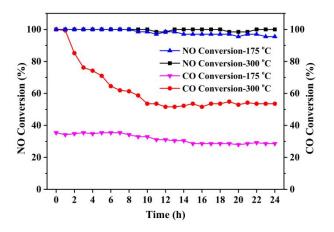
Supporting Information

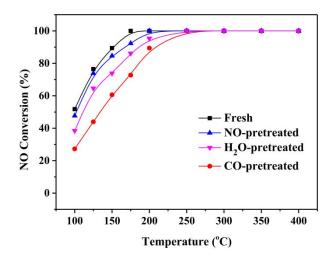
Facile Design of Highly Effective CuCe_xCo_{1-x}O_y Catalysts with Diverse Surface/Interface Structures towards NO Reduction by CO at Low Temperatures

Xinyang Wang[†], Xinyong Li^{*†}, Jincheng Mu[†], Shiying Fan[†], Liang Wang[†], Guoqiang Gan[†], Meichun Qin[†], Ji Li[†], Zeyu Li[†], Dongke Zhang^{*‡}

†State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and


Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China

‡ Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia

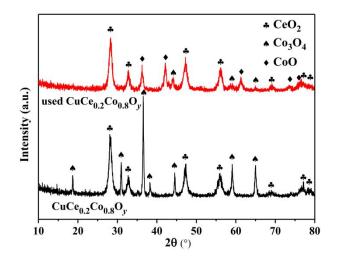
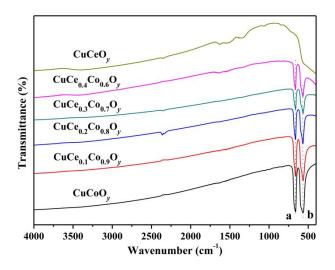
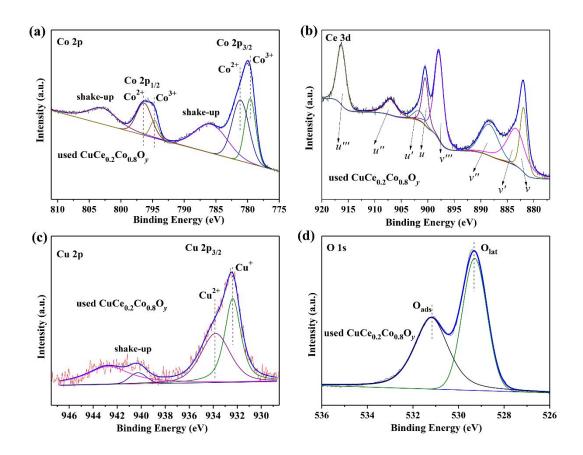

* Corresponding authors:

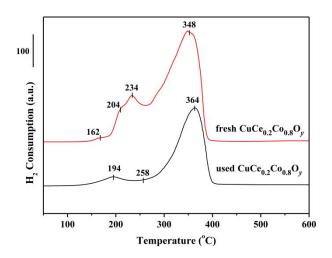
Xinyong Li, Email: xyli@dlut.edu.cn

Dongke Zhang, Email: Dongke.Zhang@uwa.edu.au

Figure S1. The stability test of $CuCe_{0.2}Co_{0.8}O_y$ catalyst at 175 °C and 300 °C for 24 h. Reaction condition: 1000ppm NO, 2000ppm CO, He balance, GHSV = 50,000 h⁻¹.

Figure S2. NO conversion of $CuCe_{0.2}Co_{0.8}O_y$ catalyst pretreated under 5000 ppm CO, 5000 ppm NO and 10 % H₂O/He steam at 200 °C. Reaction condition: 1000ppm NO, 2000ppm CO, He balance, GHSV = 50,000 h⁻¹.


Figure S3. XRD patterns of fresh and used $CuCe_{0.2}Co_{0.8}O_y$ catalysts.

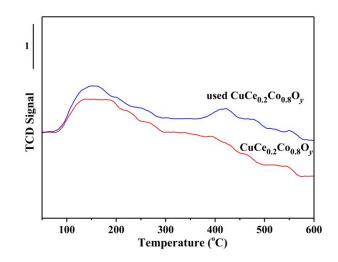

Figure S4. FT-IR spectra of $CuCe_xCo_{1-x}O_y$ catalysts.

Figure S5. XPS profiles of (a) Co 2p, (b) Ce 3d, (c) Ce 3d and (d) O 1s of used $CuCe_xCo_{1-x}O_y$ catalysts.

Figure S6. H₂-TPR profiles of fresh and used $CuCe_{0.2}Co_{0.8}O_y$ catalyst.

Figure S7. CO-TPD profile of fresh and used $CuCe_{0.2}Co_{0.8}O_y$ catalyst.

Catalysts	Reaction condition	NO conversion	Reference
$CuCe_{0.2}Co_{0.8}O_y$	1000 ppm NO, 2000 ppm CO, He balance, $GHSV = 50,000 \text{ h}^{-1}$	175 °C, 100 %	This work
Fe-Co/ASC	1000 ppm NO, 2000 ppm CO, N ₂ balance, GHSV = 6000 h^{-1}	175 °C, 70 %	1
Cu/MCM-41	250 ppm NO, 750 ppmCO, Flow rate = 80 mL/min	350 °C, 23 %	2
4% Cu/Fe-Ce	800 ppm NO, 1600 ppm CO, N ₂ balance, GHSV = 30,000 h ⁻¹	175 °C, 100 %	3
Cu-Ce/CNTs	250 ppm NO, 5000 ppm CO, He balance, GHSV = 12,600 h ⁻¹	175 °C, 70 %	4
Al(Cu+Co+Ce)	1200 ppm NO, 1200 ppm CO, GHSV = 26,000 h ⁻¹	175 °C, 65 %	5
CuO/Ce _{0.2} Ti _{0.8} O ₂	6.0% NO, 6.0% CO, He balance, GHSV = 5000 h^{-1}	175 °C, 45 %	6
Cu/CeO ₂	5% NO, 10% CO, He balance, GHSV = 36,000 h ⁻¹	175 °C, 83 %	7
CuO-CoO _x / γ -Al ₂ O ₃	2.5% NO, 5% CO, He balance, GHSV = 12,000 mL \Box g ⁻¹ \Box h ⁻¹	175 °C, 30 %	8
Cu-Fe/CNTs	5% NO, 10 % CO, He balance, GHSV = $60,000 \text{ h}^{-1}$	175 °C, 55 %	9
CuO-MnO _x /TiO ₂	5% NO, 10% CO, He balance, GHSV = 12,000 h ⁻¹	200 °C, 13 %	10

Table S1. Comparison of NO conversion for NO reduction by CO over different catalysts.

References

(1) Wang, L.; Cheng, X.; Wang, Z.; Ma, C.; Qin, Y., Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO. *Appl. Catal., B* **2017,** 201, 636.

(2) Patel, A.; Shukla, P.; Rufford, T. E.; Rudolph, V.; Zhu, Z., Selective catalytic reduction of NO with CO using different metal-oxides incorporated in MCM-41. *Chem. Eng. J.* **2014**, 255, 437.

(3) Cheng, X.; Zhang, X.; Su, D.; Wang, Z.; Chang, J.; Ma, C., NO reduction by CO over copper catalyst supported on mixed CeO₂ and Fe₂O₃: Catalyst design and activity test. *Appl. Catal.*, *B* **2018**, 239, 485.

(4) Gholami, Z.; Luo, G., Low-Temperature Selective Catalytic Reduction of NO by CO in the Presence of O₂ over Cu:Ce Catalysts Supported by Multiwalled Carbon Nanotubes. *Ind. Eng. Chem. Res.* **2018**, 57, 8871.

(5) Spassova, I.; Velichkova, N.; Nihtianova, D.; Khristova, M., Influence of Ce addition on the catalytic behavior of alumina-supported Cu-Co catalysts in NO reduction with CO. *J. Colloid Interface Sci.* **2011**, 354, 777.

(6) Jiang, X.; Huang, W.; Li, H.; Zheng, X., Catalytic Properties of $CuO/Ce_{0.2}Ti_{0.8}O_2$ and $CuO/Ce_{0.5}Ti_{0.5}O_2$ in the NO + CO Reaction. *Energy Fuels* **2010**, 24, 261.

(7) Yao, X. J.; Gao, F.; Yu, Q.; Qi, L.; Tang, C. J.; Dong, L.; Chen, Y., NO reduction by CO over CuO-CeO₂ catalysts: effect of preparation methods. *Catal. Sci. Technol.* **2013**, 3, 1355.

(8) Zhang, L.; Yao, X.; Lu, Y.; Sun, C.; Tang, C.; Gao, F.; Dong, L., Effect of precursors on the structure and activity of CuO-CoO_x/ γ -Al₂O₃ catalysts for NO reduction by CO. *J. Colloid Interface Sci.* **2018**, 509, 334.

(9) Dasireddy, V. D. B. C.; Likozar, B., Selective catalytic reduction of NO_x by CO over bimetallic transition metals supported by multi-walled carbon nanotubes (MWCNT). *Chem. Eng. J.* **2017**, 326, 886.

(10) Sun, C.; Tang, Y.; Gao, F.; Sun, J.; Ma, K.; Tang, C.; Dong, L., Effects of different manganese precursors as promoters on catalytic performance of CuO-MnO_x/TiO₂ catalysts for NO removal by CO. *Phys. Chem. Chem. Phys.* **2015**, 17, 15996.