Supporting Information

Why the Reactive Oxygen Species of the Fenton Reaction Switches from Oxoiron(IV) Species to Hydroxyl Radical in Phosphate Buffer Solutions? A Computational Rationale

Hsing-Yin Chen

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan E-mail: hychen@kmu.edu.tw

Table of Contents

- Page S2. Gas-phase electronic energy change of $[Fe^{II}H_2O]^{2+} + H_2PO_4^- \rightarrow$ $[Fe^{II}H_2PO_4]^+ + H_2O.$
- Page S2. Hydration energies of H_2O and $H_2PO_4^-$.
- Page S3. Free energy change of successive H_2O exchange by $H_2PO_4^-$ for $[Fe^{II}(H_2O)_6]^{2+}$.
- Page S4. Average bond distances and standard deviations for ADMP dynamics simulation of [Fe^{II}(H₂PO₄)₅(H₂O)]³⁻.
- Page S5. Calculated $\langle S^2 \rangle$ values.
- Page S6–S7. ADMP dynamics simulations of $[Fe^{II}(H_2PO_4)_5(H_2O)]^{3-}$.

method	ΔΕ	
B3LYP-D3/6-31+G(d)	-301.7	
PBE0-D3/6-31+G(d)	-301.9	
M06-D3/6-31+G(d)	-303.5	
PW6B95-D3/6-31+G(d)	-296.9	
PW6B95-D3/Def2-TZVP	-300.3	
PW6B95-D3/Def2-QZVP	-300.0	
BD(T)/Def2-TZVPP	-293.4	

Table S1. Gas-phase electronic energy change (kcal/mol) of $[Fe^{II}H_2O]^{2+} + H_2PO_4^- \rightarrow [Fe^{II}H_2PO_4]^+ + H_2O$.

Table S2. Hydration energies (kcal/mol) of H₂O and H₂PO₄⁻. Signed errors are given in parentheses.^{*a*}

method	H ₂ O	H ₂ PO ₄ -
SMD/PW6B95-D3/6-31+G(d) ^d	-9.3 (-3.0)	-76.9 (-8.9)
IEF-PCM/PW6B95-D3/6-31+G(d) ^d	-5.4 (0.9)	-67.1 (0.9)
CPCM/PW6B95-D3/6-31+G(d) ^d	-5.5 (0.8)	-67.2 (0.8)
Expt.	-6.3	-68

^{*a*} Theoretical hydration energies were evaluated by the difference between solutionphase electronic energy and gas-phase electronic energy at solution-phase optimized geometry.

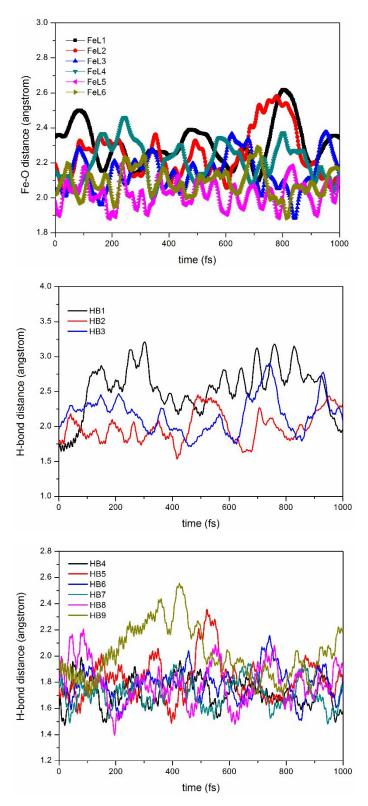
n	CPCM/PBE0/6-31+G(d)	SMD/PBE0/6-31+G(d)	CPCM/M06/6-31+G(d)	CPCM/PW6B95/6-31+G(d)	CPCM/PBE0/Def2-TZVP ^b	CPCM/PBE0/Def2-QZVP ^b
1	-16.5	-13.7	-15.5	-17.4	-18.1	-16.9
2	-14.8	-12.9	-14.6	-15.2	-16.3	-15.4
3	-13.1	-13.4	-11.5	-10.8	-16.4	-14.2
4	-11.8	-13.3	-11.0	-13.6	-9.4	-7.5
5	-8.4	-14.7	-7.8	-7.4	-9.2	-8.8
6	-6.0	-8.0	-5.4	-4.1	-5.9	-5.3

Table S3. Free energy change (kcal/mol) of successive H₂O exchange by H₂PO₄⁻ for [Fe^{II}(H₂O)₆]²⁺.^{*a*}

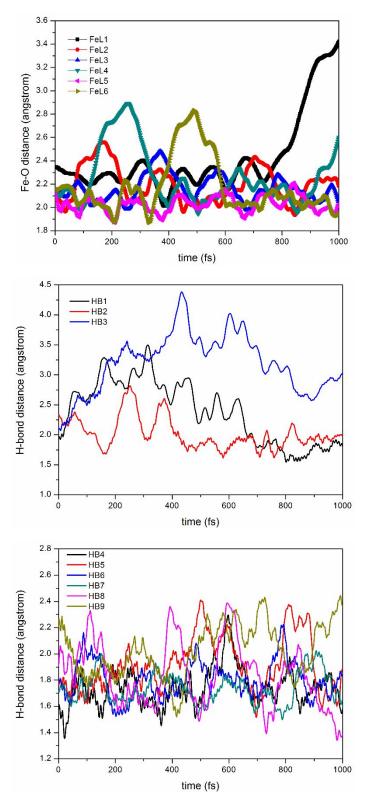
^{*a*} Grimme's D3 dispersion correction was included and experimental hydration energies of H_2O and $H_2PO_4^-$ were employed in all calculations.

^{*b*} CPCM/PBE0/6-31+G(d) optimized geometries are used.

bond label ^a	bond distance	standard deviation
FeL ₁	2.339	0.144
FeL ₂	2.228	0.109
FeL ₃	2.131	0.097
FeL ₄	2.212	0.130
FeL ₅	2.031	0.069
FeL ₆	2.071	0.087
HB_1	2.166	0.518
HB_2	1.883	0.168
HB_3	3.101	0.396
HB_4	1.783	0.184
HB_5	1.830	0.199
HB_6	1.799	0.142
HB_7	1.701	0.085
HB_8	1.735	0.145
HB_9	1.982	0.183


Table S4. Average bond distances and standard deviations (Å)

^{*a*} See Figure 1 for bond label


Table S5. Calculated $\langle S^2 \rangle$ values.

	spin state	calculated $\langle S^2 \rangle$	exact $\langle S^2 \rangle$
$[Fe^{II}(H_2O)_6]^{2+}$	quintet	6.0046	6.0000
$[Fe^{II}(H_2PO_4)(H_2O)_5]^+$	quintet	6.0048	6.0000
$[Fe^{II}(H_2PO_4)_2(H_2O)_4]$	quintet	6.0051	6.0000
$[Fe^{II}(H_2PO_4)_3(H_2O)_3]^-$	quintet	6.0050	6.0000
$[Fe^{II}(H_2PO_4)_4(H_2O)_2]^{2-}$	quintet	6.0050	6.0000
$[Fe^{II}(H_2PO_4)_5(H_2O)]^{3-}$	quintet	6.0051	6.0000
$[Fe^{II}(H_2PO_4)_6]^{4-}$	quintet	6.0051	6.0000
RC	quintet	6.0059	6.0000
INT1 _{OH/•OH}	quintet	6.9681	6.0000
INT2 _{OH/•OH}	quintet	7.0081	6.0000
INT _{FeIII+•OH}	quintet	7.0080	6.0000
INT _{oxo}	quintet	6.1180	6.0000
$[Fe^{III}(H_2O)_6]^{3+}$	sextet	8.7546	8.7500
$[Fe^{III}(H_2PO_4)(H_2O)_5]^{2+}$	sextet	8.7554	8.7500
$[Fe^{III}(H_2PO_4)_2(H_2O)_4]^+$	sextet	8.7556	8.7500
$[Fe^{III}(H_2PO_4)_3(H_2O)_3]$	sextet	8.7556	8.7500
$[Fe^{III}(H_2PO_4)_4(H_2O)_2]^-$	sextet	8.7560	8.7500
$[Fe^{III}(H_2PO_4)_5(H_2O)]^{2-}$	sextet	8.7559	8.7500
$[Fe^{III}(H_2PO_4)(OH)(H_2O)_4]^+$	sextet	8.7568	8.7500
$[Fe^{III}(H_2PO_4)_2(OH)(H_2O)_3]$	sextet	8.7562	8.7500
$[Fe^{III}(H_2PO_4)_3(OH)(H_2O)_2]^-$	sextet	8.7557	8.7500
$[Fe^{III}(H_2PO_4)_4(OH)(H_2O)]^{2-}$	sextet	8.7560	8.7500
$[Fe^{III}(H_2PO_4)_5(OH)]^{3-}$	sextet	8.7558	8.7500
$[Fe^{III}(HPO_4)(H_2O)_5]^+$	sextet	8.7571	8.7500
$[Fe^{III}(H_2PO_4)(HPO_4)(H_2O)_4]$	sextet	8.7561	8.7500
$[Fe^{III}(H_2PO_4)_2(HPO_4)(H_2O)_3]^-$	sextet	8.7558	8.7500
$[Fe^{III}(H_2PO_4)_3(HPO_4)(H_2O)_2]^{2-}$	sextet	8.7560	8.7500
$[Fe^{III}(H_2PO_4)_4(HPO_4)(H_2O)]^{3-}$	sextet	8.7556	8.7500

Spin contamination for every intermediate was examined. It was found that for most intermediates spin contamination problem is negligible, except for $INT1_{OH/\bullet OH}$, $INT2_{OH/\bullet OH}$, and $INT_{FeIII+\bullet OH}$, which exhibit a moderate spin contamination. For the three cases, the •OH is distant from the Fe(III) center and, thus, the spin coupling between •OH and five spins on Fe(III) is very weak. As a consequence, the anti-ferromagnetic coupling (quintet state) and ferromagnetic coupling (septet state) of these intermediates are very close in energy, resulting in spin-state mixing.⁵³

Figure S1. Time evolution of Fe-ligand and H-bond distances for trajectory 2. See Figure 1 for bond label.

Figure S2. Time evolution of Fe-ligand and H-bond distances for trajectory 3. See Figure 1 for bond label.