1 Hz, 9H, CH_{3tBu}), 1.47 (m, 1H, ¹/₂CH_{2CbridgeheadCP}), 1.93 (dm, ²J_{HH} = 10.0 Hz, 1H, ¹/₂CH_{2Norb}), 2.56 (m, 1H, PCH), 2.63 (d, ²J_{HP} = 3.7 Hz, 1H, PCCH_{bridgehead}), 2.74 (m, 1H, NCCH_{bridgehead}), 2.94 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 3.20 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 7.10-7.21 (m, 3H, H_{aromatic})

¹³C NMR (C₆D₆, 126 MHz, 300 K): δ 22.1 (s, CH_{3iPr}), 23.0 (s, CH_{3iPr}), 24.5 (s, CH_{3iPr}), 25.0 (s, CH_{3iPr}), 25.2 (s, CH_{2CbridgeheadCN}), 28.1 (s, CH_{iPr}), 29.1 (s, CH_{iPr}), 30.6 (d, J_{CP} = 5.6 Hz, CH_{2CbridgeheadCP}), 31.4 (d, J_{CP} = 14.2 Hz, CH_{3tBu}), 31.6 (d, J_{CP} = 14.9 Hz, CH_{3tBu}), 32.7 (d, J_{CP} = 29.8 Hz, C^tBu), 33.4 (d, J_{CP} = 30.2 Hz, C^tBu), 36.9 (s, CH_{2Norb}), 42.5 (s, PCCH), 43.7 (d, J_{CP} = 17.2 Hz, NCCH), 49.3 (d, J_{CP} = 45.2 Hz, PCH), 123.0 (s, C_{meta}), 123.7 (s, C_{para}), 123.8 (s, C_{meta}), 136.2 (s, CCH_{iPr}), 137.0 (s, CCH_{iPr}), 147.9 (s, NC_Ar), 181.7 (s, NCCH)

1a:

1b:

¹H NMR (C₆D₆, 600 MHz, 300 K): δ 0.39 (s, 3H, SiCH₃), 0.42 (s, 3H, SiCH₃), 1.04 (dm, ²J_{HH} = 9.9 Hz, 1H, ½CH_{2Norb}), 1.22 (s, 9H, CH_{3tBu}), 1.25 (m, 1H, ½CH_{2CbridgeheadCP}), 1.27 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.32 (d, ³J_{HH} = 6.8 Hz, 6H, CH_{3iPr}), 1.33 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.36 (m, 1H, ½CH_{2CbridgeheadCN}), 1.40 (s, 9H, CH_{3tBu}), 1.42 (m, 1H, ½CH_{2CbridgeheadCP}), 1.62 (m, 1H, ½CH_{2CbridgeheadCN}), 1.74 (dm, ²J_{HH} = 9.9 Hz, 1H, ½CH_{2Norb}), 2.57 (d, ³J_{HH} = 3.9 Hz, 1H, PCCH_{bridgehead}), 2.62 (d, ³J_{HH} = 3.9 Hz, 1H, PCH), 3.07 (m, 1H, NCCH_{bridgehead}), 3.08 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 3.44 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 7.12-7.23 (m, 3H, H_{aromatic})¹³C NMR (C₆D₆, 126 MHz, 300 K): δ 7.3 (s, SiCH₃), 7.4 (d, J_{CP} = 1.6 Hz, SiCH₃), 22.5 (s, CH_{3iPr}), 23.3 (s, CH_{3iPr}), 24.7 (s, CH_{3iPr}), 25.0 (s, CH_{3iPr}), 25.3 (s, CH_{2CbridgeheadCP}), 28.2 (d, J = 3.5 Hz, CH_{iPr}), 28.7 (s, CH_{iPr}), 30.7 (s, CH_{2CbridgeheadCN}), 32.5 (d, J_{CP} = 5.9 Hz, CH_{3tBu}), 32.6 (d, J_{CP} = 7.4 Hz, CH_{3tBu}), 37.5 (s, CH_{2Norb}), 40.3 (s, NCCH), 42.3 (s, PCCH), 51.1 (d, J_{CP} = 15.3 Hz, CⁱBu), 51.8 (s, J_{CP} = 8.6 Hz, CⁱBu), 66.6 (d, J_{CP} = 60.5 Hz, PCH), 123.0 (s, C_{meta}), 123.5 (s, C_{meta}), 123.6 (s, C_{para}), 137.0 (s, CCH_{iPr}), 137.1 (s, CCH_{iPr}), 148.2 (s, NC_Ar), 180.8 (d, J_{CP} = 10.6 Hz, NCCH)

³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 300K): δ 147.3 (s)

1c:

¹H NMR (C₆D₆, 600 MHz, 300 K): δ 1.07 (dm, ${}^{2}J_{HH}$ = 10.1 Hz, 1H, ${}^{1}_{2}CH_{2Norb}$), 1.19 (s, 9H, CH_{3tBu}), 1.23 (m, 1H, ${}^{1}_{2}CH_{2CbridgeheadCP}$), 1.27 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.29 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.30 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.34 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.34 (m, 1H, ${}^{1}_{2}CH_{2CbridgeheadCN}$), 1.36 (m, 1H, ${}^{1}_{2}CH_{2CbridgeheadCP}$), 1.40 (d, ${}^{4}J_{HP}$ = 0.9 Hz, 9H, CH_{3iBu}), 1.56 (m, 1H, ${}^{1}_{2}CH_{2CbridgeheadCN}$), 1.83 (dm, ${}^{2}J_{HH}$ = 10.1 Hz, 1H, ${}^{1}_{2}CH_{2Norb}$), 2.36 (d, ${}^{2}J_{HP}$ = 3.4 Hz, 1H, PCH), 2.63 (d, J_{HH} = 4.5 Hz, 1H, PCCH_{bridgehead}), 2.75 (m, 1H, ${}^{1}_{2}NCH_{2}$), 2.78 (m, 1H, NCCH_{bridgehead}), 2.89 (m, 1H, ${}^{1}_{2}NCH_{2}$), 2.97 (m, 1H, ${}^{1}_{2}NCH_{2}$), 3.04 (m, 1H, ${}^{1}_{2}NCH_{2}$), 3.10 (sept, ${}^{3}J_{HH}$ = 6.8 Hz, 1H, CH_{iPr}), 3.47 (sept, ${}^{2}J_{HH}$ = 6.8 Hz, 1H, CH_{iPr}), 7.11-7.24 (m, 3H, H_{aromatic})

¹³C NMR (C₆D₆, 126 MHz, 300 K): δ 22.5 (s, CH_{3iPr}), 23.7 (s, CH_{3iPr}), 24.6 (s, CH_{3iPr}), 25.3 (s, CH_{3iPr}), 25.7 (s, CH_{2CbridgeheadCP}), 27.7 (d, *J* = 3.4 Hz, CH_{iPr}), 28.8 (s, CH_{iPr}), 29.6 (s, CH_{2CbridgeheadCN}), 29.8 (d, *J*_{CP} = 10.4 Hz, CH_{3tBu}), 30.2 (d, *J*_{CP} = 9.1 Hz, CH_{3tBu}), 36.6 (d, *J*_{CP} = 2.4 Hz, CH_{2Norb}), 40.7 (d, *J*_{CP} = 1.8 Hz, NCCH), 42.4 (s, PCCH), 45.4 (d, *J*_{CP} = 9.0 Hz, NCH₂), 47.3 (d, *J*_{CP} = 7.0 Hz, NCH₂), 53.5 (d, *J*_{CP} = 14.1 Hz, C^tBu), 54.0 (d, *J*_{CP} = 19.7 Hz, C^tBu), 55.9 (d, *J*_{CP} = 39.5 Hz, PCH), 122.9 (s, C_{meta}), 123.5 (s, C_{para}), 123.8 (s, C_{meta}), 136.7 (d, *J*_{CP} = 1.7 Hz, CCH_{iPr}), 137.5 (d, *J*_{CP} = 1.2 Hz, CCH_{iPr}), 148.2 (d, *J*_{CP} = 1.2 Hz, NC_{Ar}), 181.9 (d, *J*_{CP} = 10.3 Hz, NCCH)

³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 300K): δ 90.6 (s)

Synthesis of Dimethyl Aluminum Complexes 3a-c

General Synthesis:

To a solution of **1** in THF cooled to -78 °C, ⁿBuLi (2.5M in hexanes, 1 equivalent) was added dropwise. The cold bath was removed and the resultant yellow solution was stirred at room temperature for 1 hour. Monitoring by ³¹P{¹H} NMR spectroscopy revealed the presence of lithiated ligand **2** (see below). The reaction mixture was cooled to -78 °C and Me₂AlCl (1.0 M in hexanes) was added dropwise. The cold bath was removed and the resultant solution was stirred at room temperature for 1 hour. The solvent was removed *in vacuo*, the product extracted in hexane and dried to afford **3a-c**.

In situ characterisation of 2:

2a:

³¹P{¹H} (C₄H₈O, 202.5 MHz, 300 K): δ 10.9 (1:1:1:1 quartet, *J*_{P-Li} = 54 Hz)

⁷Li (C₄H₈O, 194.4 MHz, 300 K): δ 1.3 (d, J_{Li-P} = 54 Hz)

2b:

³¹P{¹H} (C₄H₈O, 202.5 MHz, 300 K): δ 96.4 (1:1:1:1 quartet, *J*_{P-Li} = 63 Hz)

⁷Li (C₄H₈O, 194.4 MHz, 300 K): δ 1.1 (d, J_{Li-P} = 63 Hz)

2c:

³¹P{¹H} (C₄H₈O, 202.5 MHz, 300 K): δ 68.6 (1:1:1:1 quartet, *J*_{P-Li} = 54 Hz)

⁷Li (C₄H₈O, 194.4 MHz, 300 K): δ 1.5 (d, J_{Li-P} = 54 Hz)

1a (0.40 g, 0.97 mmol), THF (20 mL), ⁿBuLi (0.39 mL, 0.97 mmol, 1.0 eq), Me₂AlCl (0.97 mL, 0.97 mmol, 1.0 eq) yielded **3a** (0.34 g, 75%) as a pale yellow solid.

Colourless crystals suitable for X-ray crystallography were grown from a saturated diethyl ether solution at 4 °C.

¹H (C₆D₆, 500 MHz, 300 K): δ -0.33 (d, ${}^{3}J_{HP}$ = 2.5 Hz, 3H, AICH₃), -0.19 (d, ${}^{3}J_{HP}$ = 2.5 Hz, 3H, AICH₃), 1.10 (m, 1H, ${}^{1}_{2}$ CH_{2Norb}), 1.19 (d, ${}^{3}J_{HP}$ = 8.6 Hz, 9H, CH_{3tBu}), 1.22 (d, ${}^{3}J_{HP}$ = 8.6 Hz, 9H, CH_{3tBu}), 1.24 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.26 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.37 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6 H, CH_{3iPr}), 1.43 (m, 2H, CH_{2CbridgeheadCP}), 1.55 (m, 1H, ${}^{1}_{2}$ CH_{2CbridgeheadCN}), 1.61 (m, 1H, ${}^{1}_{2}$ CH_{2Norb}), 1.66 (m, 1H, ${}^{1}_{2}$ CH_{2CbridgeheadCN}), 2.50 (br s, 1H, PCCH_{bridgehead}), 2.95 (br s, 1H, NCCH_{bridgehead}), 3.44 (sept, {}^{3}J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 3.61 (sept, {}^{3}J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 7.17-7.19 (m, 3H, H_{aromatic})

¹³C (C₆D₆, 126 MHz, 300 K): δ -5.7 (br s, AICH₃), -4.3 (br s, AICH₃), 25.2 (s, CH_{3iPr}), 25.4 (s, CH_{3iPr}), 25.7 (s, CH_{3iPr}), 25.8 (s, CH_{3iPr}), 25.9 (d, $J_{CP} = 2$ Hz, CH_{2CbridgeheadCP}), 27.6 (s, CH_{iPr}), 27.7 (s, CH_{iPr}), 30.0 (s, CH_{2CbridgeheadCN}), 30.1 (d, $J_{CP} = 5$ Hz, CH_{3tBu}), 30.5 (d, $J_{CP} = 5$ Hz, CH_{3tBu}), 34.4 (d, $J_{CP} = 30$ Hz, C^tBu), 34.8 (d, $J_{CP} = 31$ Hz, C^tBu), 43.8 (d, $J_{CP} = 9$ Hz, PCCH), 44.1 (d, $J_{CP} = 2$ Hz, NCCH), 48.3 (d, $J_{CP} = 3$ Hz, CH_{2Norb}), 80.2 (d, $J_{CP} = 42$ Hz, PCCH), 124.2 (s, C_{meta}), 124.3 (s, C_{meta}), 126.1 (s, C_{para}), 141.7 (d, $J_{CP} = 3$ Hz, NC_{Ar}), 147.1 (s, CCH_{iPr}), 147.4 (s, CCH_{iPr}), 185.1 (d, $J_{CP} = 21$ Hz, NCCH)

³¹P{¹H} (C₆D₆, 162 MHz, 300 K): δ 1.6 (s, Δν_{1/2} = 21.1 Hz)

High Resolution Mass Spec (APPI): m/z = 469.341919 [C₂₉H₄₉AINP]⁺ (theoretical = 469.341252).

Elemental Analysis: Found (%): C, 74.13; H, 10.38; N, 2.85. Calc. for C₂₉H₄₉AINP: C, 74.16; H, 10.52; N, 2.98.

3a:

1b (0.3 g, 0.60 mmol), THF (20 mL), ⁿBuLi (0.24 mL, 0.60 mmol, 1.0 eq), Me₂AlCl (0.60 mL, 0.60 mmol, 1.0 eq) yielded **3b** (0.17 g, 56%) as a yellow solid. Some impurities (less than 10%) were observed by NMR spectroscopy due to reaction with water, but could not be separated since crystallisation of **3b** was not possible.

¹H NMR (C₆D₆, 500 MHz, 300 K): δ -0.26 (d, ³J_{HP} = 3.9 Hz, 3H, AICH₃), -0.12 (d, ³J_{HP} = 3.9 Hz, 3H, AICH₃), 0.27 (s, 3H, SiCH₃), 0.32 (s, 3H, SiCH₃), 1.12 (d, ²J_{HH} = 8.1 Hz, 1H, ¹/₂CH_{2Norb}), 1.25 (s, 9H, CH_{3tBu}), 1.26 (s, 9H, CH_{3tBu}), 1.25 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.26 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.32 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.41 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.42 (m, 2H, CH_{2CbridgebeadCP}), 1.60 (d, ²J_{HH} = 8.1 Hz, 1H, ¹/₂CH_{2Norb}), 1.69 (m, 2H, CH_{2CbridgebeadCN}), 2.53 (br s, 1H, CH_{bridgebeadCP}), 3.13 (br s, 1H, CH_{bridgebeadCN}), 3.51 (sept, ³J_{HH} = 6.8 Hz, CH_{iPr}), 3.70 (sept, ³J_{HH} = 6.8 Hz, CH_{iPr}) 7.11-7.21 (m, 3H, H_{aromatic})

¹³C NMR (C₆D₆, 126 MHz, 300 K): δ -6.3 (br d, J_{CP} = 24.8 Hz, AICH₃), -5.4 (br d, J_{CP} = 19.9 Hz, AICH₃), 4.6 (d, J_{CP} = 1.4 Hz, SiCH₃), 6.7 (d, J_{CP} = 3.7 Hz, SiCH₃), 25.3 (s, CH_{3iPr}), 25.4 (s, CH_{3iPr}), 25.6 (s, CH_{3iPr}), 26.0 (s, CH_{3iPr}), 26.3 (s, CH_{2CbridgeheadCP}), 27.6 (s, CH_{iPr}), 27.8 (s, CH_{iPr}), 29.4 (s, CH_{2CbridgeheadCN}), 32.3 (d, J_{CP} = 5.4 Hz, CH_{3tBu}), 32.7 (d, J_{CP} = 4.9 Hz, CH_{3tBu}), 40.6 (d, J_{CP} = 3.5, CHCN), 44.3 (d, J_{CP} = 43.9, CHCP), 46.6 (d, J_{CP} = 4.7 Hz, CH_{2Norb}), 50.8 (d, J_{CP} = 3.9 Hz, CⁱBu), 50.9 (d, J_{CP} = 2.8 Hz, CⁱBu), 99.1 (d, J_{CP} = 29.2 Hz, PCCH), 124.3 (s, C_{meta}), 124.3 (s, C_{meta}), 126.3 (s, C_{para}), 141.2 (d, J_{CP} = 3.1 Hz, NC_{Ar}), 146.6 (s, CCH_{iPr}), 147.0 (s, CCH_{iPr}), 186.8 (d, J_{CP} = 33.9 Hz, NCCH)

³¹P{¹H} (C₆D₆, 162 MHz, 300 K): δ 64.0 (s, Δν_{1/2} = 35.8 Hz)

High Resolution Mass Spec (APPI): $m/z = 555.371654 [C_{31}H_{55}AIN_3PSi]^+$ (theoretical = 555.371277).

3b:

1c (0.43 g, 0.92 mmol), THF (20 mL), ⁿBuLi (0.37 mL, 0.92 mmol, 1.0 eq), Me₂AlCl (0.92 mL, 0.60 mmol, 1.0 eq). To gain analytically pure material, **3c** was further purified by recrystallization from hexanes at -20 °C to yield colourless crystals (0.23 g, 48%).

Two isomers were identified in the NMR spectra of approximate ratio of 4:3 of κ^2 -N,N **3c** to κ^2 -N,P **3c** at 300 K (determined from the ¹H NMR spectrum).

Due to the high air-sensitivity of this species, some impurities were observed in solution NMR spectra (³¹P{¹H} NMR spectrum, 10% unidentified impurity at 75.11 ppm).

κ²-N,N **3c**:

¹H (C₆D₆, 500 MHz, 300 K): δ -0.67 (s, 3H, AIMe), -0.13 (s, 3H, AIMe), 0.89 (m, 1H, $\frac{1}{2}$ CH_{2Norb}), 1.18 (m, 1H, $\frac{1}{2}$ CH_{2Norb}), 1.21 (s, 18H, CH_{3tBu}), 1.24 (d, $^{3}J_{HH}$ = 6.8 Hz, 6H, CH_{3iPr}), 1.27 (d, $^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.45 (m, 2H, CH_{2CbridgeheadCP}), 1.47 (d, $^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.63 (m, 1H, $\frac{1}{2}$ CH_{2CbridgeheadCN}), 1.72 (m, 1H, $\frac{1}{2}$ CH_{2CbridgeheadCN}), 2.49 (br s, 1H, CH_{bridgeheadCP}), 2.82 (m, 1H, $\frac{1}{2}$ NCH₂), 2.83 (m, 1H, $\frac{1}{2}$ NCH₂), 2.97 (m, CH_{bridgeheadCN}), 3.15 (m, 1H, $\frac{1}{2}$ NCH₂), 3.73 (sept, $^{3}J_{HH}$ = 6.8 Hz, 1H, CH_{iPr}), 3.85 (sept, $^{3}J_{HH}$ = 6.8 Hz, 1H, CH_{iPr}), 3.88 (m, 1H, $\frac{1}{2}$ NCH₂), 7.15-7.20 (m, 3H, H_{aromatic})

¹³C (C₆D₆, 126 MHz, 300 K): δ -5.5 (s, AIMe), -4.7 (s, AIMe), 24.3 (s, CH_{3iPr}), 24.8 (s, CH_{3iPr}), 25.75 (s, CH_{3iPr}), 25.97 (s, CH_{2CHbridgeheadCP}), 26.1 (s, CH_{3iPr}), 27.0 (s, CH_{iPr}), 28.2 (s, CH_{iPr}), 29.3 (s, CH_{2CbridgeheadCN}), 29.7 (d, J_{CP} = 9.5 Hz, CH_{3tBu}), 29.73 (d, J_{CP} = 7.7 Hz, CH_{3tBu}), 29.8 (d, J_{CP} = 5.6 Hz, CH_{3tBu}), 43.84 (s, CH_{2Norb}), 43.88 (d, J_{CP} = 12.6 Hz, NCH₂), 45.3 (s, CH_{bridgeheadCP}), 45.7 (d, J_{CP} = 42.0 Hz, CH_{bridgeheadCN}), 48.8 (d, J_{CP} = 2.8 Hz, NCH₂), 53.2 (d, J_{CP} = 6.0 Hz, C^tBu), 63.7 (d, J_{CP} = 11.7 Hz, C^tBu), 103.5 (d, J_{CP} = 37.7 Hz, PCCH), 123.9 (s, C_{meta}), 124.5 (s, C_{meta}), 125.2 (s, C_{para}), 144.1 (s, NC_{Ar}), 146.5 (s, CCH_{iPr}), 147.0 (s, CCH_{iPr}), 165.0 (d, J_{CP} = 5.0 Hz, NCCH)

³¹P{¹H} (C₆D₆, 162 MHz, 300 K): δ 99.9 (s, Δν_{1/2} = 5.3 Hz)

κ²-N,P **3c**:

¹H (C₆D₆, 500 MHz, 300 K): δ -0.27 (d, ${}^{3}J_{HP}$ = 3.1 Hz, 3H, AIMe), -0.14 (d, ${}^{3}J_{HP}$ = 3.1 Hz, 3H, AIMe), 1.06 (dm, ${}^{2}J_{HH}$ = 8.1 Hz, 1H, ${}^{1}_{2}$ CH_{2Norb}), 1.25 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.26 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.26 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.30 (s, 9H, CH_{3tBu}), 1.32 (s, 9H, CH_{3tBu}), 1.33 (m, 1H, ${}^{1}_{2}$ CH_{2CbridgeheadCP}), 1.38 (m, 1H, ${}^{1}_{2}$ CH_{2CbridgeheadCP}), 1.40 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.42 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.56 (m, ${}^{2}J_{HH}$ = 8.1 Hz, 1H, ${}^{1}_{2}$ CH_{2Norb}), 1.63 (m, 2H,

3c:

CH_{2CbridgeheadCN}), 2.48 (br s, 1H, CH_{bridgeheadCP}), 2.59 (m, 1H, $\frac{1}{2}$ NCH₂), 2.66 (m, 1H, $\frac{1}{2}$ NCH₂), 2.82 (m, 1H, $\frac{1}{2}$ NCH₂), 2.89 (m, 1H, NCH₂), 3.05 (br s, 1H, CH_{bridgeheadCN}), 3.52 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 7.15-7.20 (m, 3H, H_{aromatic})

¹³C (C₆D₆, 126 MHz, 300 K): δ -4.2 (s, AIMe), -3.5 (s, AIMe), 25.2 (s, CH_{3iPr}), 25.4 (s, CH_{3iPr}), 25.68 (s, CH_{3iPr}), 25.84 (s, CH_{2CbridgeheadCP}), 27.4 (s, CH_{iPr}), 27.6 (s, CH_{iPr}), 29.2 (s, CH_{3tBu}), 29.4 (d, $J_{CP} = 2.2$ Hz, CH_{2CbridgeheadCN}), 29.7 (d, $J_{CP} = 7.6$ Hz, CH_{3tBu}), 42.0 (d, $J_{CP} = 4.2$ Hz, CH_{bridgeheadCN}), 43.6 (s, NCH₂), 44.2 (d, $J_{CP} = 9.9$ Hz, CH_{bridgeheadCP}), 44.3 (s, NCH₂), 46.6 (d, $J_{CP} = 5.3$ Hz, CH_{2Norb}), 52.5 (d, $J_{CP} = 11.7$ Hz, C^tBu), 52.8 (d, $J_{CP} = 8.8$ Hz, C^tBu), 95.5 (d, $J_{CP} = 33.5$ Hz, PCCH), 124.29 (s, C_{meta}), 124.32 (C_{meta}), 126.2 (s, C_{para}), 142.0 (d, $J_{CP} = 3.9$ Hz, NC_Ar), 146.7 (s, CCH_{3iPr}), 148.0 (s, CCH_{3iPr}), 185.3 (d, $J_{CP} = 34.1$ Hz, NCCH)

³¹P{¹H} (C₆D₆, 162 MHz, 300 K): δ 49.7 (s, Δν_{1/2} = 47.5 Hz)

High Resolution Mass Spec (EI): $m/z = 525.37703 [C_{31}H_{53}AIN_3P]^+$ (theoretical = 525.37871).

Elemental Analysis: Found (%): C, 70.71; H, 10.18; N, 8.03. Calc. for C₃₁H₅₃AlN₃P: C, 70.82; H, 10.16; N, 7.99.

Characterisation of Aluminate Complex 4b

To a solution of **1b** (0.10 g, 0.2 mmol) in THF (20 mL) at -78 °C, ⁿBuLi (2.5 M in hexanes, 0.08 mL, 0.2 mmol, 1 eq) was added dropwise. The cold bath was removed and the resultant yellow solution was stirred at room temperature for 1 hour. The reaction mixture was cooled to -78 °C and H₃Al·NMe₂Et (0.5 M in toluene, 0.4 mL, 1 eq) was added dropwise. The cold bath was removed and the resultant yellow solution was stirred at room temperature for 20 minutes and the solvent removed *in vacuo* to afford the product as a yellow oil. No further purification was attempted, but **4b** was characterised by NMR and mass spectrometry:

¹H NMR (C₄D₈O, 500 MHz, 300 K): δ 0.29 (s, 3H, SiCH₃), 0.33 (s, 3H, SiCH₃), 0.84 (m, 1H, ½CH_{2Norb}), 1.07 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.08 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.12 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.14 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.18 (m, 2H, CH_{2CbridgeheadCP}), 1.19 (s, 9H, CH_{3tBu}), 1.21 (s, 9H, CH_{3tBu}), 1.25 (m, 1H, ½CH_{2Norb}), 1.54 (m, 1H, ½CH_{2CbridgeheadCN}), 1.62 (m, 1H, ½CH_{2CbridgeheadCN}), 2.19 (br s, 1H, CH_{bridgeheadCP}), 3.35 (br s, 1H, CH_{bridgeheadCN}), 3.54 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 3.63 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 6.83-6.90 (m, 3H, H_{aromatic})

Note: It was not possible to locate the AI-H resonances even with the use of ${}^{1}H{}^{31}P{}$ NMR experiments, likely due to extremely high linewidth.

¹³C NMR (C₄D₈O, 126 MHz, 300 K): δ 6.5 (s, SiCH₃), 8.3 (d, $J_{CP} = 5.7$ Hz, SiCH₃), 24.3 (d, $J_{CP} = 10.2$ Hz, CH_{3iPr}), 26.0 (d, $J_{CP} = 15.2$ Hz, CH_{3iPr}), 27.2 (s, CH_{2CbridgeheadCP}), 28.11 (s, CH_{iPr}), 28.13 (s, CH_{iPr}), 30.1 (s, CH_{2CbridgeheadCN}), 32.9 (d, $J_{CP} = 5.4$ Hz, CH_{3tBu}), 33.4 (d, $J_{CP} = 4.8$ Hz, CH_{3tBu}), 42.1 (d, $J_{CP} = 1.5$ Hz, CH_{bridgeheadCN}), 46.5 (s, CH_{2Norb}), 47.2 (d, $J_{CP} = 5.5$ Hz, CH_{bridgeheadCP}), 51.4 (d, $J_{CP} = 11.5$ Hz, C^tBu), 51.6 (d, $J_{CP} = 14.6$ Hz, C^tBu), 111.2 (d, $J_{CP} = 43.1$ Hz, PCCH), 123.1 (d, $J_{CP} = 10.0$ Hz, C_{meta}), 124.2 (s, C_{para}), 146.7 (s, CCH_{iPr}), 148.0 (s, CCH_{iPr}), 150.7 (s, NC_{Ar}), 174.2 (d, $J_{CP} = 33.2$ Hz, NCCH)

³¹P (C₄D₈O, 162 MHz, 300 K): δ 110.8 (q, ²J_{PH} = 34 Hz)

⁷Li (C₄D₈O, 194.4 MHz, 300 K): δ -0.43 (s)

High Resolution Mass Spec (EI): $m/z = 528.34912 [C_{29}H_{52}N_3AIPSi]^+$ (theoretical = 528.34891).

Synthesis of Aluminum Dihydride Complexes 5a-c

General Synthesis:

To a solution of ligand **1a-c** in THF cooled to -78 °C, ⁿBuLi (2.5 M in hexanes) was added dropwise. The cold bath was removed and the resultant yellow solution was stirred at room temperature for 1 hour. The reaction mixture was cooled to -78 °C and a solution of H₃Al·NMe₃ in THF was added dropwise. The cold bath was removed and the resultant colourless solution was stirred at room temperature for 1 hour. The solvent was removed *in vacuo*, the product extracted in hexane and dried to afford a white solid.

 $H_3AI \cdot NMe_2Et$ (0.5 M in toluene) can be used in place of $H_3AI \cdot NMe_3$. In this work, $H_3AI \cdot NMe_2Et$ was used for initial test reactions to synthesise up to 0.2 g of **5** using an identical procedure to that described above.

5a:

1a (1.63 g, 0.0039 mol), THF (50 mL), ⁿBuLi (1.6 mL, 0.0039 mol, 1.0 eq), H₃Al·NMe₃ (0.84 g, 0.0037 mol, 2.4 eq) in THF (20 mL) yielded **5a** (1.57 g, 91%).

¹H (C₆D₆, 500 MHz, 300 K): δ 1.11 (dm, ²J_{HH} = 8.1 Hz, 1H, ¹/₂CH_{2Norb}), 1.19 (d, ³J_{HP} = 14.2 Hz, 9H, CH_{3tBu}), 1.22 (d, ³J_{HP} = 14.2 Hz, 9H, CH_{3tBu}), 1.28 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.29 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.31 (m, 2H, CH_{2CbridgeheadCP}), 1.42 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.44 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.51 (m, 1H, ¹/₂CH_{2CbridgeheadCN}), 1.62 (dm, ²J_{HH} = 8.1 Hz, 1H, ¹/₂CH_{2Norb}), 1.67 (m, 1H, ¹/₂CH_{2CbridgeheadCN}), 2.53 (br s, 1H, PCCH_{bridgehead}), 2.94 (br s, 1H, NCCH_{bridgehead}), 3.42 (sept, ³J_{HH} = 6.8 Hz, CH_{iPr}), 3.63 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 4.6 (br s, 2H, AIH₂), 7.16-7.22 (m, 3H, H_{aromatic})

¹³C (C₆D₆, 126 MHz, 300 K): δ 24.0 (s, CH_{3iPr}), 24.7 (s, CH_{3iPr}), 25.2 (d, J_{CP} = 1.8 Hz, CH_{2CbridgeheadCP}), 25.8 (s, CH_{3iPr}), 25.9 (s, CH_{3iPr}), 28.0 (s, CH_{iPr}), 28.1 (s, CH_{iPr}), 29.6 (d, J_{CP} = 4.5 Hz, CH_{3tBu}), 30.1 (s, CH_{2CbridgeheadCN}), 30.1 (d, J_{CP} = 4.0 Hz, CH_{3tBu}), 34.1 (d, J_{CP} = 18.2 Hz, C^tBu), 34.3 (d, J_{CP} = 18.9 Hz, C^tBu), 43.6 (d, J_{CP} = 9.1 Hz, CH_{bridgeheadCP}), 44.1 (d, J_{CP} = 2.1 Hz, CH_{bridgeheadCN}), 48.6 (d, J_{CP} = 3.9 Hz, CH_{2Norb}), 81.0 (d, J_{CP} = 44.5 Hz, PCCH), 124.1 (s, C_{meta}), 124.2 (s, C_{meta}), 126.3 (s, C_{para}), 141.4 (d, J_{CP} = 3.0 Hz, NC_{Ar}), 146.8 (s, CCH_{iPr}), 147.1 (s, CCH_{iPr}), 185.1 (d, J_{CP} = 20.1 Hz, NCCH)

³¹P{¹H} (C₆D₆, 162 MHz, 300 K): δ 8.0 (s, Δν_½ = 34.7 Hz)

High Resolution Mass Spec (EI): $m/z = 441.30855 [C_{27}H_{45}AINP]^+$ (theoretical = 441.30996).

Elemental Analysis: Found (%): C, 73.11; H, 10.39; N, 3.13. Calc. for C₂₇H₄₅AINP: C, 73.43; H, 10.27; N, 3.17.

IR (solid, cm⁻¹): 1810, 1786

IR (solution, cm⁻¹): 1811

1b (3.00 g, 0.0060 mol), THF (80 mL), ⁿBuLi (2.4 mL, 0.0060 mol, 1.0 eq), H₃Al·NMe₃ (1.28 g, 0.014 mol, 2.4 eq) in THF (15 mL) yielded **5b** (2.95 g, 93%).

Colourless crystals suitable for X-ray crystallography were grown from a saturated hexane solution at -20 $^{\circ}$ C.

¹H NMR (C₆D₆, 500 MHz, 300 K): δ 0.24 (s, 3H, SiCH₃), 0.29 (s, 3H, SiCH₃), 1.13 (d, ²J_{HH} = 8.1 Hz, 1H, ¹/₂CH_{2Norb}), 1.28 (d, ⁴J_{HP} = 0.8 Hz, 9H, CH_{3tBu}), 1.29 (d, ⁴J_{HP} = 0.8 Hz, 9H, CH_{3tBu}), 1.30 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.31 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.38 (m, 2H, CH_{2CbridgeheadCP}), 1.44 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.45 (d, ³J_{HH} = 6.8 Hz, 3H, CH_{3iPr}), 1.62 (d, ²J_{HH} = 8.1 Hz, ¹/₂CH_{2Norb}), 1.67 (m, 2H, CH_{2CbridgeheadCN}), 2.57 (br s, 1H, CH_{bridgeheadCP}), 3.12 (br s, 1H, CH_{bridgeheadCN}), 3.53 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 3.74 (sept, ³J_{HH} = 6.8 Hz, 1H, CH_{iPr}), 4.6 (br s, 2H, AI-H), 7.17-7.23 (m, 3H, H_{aromatic})

¹³C NMR (C₆D₆, 126 MHz, 300 K): δ 4.4 (d, J_{CP} = 1.6 Hz, SiCH₃), 6.3 (d, J_{CP} = 3.2 Hz, SiCH₃), 24.1 (s, CH_{3iPr}), 24.6 (s, CH_{3iPr}), 25.6 (d, J_{CP} = 1.0 Hz, CH_{2CbridgeheadCP}), 25.8 (s, CH_{3iPr}), 25.9 (s, CH_{3iPr}), 28.0 (s, CH_{iPr}), 28.3 (s, CH_{iPr}), 29.3 (s, CH_{2CHbridgheadCN}), 32.3 (d, J_{CP} = 5.4 Hz, CH_{3tBu}), 32.7 (d, J_{CP} = 5.2, CH_{3tBu}), 40.7 (d, J_{CP} = 3.9 Hz, CH_{bridgheadCN}), 43.9 (d, J_{CP} = 9.7 Hz, CH_{bridgheadCP}), 46.8 (d, J_{CP} = 4.9 Hz, CH_{2Norb}), 51.4 (d, J_{CP} = 2.5 Hz, C^tBu), 51.5 (d, J_{CP} = 3.6 Hz, C^tBu), 99.7 (d, J_{CP} = 32.6 Hz, PCCH), 124.1 (s, C_{meta}), 124.2 (s, C_{meta}), 126.5 (s, C_{para}), 140.8 (d, J_{CP} = 3.5 Hz, NC_{Ar}), 146.4 (s, C_{Ar}CH_{iPr}), 146.5 (s, C_{Ar}CH_{iPr}), 187.6 (d, J_{CP} = 3.9 Hz, NCCH)

³¹P{¹H} NMR (C₆D₆, 162 MHz, 300 K): δ 61.3 (s, Δν_{1/2} = 65.4 Hz)

High Resolution Mass Spec (EI): $m/z = 527.33886 [C_{29}H_{51}AIN_3PSi]^+$ (theoretical = 527.33998).

Elemental Analysis: Found (%): C, 65.95; H, 9.66; N, 7.83. Calc. for C₂₉H₅₁AlN₃PSi: C, 66.00; H, 9.74; N, 7.96.

IR (solid, cm⁻¹): 1831, 1816

IR (solution, cm⁻¹): 1820

5b:

1c (2.00 g, 0.0043 mol), THF (100 mL), ⁿBuLi (1.7 mL, 0.0043 mol, 1.0 eq), $H_3AI \cdot NMe_3$ (0.91 g, 0.010 mol, 2.4 eq) in THF (15 mL). The final product was further purified by recrystallization from hexanes at -20 °C to yield **5c** as colourless crystals(1.68 g, 79%).

Two isomers were identifiable in the solution phase NMR spectra in a ratio of 4:7 for κ^2 -N,N **5c** to κ^2 -N,P **5c** at 300 K (determined from the ¹H NMR spectrum).

κ²-N,N **5c**

¹H (C₆D₆, 500 MHz, 300 K): δ 0.91 (m, 1H, ½CH_{2Norb}), 1.18 (d, ${}^{4}J_{HP}$ = 1.3 Hz, 9H, CH_{3tBu}), 1.23 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.25 (m, 1H, ½CH_{2Norb}), 1.31 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6H, CH_{3iPr}), 1.32 (s, 9H, CH_{3tBu}), 1.43 (m, 2H, CH_{2CbridgeheadCP}), 1.60 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 3H, CH_{3iPr}), 1.65 (m, 1H, ½CH_{2CbridgeheadCN}), 1.71 (m, 1H, ½CH_{2CbridgeheadCN}), 2.56 (m, 1H, CH_{bridgeheadCP}), 2.70 (m, 1H, ½NCH₂), 2.78 (m, 1H, ½NCH₂), 2.97 (m, 1H, CH_{bridgeheadCN}), 3.33 (m, 1H, ½NCH₂), 3.56 (m, 1H, ½NCH₂), 3.85 (sept, ${}^{3}J_{HH}$ = 6.8 Hz, 1H, CH_{iPr}), 3.98 (sept, ${}^{3}J_{HH}$ = 6.8 Hz, 1H, CH_{iPr}), 4.3 (br s, 2H, AIH₂) 7.18-7.21 (m, 3H, H_{aromatic})

¹³C (C₆D₆, 126 MHz, 300 K): δ 25.4 (s, CH_{2CbridgeheadCP}), 25.6 (s, CH_{3iPr}), 25.7 (s, CH_{3iPr}), 25.92 (s, CH_{3iPr}), 27.5 (s, CH_{iPr}), 28.9 (s, CH_{iPr}), 29.0 (d, J_{CP} = 4.6 Hz, CH_{3tBu}), 29.6 (d, J_{CP} = 10.7 Hz, CH_{3tBu}), 29.8 (d, J_{CP} = 1.8 Hz, CH_{2CbridgeaheadCN}), 44.2 (s, CH_{2Norb}), 45.1 (s, CH_{bridgeheadCN}), 45.7 (s, NCH₂), 45.8 (d, J_{CP} = 39.1 Hz, CH_{bridgeheadCP}), 48.8 (d, J_{CP} = 3.3 Hz, NCH₂), 53.5 (d, J_{CP} = 5.0 Hz, C^tBu), 53.8 (d, J_{CP} = 3.9 Hz, C^tBu), 104.8 (d, J_{CP} = 36.9 Hz, PCCH), 123.9 (s, C_{meta}), 124.6 (s, C_{meta}), 125.2 (s, C_{para}), 143.22 (s, NC_{Ar}), 145.8 (CCH_{iPr}), 146.53 (s, CCH_{iPr}), 167.4 (d, J_{CP} = 2.7 Hz, NCCH)

³¹P{¹H} (C₆D₆, 162 MHz, 300 K): δ 96.9 (s, Δν_{1/2} = 137.9 Hz)

κ²-N,P **5c**

¹H (C₆D₆, 500 MHz, 300 K): δ 1.07 (dm, ${}^{2}J_{HH} = 8.4$ Hz, 1H, ${}^{1}_{2}CH_{2Norb}$), 1.29 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, CH_{3iPr}), 1.30 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, CH_{3iPr}), 1.32 (s, 9H, CH_{3tBu}), 1.35 (s, 9H, CH_{3tBu}), 1.39 (m, 2H, CH_{2CbridgeheadCP}), 1.42 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, CH_{3iPr}), 1.45 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H, CH_{3iPr}), 1.56 (m, 1H, ${}^{1}_{2}CH_{2Norb}$), 1.63 (m, 2H, CH_{2CbridgeheadCN}), 2.52 (m, 1H, CH_{bridgeheadCP}), 2.60 (m, 1H, ${}^{1}_{2}NCH_{2}$), 2.72 (m, 1H, ${}^{1}_{2}NCH_{2}$), 2.79 (m, 1H, ${}^{1}_{2}NCH_{2}$), 2.88 (m, 1H, NCH₂), 3.02 (m, 1H, CH_{bridgeheadCN}), 3.54 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 1H, CH_{iPr}), 3.76 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 1H, CH_{iPr}), 4.6 (br s, 2H, AIH₂) 7.18-7.21 (m, 3H, H_{aromatic})

5c:

¹³C (C₆D₆, 126 MHz, 300 K): δ 24.0 (s, CH_{3iPr}), 24.7 (s, CH_{3iPr}), 25.3 (s, CH_{2CbridgeheadCP}), 25.8 (s, CH_{3iPr}), 25.86 (s, CH_{3iPr}), 27.9 (s, CH_{iPr}), 28.1 (s, CH_{iPr}), 29.0 (d, J_{CP} = 4.6 Hz, CH_{3tBu}), 29.3 (s, CH_{2CbridgeheadCN}), 29.9 (d, J_{CP} = 4.6 Hz, CH_{3tBu}), 42.7 (d, J_{CP} = 4.4 Hz, CH_{bridgeheadCN}), 43.6 (d, J_{CP} = 9.9 Hz, CH_{bridgeheadCP}), 43.9 (s, NCH₂), 44.2 (s, NCH₂), 46.6 (d, J_{CP} = 4.9 Hz, CH_{2Norb}), 53.4 (d, J_{CP} = 9.8 Hz, C'Bu), 53.6 (d, J_{CP} = 5.4 Hz, C'Bu), 97.0 (d, J_{CP} = 35.3 Hz, PCCH), 124.1 (s, C_{meta}), 124.3 (s, C_{meta}), 126.4 (s, C_{para}), 141.0 (d, J_{CP} = 4.0 Hz, NC_{Ar}), 146.51 (s, CCH_{iPr}), 146.8 (s, CCH_{iPr}), 185.4 (d, J_{CP} = 34.0 Hz, NCCH)

³¹P{¹H} (C₆D₆, 162 MHz, 300 K): δ 47.8 (s, Δν_{1/2} = 96.6 Hz)

High Resolution Mass Spec (EI): $m/z = 497.35079 [C_{29}H_{49}AIN_3P]^+$ (theoretical = 497.34741).

Elemental Analysis: Found (%): C, 69.80; H, 9.80; N, 8.33. Calc. for C₂₉H₅₁AlN₃PSi: C, 69.99; H, 9.92; N, 8.44.

IR (solid, cm⁻¹): 1825, 1801

IR (solution, cm⁻¹): 1823

Hydroboration of Alkynes Catalysed by 5a-c

The relevant alkyne (Phenylacetylene or 1-octyne, 0.15 mmol) was added to a solution of **5a-c** (10 mol%, 0.015 mmol) and HBpin (0.15 mmol, 0.022 mL) in toluene (0.5 mL) at room temperature and then heated to 110 °C for 2 hours. Yields were obtained using ¹H NMR spectroscopy following the addition of 1,3,5-trimethoxybenzene as an internal standard to the crude reaction mixture. The products were identified by comparison with literature.⁶

$$R \longrightarrow + HBpin \xrightarrow{5 (10 mol\%)}{Toluene} \xrightarrow{Pin} R$$

Catalyst	Substrate	Yield
		(%)
5a	1-octyne	40
	Phenylacetylene	79
	Phenylacetylene	24ª
5b	1-octyne	42
	Phenylacetylene	83
5c	1-octyne	46
	Phenylacetylene	53
None	1-octyne	Trace
		(1%)
	Phenylacetylene	None

^a Reaction temperature of 60 °C

X-ray Crystallography

3a

Experimental. Single colourless block-shaped crystals of **3a** were recrystallised from diethyl ether by slow cooling. A suitable crystal $0.48 \times 0.32 \times 0.26$ mm³ was selected and mounted on a MITIGEN holder in Paratone oil on a Rigaku Oxford Diffraction SuperNova diffractometer. The crystal was kept at a steady *T* = 120.00 K during data collection. The structure was solved with the Superflip⁷⁻⁹ structure solution program using the Charge Flipping methods solution method and by using **Olex2**¹⁰ as the graphical interface. The model was refined with version 2018/3 of **ShelXL**¹¹ using full matrix least squares on **F**² minimisation.

Crystal Data. C₂₉H₄₉AINP, M_r = 469.64, monoclinic, $P2_1/n$ (No. 14), a = 9.18230(10) Å, b = 15.1402(3) Å, c = 21.6154(4) Å, β = 101.8270(10)°, $\alpha = \gamma = 90°$, V = 2941.22(9) Å³, T = 120.00 K, Z = 4, Z' = 1, μ (MoK $_{\alpha}$) = 0.139, 51661 reflections measured, 7623 unique ($R_{int} = 0.0428$) which were used in all calculations. The final wR_2 was 0.1337 (all data) and R_1 was 0.0549 (I > 2(I)).

Plot.

Compound

3a

Formula	
$D_{calc}/a \text{ cm}^{-3}$	1.061
//mm ⁻¹	0.139
Formula Weight	469.64
Colour	colourless
Shape	block
Size/mm ³	0.48×0.32×0.26
T/K	120.00
Crystal System	monoclinic
Space Group	P21/n
a/Å	9.18230(10)
b/Å	15.1402(3)
c/Å	21.6154(4)
αl°	90
βl°	101.8270(10)
уl°	90
V/Å ³	2941.22(9)
Ζ	4
Ζ'	1
Wavelength/Å	0.71073
Radiation type	MoKα
Θ_{min} l°	2.858
\varTheta_{max} /°	29.738
Measured Refl.	51661
Independent Refl.	7623
Reflections with I >	6524
2(I)	
R _{int}	0.0428
Parameters	360
Restraints	6
Largest Peak	0.628
Deepest Hole	-0.448
GooF	1.090
wR ₂ (all data)	0.1337
wR ₂	0.1277
R₁ (all data)	0.0653
R_1	0.0549

Hydrogen atoms and disorder omitted for clarity. Thermal ellipsoids set to 50%

3c

Experimental. Single colourless plate-shaped crystals of **3c** were recrystallised from hexane by slow cooling. A suitable crystal $0.40 \times 0.07 \times 0.03 \text{ mm}^3$ was selected and mounted on a MITIGEN holder in Paratone oil on a Rigaku Oxford Diffraction SuperNova diffractometer. The crystal was kept at a steady *T* = 120.0 K during data collection. The structure was solved with the Superflip⁷⁻⁹ structure solution program using the Charge Flipping methods solution method and by using **Olex2**¹⁰ as the graphical interface. The model was refined with version 2018/3 of **ShelXL**¹¹ using Least Squares minimisation.

Crystal Data. $C_{31}H_{53}AIN_3P$, $M_r = 525.71$, monoclinic, $P2_1$ (No. 4), a = 8.87214(15) Å, b = 19.02205(19) Å, c = 10.2547(2) Å, $\beta = 115.642(2)^\circ$, $\alpha = \gamma = 90^\circ$, V = 1560.21(5) Å³, T = 120.0 K, Z = 2, Z' = 1, $\mu(CuK_{\alpha}) = 1.210$, 25359 reflections measured, 5578 unique ($R_{int} = 0.0672$) which were used in all calculations. The final wR_2 was 0.1368 (all data) and R_1 was 0.0495 (I > 2(I)).

Plot.

Hydrogen atoms and disorder omitted for clarity. Thermal ellipsoids set to 50%

Compound

3c

Formula	
$D / a \text{ am}^3$	1 110
	1.119
μ /mm ⁻¹	1.210
Formula Weight	525.71
Colour	colourless
Shape	plate
Size/mm ³	0.40×0.07×0.03
T/K	120.0
Crystal System	monoclinic
Flack Parameter	0.068(17)
Hooft Parameter	0.074(15)
Space Group	P2 ₁
a/Å	8 87214(15)
h/Å	19 02205(19)
c/Å	10.02200(10)
ol al	10.2347(2)
	90 445 G40(0)
βl	115.042(2)
γ/ \//Å3	90
V/A ³	1560.21(5)
Ζ	2
Ζ'	1
Wavelength/A	1.54184
Radiation type	CuK _α
$artheta_{min}$ /°	4.649
Θ_{max} /°	76.174
Measured Refl.	25359
Independent Refl.	5578
Reflections with I >	5210
2(I)	
R _{int}	0.0672
Parameters	487
Restraints	5
Largest Peak	0.413
Deepest Hole	-0.305
GooF	1.053
wR_2 (all data)	0 1368
wR ₂	0 1337
R₄ (all data)	0.0522
R	0.0022
1 1 1	0.0+30

Experimental. Single colourless block-shaped crystals of Compound 5b were recrystallised from pentane by slow evaporation. A suitable crystal 0.27×0.24×0.08 mm³ was selected and mounted on a MITIGEN holder in Paratone oil on a Rigaku Oxford Diffraction SuperNova diffractometer. The crystal was kept at a steady T = 120.0 K during data collection. The structure was solved with the ShelXS¹² structure solution program using the Direct Methods solution method and by using **Olex2**¹⁰ as the graphical interface. The model was refined with version 2018/3 of SheIXL¹¹ using Least Squares minimisation.

Crystal Data. $C_{29}H_{51}AIN_3PSi$, $M_r = 527.76$, monoclinic, *P*2₁/*n* (No. 14), a = 10.1515(4) Å, b = 12.1201(5) Å, c = 25.7328(9) Å, $\beta = 92.986(3)^{\circ}$, $\alpha = \gamma = 90^{\circ}$, V =3161.8(2) Å³, T = 120.0 K, Z = 4, Z' = 1, μ (MoK_{α}) = 0.174, 43426 reflections measured, 8082 unique ($R_{int} = 0.0579$) which were used in all calculations. The final wR_2 was 0.1113 (all data) and R_1 was 0.0521 (I > 2(I)).

Plot.

Hydrogen atoms (other than H1 and H2) and disorder omitted for clarity. Thermal ellipsoids set to 50%

5b

Formula	C29H51AIN3PSi
D _{calc} / g cm ⁻³	1.109
μ/mm^{-1}	0.174
Formula Weight	527.76
Colour	colourless
Shape	block
Size/mm ³	0.27×0.24×0.08
T/K	120.0
Crystal System	monoclinic
Space Group	P21/n
a/Å	10.1515(4)
b/Å	12.1201(5)
c/Å	25.7328(9)
$lpha l^{\circ}$	90
βl°	92.986(3)
уl°	90
V/Å ³	3161.8(2)
Ζ	4
Ζ'	1
Wavelength/Å	0.71073
Radiation type	ΜοΚα
Θ_{min} l°	3.116
Θ_{max} /°	29.764
Measured Refl.	43426
Independent Refl.	8082
Reflections with I >	6872
2(I)	
Rint	0.0579
Parameters	382
Restraints	62
Largest Peak	0.432
Deepest Hole	-0.313
GooF	1.178
wR₂ (all data)	0.1113
wR ₂	0.1064
<i>R</i> ₁ (all data)	0.0661
R_1	0.0521

Figure 1: Electron density corresponding with H1 and H2 in 5b.

Experimental. Single colourless plate-shaped crystals of 5c were recrystallised from hexane by slow cooling. A suitable crystal 0.50×0.31×0.09 mm³ was selected and mounted on a MITIGEN holder in Paratone oil on a Rigaku Oxford Diffraction SuperNova diffractometer. The crystal was kept at a steady T = 120 K during data collection. The structure was solved with the Superflip⁷⁻⁹ structure solution program using the Charge Flipping solution method and by using **Olex2**¹⁰ as the graphical interface. The model was refined with version 2018/3 of SheIXL¹¹ using Least Squares minimisation.

Crystal Data. C₂₉H₄₉AlN₃P, M_r = 497.66, monoclinic, $P2_1/c$ (No. 14), a = 17.2654(5) Å, b = 10.1618(4) Å, c = 17.1885(6) Å, $\beta = 93.501(3)^{\circ}$, $\alpha = \gamma = 90^{\circ}$, V = 3010.05(18) Å³, T = 120 K, Z = 4, Z' = 1, μ (MoK_{α}) = 0.141, 49396 reflections measured, 6144 unique ($R_{int} = 0.0557$) which were used in all calculations. The final wR_2 was 0.1621 (all data) and R_1 was 0.0696 (I > 2(I)).

Plot.

Compound	5c
Formula	C ₂₉ H ₄₉ AIN ₃ P
D _{calc.} / g cm ⁻³	1.098
µ/mm ⁻¹	0.141
Formula Weight	497.66
Colour	colourless
Shape	plate
Size/mm ³	0.50×0.31×0
T/K	120
Crystal System	monoclinic
Space Group	<i>P</i> 21/ <i>c</i>
a/Å	17.2654(5)
b/Å	10.1618(4)
c/Å	17.1885(6)
αl°	90
βl°	93.501(3)
л°	90
V/Å ³	3010.05(18)
Ζ	4
Ζ'	1
Wavelength/Å	0.71073
Radiation type	MoK_{lpha}
(Omin)°	3.100

μ/mm ⁻¹	0.141
Formula Weight	497.66
Colour	colourless
Shape	plate
Size/mm ³	0.50×0.31×0.09
T/K	120
Crystal System	monoclinic
Space Group	<i>P</i> 2 ₁ / <i>c</i>
a/Å	17.2654(5)
b/Å	10.1618(4)
c/Å	17.1885(6)
α /°	90
βl°	93.501(3)
у°	90
V/Å ³	3010.05(18)
Ζ	4
Ζ'	1
Wavelength/Å	0.71073
Radiation type	MoK_{α}
Θ_{min} /°	3.100
Θ_{max} /°	26.371
Measured Refl.	49396
Independent Refl.	6144
Reflections with I >	5394
2(I)	
R _{int}	0.0557
Parameters	371
Restraints	116
Largest Peak	0.646
Deepest Hole	-0.738
GooF	1.135
wR₂ (all data)	0.1621
wR ₂	0.1571
<i>R</i> ₁ (all data)	0.0792
R_1	0.0696

Hydrogen atoms (other than H1 and H2) and disorder omitted for clarity. Thermal ellipsoids set to 50%

Figure 2: Electron density corresponding with H1 and H2 in 5c.

Space Filling Diagrams

3a

5c

5b

Solid State NMR

Experimental Details:

Solid-state NMR spectra were recorded using a Bruker Avance III spectrometer equipped with a 9.4 T wide-bore superconducting magnet (Larmor frequencies of 400.1, 162.0 and 104.3 MHz for ¹H, ³¹P and ²⁷Al, respectively). Samples were packed under Ar into standard 4 mm rotors and, for ³¹P, the rotors were rotated at the magic angle at 14 kHz. ³¹P NMR spectra were recorded with signal averaging for 8 transients with a recycle interval of 30 s. High-power (v₁ ≈ 90 kHz) TPPM-15 decoupling of ¹H was applied during acquisition. ²⁷Al NMR spectra were recorded for static samples with signal averaging for between 128 and 512 transients with a recycle interval of 1 s. The WURST-QCPMG pulse sequence was used with optimised WURST pulses of 50 µs (1 MHz nominal bandwidth) for excitation and refocusing. The CPMG echo train comprised 100 echoes with a spacing of 250 µs, giving a spikelet separation in the spectrum of 4 kHz. High-power (v₁ ≈ 60 kHz) continuous-wave decoupling of ¹H was applied during acquisition. Chemical shifts are reported in ppm relative to 85% H₃PO₄ and 1.1 M Al(NO₃)₃ using BPO₄ (δ = –29.6 ppm) and Al(acac)₃ (δ _{iso} = 0.0 ppm, C_Q = 3.02 MHz, η_Q = 0.17).

³¹P{¹H} MAS NMR

Figure S1 shows the ³¹P{¹H} solid-state NMR spectra of the samples. Unlike in solution-state NMR, where *J* coupling to quadrupolar nuclei is rarely observed owing to motion-related relaxation effects, there is restricted molecular motion in solids and larger *J* couplings can be observed directly. The effect of coupling to ²⁷Al (spin I = 5/2, abundance = 100%) should be to split the spectrum into an equally-spaced 1:1:1:1:1 sextet. However, as observed below, the ²⁷Al species all have very large quadrupolar coupling constants and, as ³¹P and ²⁷Al both have reasonably high gyromagnetic ratios, there will be a significant dipolar-quadrupolar cross term that will alter the individual spacings in the sextet. This effect can be seen most clearly for **5b**, but is present to some extent in all three samples, leading to the asymmetric lineshapes observed. In addition, minor resonances corresponding to impurities (indicated with daggers in Figure S1) are observed for **3a** (71 and 75 ppm) and **3b** (26 and 102 ppm) due to some air exposure of these samples during preparation for solid state NMR experiments.

Figure S2: ${}^{31}P{}^{1}H{}$ (9.4 T, 14 kHz MAS) NMR spectra of the six samples. Insets show expansions of the isotropic resonances. * = spinning sideband, † = impurity.

The chemical shifts are summarised in Table S1. For **3a**, **3b**, **5a** and **5b** the chemical shifts are in good agreement with solution-state values. For **3c** and **5c**, only one resonance is observed in the solid state (47.8 and 47.5 ppm respectively), which is in good agreement with the upfield resonances observed in solution (49.7 and 47.8 ppm respectively). This indicates only one isomer of **3c** and **5c** is present in the solid state. The broadening of the signals indicates a direct bond between the phosphorus and aluminum, i.e. κ^2 -coordination of the ligand to aluminum. This is in agreement with the solid state structures obtained by X-ray crystallography.

Sample	δ _(solution) (ppm)	δ _(solid) (ppm)
3a	1.6	1.9
3b	64.0	63.2
3c	99.9, 49.7	47.8
5a	8.0	8.9
5b	61.3	61.2
5c	96.9, 47.8	47.5

Table S3: ³¹P chemical shifts observed in solution- and solid-state NMR spectra. The values for the solid state are taken as the centre of gravity of the observed resonance.

²⁷AI{¹H} NMR

Initially, an attempt was made to record the ²⁷AI MAS NMR spectra of the hydrides, but no signal was observed, consistent with the solution-state observation. This suggested very broad resonances and, possibly, rapid relaxation owing to the directly bonded ¹H species. Therefore, a static wideline experiment with ¹H decoupling was used in a second attempt to observe the ²⁷AI species. Figure S2 shows the ²⁷AI{¹H} static CPMG spectra of the six samples. The CPMG experiment enhances peak height to noise at the expense of spectral resolution by forcing the signal into a series of sharp "spikelets". In this case, the spikelet spacing was selected to be 4 kHz, limiting the spectral resolution to this value (38.4 ppm at 9.4 T).

In all six spectra, a very broad resonance is observed with a shape that suggests a combination of large chemical shift anisotropy (CSA) and large quadrupolar coupling (CQ), with the lineshape depending on the relative magnitudes and orientations of the chemical shift and electric field gradient tensors. Initial analysis suggests CQ >8 MHz and CSAs of hundreds of ppm.

The spectral data are consistent with the solution-state data. While the CSA contribution to the ²⁷Al NMR spectrum will be absent in solution, the large quadrupolar contribution will remain and will lead to quadrupolar relaxation effects, which broaden the signal beyond the limit of detection in solution.

Figure S3: ²⁷Al{¹H} (9.4 T, static CPMG) NMR spectra of dimethyl aluminum complexes **3a-c** and aluminum dihydrides **5a-c**.

Computational methods

Computations were performed using the Gaussian16 program package.¹³ Calculations were at the B3LYP/6,31G (PES scan), M062X/Def2SVPP,or M062X/6,31G+(d,p)/Lanl2DZ level. Use of the split basis set was essential for accurately replicating experimental Al–H stretching frequencies. Structures were optimised using crystal structures (where available) as starting points, and all stationary points were confirmed as minima by frequency analysis.

Optimised geometries

Optimised geometries for K²-N,P-**5a**, K²-N,P-**5b**, K²-N,P-**5c**, K²-N,N-**5c** and K¹-N-**5c** are supplied as .xyz files.

Solution Phase NMR Spectra for Novel Compounds: 3a: ¹H (C₆D₆, 500 MHz, 300 K):

3b: ¹H (C₆D₆, 500 MHz, 300 K):

33

³¹P{¹H} (C₆D₆, 162 MHz, 300 K):

180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 f1 (ppm)

10% impurity observed at 75.1 ppm due to high sensitivity of compounds to air and moisture.

5a: ¹H (C₆D₆, 500 MHz, 300 K):

$^{31}P{^{1}H}$ (C₆D₆, 162 MHz, 300 K):

$^{31}P{^{1}H}$ (C₆D₆, 162 MHz, 300 K):

5c: ¹H (C₆D₆, 500 MHz, 300 K):

44

References

1. Guan, Z.; Marshall, W. J., Organometallics 2002, 21 (17), 3580-3586.

2. Baceiredo, A.; Kato, T.; Mao, Y.; Berthe, J.; Bousquié, M. Method of Hydrosilylation Implementing an Organic Catalyst Derived from Germylene. US2017313729 (A1), 2017/11/02/, 2017.

3. Krysiak, J.; Lyon, C.; Baceiredo, A.; Gornitzka, H.; Mikolajczyk, M.; Bertrand, G., *Chem. - Eur. J.* **2004**, *10* (8), 1982-1986.

4. Jouet, R. J.; Warren, A. D.; Rosenberg, D. M.; Bellitto, V. J.; Park, K.; Zachariah, M. R., *Chem. Mater.* **2005**, *17* (11), 2987-2996.

- 5. Passarelli, V.; Benetollo, F.; Zanella, P.; Carta, G.; Rossetto, G., *Dalton Trans.* 2003, (7), 1411-1418.
- 6. Bismuto, A.; Thomas, S. P.; Cowley, M. J., Angew. Chem., Int. Ed. 2016, 55 (49), 15356-15359.
- 7. Palatinus, L.; Chapuis, G., J. Appl. Crystallogr. 2007, 40 (4), 786-790.
- 8. Palatinus, L.; van der Lee, A., J. Appl. Crystallogr. 2008, 41 (6), 975-984.
- 9. Palatinus, L., Acta Cryst. B 2013, 69 (1), 1-16.

10. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. a. K.; Puschmann, H., *J. Appl. Crystallogr.* **2009**, *42* (2), 339-341.

- 11. Sheldrick, G. M., Acta Cryst. C 2015, 71 (1), 3-8.
- 12. Sheldrick, G. M., Acta Cryst. A 2008, 64 (1), 112-122.

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.