Supporting information

Bismuth Vacancy Tuned Bismuth Oxybromide Ultrathin Nanosheets towards Photocatalytic CO₂ Reduction

Jun Di^{1,2}[‡], Chao Chen^{2,‡}, Chao Zhu^{2,‡}, Pin Song^{2,‡}, Jun Xiong¹, Mengxia Ji¹, Jiadong Zhou², Qundong Fu², Manzhang Xu², Wei Hao², Jiexiang Xia^{1,*}, Shuzhou Li², Huaming Li¹, Zheng Liu^{2,*}

 ¹ School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, P. R. China
 ² Center for Programmable Materials, School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore

‡ These authors contributed equally to this work.

*Corresponding author: z.liu@ntu.edu.sg; xjx@ujs.edu.cn

Figure S1. (a, b) SEM images of BiOBr nanosheets.

Figure S2. XRD pattern of BiOBr materials prepared from [Bmim]Br and [Omim]Br via the procedure to prepare V_{Bi} -BiOBr UNs.

Figure S3. (a, b) SEM images and (c) EDS of BiOBr material prepared from [Bmim]Br.

Figure S4. (a, b) SEM images and (c) EDS of BiOBr material prepared from [Omim]Br.

Figure S5. (a, b) SEM images of BiOBr material prepared from KBr.

Figure S6. XRD pattern of BiOBr nanosheets.

As displayed in **Figure S7a**, Bi, O, Br and C elements are observed in the survey spectrum. The carbon peak was come from the adventitious carbon on the surface of the sample. It can be seen from **Figure S7b** that the two peaks at 159.3 eV and 164.7 eV are assigned to Bi 4f7/2 and Bi 4f5/2, which indicating the Bi³⁺ in the V_{Bi} -BiOBr UNs. In the high-resolution Br spectrum (**Figure S7c**), the peak binding energy of 68.4 eV is ascribed to Br 3d, which is characteristic of Br⁻ in the V_{Bi} -BiOBr UNs.

Figure S7. XPS spectra of V_{Bi} -BiOBr UNs and BiOBr nanosheets. (a) Survey of the sample, (b) Bi 4f, (c) Br 3d.

Figure S8. Calculated density of states of (a) V_{Bi} -BiOBr UNs and (b) perfect BiOBr with contribution of different atoms.

Figure S9. ESR spectra of (a) V_{Bi} -BiOBr UNs and (b) BiOBr nanosheets in the presence of 2,2,6,6-tetramethylpiperidine (TEMP) under irradiation.

Figure S10. Mass spectra of ¹³CO (m/z = 29) produced over V_{Bi} -BiOBr UNs.

Figure S11. Photocatalytic CO evolution amount over V_{Bi} -BiOBr UNs under UV light irradiation.

Figure S12. Performance comparison of several materials under the similar testing conditions.

Figure S13. (a) XRD and (b) HAADF-STEM image of V_{Bi}-BiOBr UNs after cycles.

Figure S14. Schematic illustration of the adsorption of CO_2 molecules onto (a) perfect BiOBr and (b) V_{Bi} -BiOBr.

Figure S15. Electrochemical impedance spectra for V_{Bi} -BiOBr UNs and BiOBr

nanosheets.

Figure S16. PL spectra of the V_{Bi}-BiOBr UNs and BiOBr nanosheets.

Table S1. Comparison of the reaction conditions and photocatalytic activity with othercatalysts for CO_2 reduction to CO.

Photocatalysts	Light	Reaction	Products	Photocatalytic	Ref.
	sources	conditions		efficiencies	
V _{Bi} -BiOBr UNs	Xe lamp	Liquid-solid, water	СО	20.1 µmol g ⁻¹ h ⁻¹	This
					work
oxygen-rich WO ₃	IR light	Liquid-solid, water	СО	2.8 µmol g ⁻¹ h ⁻¹	S 1
layers					
BiOCl with oxygen	Xe lamp	Liquid-solid, water	СО	1.01 µmol g ⁻¹ h ⁻¹	S2
vacancies					
monolayered BiOBr	Xe lamp	Gas-solid, water	СО	~0.9 µmol g ⁻¹ h ⁻¹	S 3
ultrathin ZnAl LDH	Xe lamp	Gas-solid, water	СО	7.6 µmol g ⁻¹ h ⁻¹	S4
partially oxidized	Visible	Gas-solid, water	СО	12.28 µmol g ⁻¹ h ⁻¹	S5
SnS ₂ atomic layers	light				
Co tuned Au	Visible	Liquid-solid, water/	СО	3.45 µmol g ⁻¹ h ⁻¹	S 6
nanoclusters	light	TEOA			
Ni doped CdS	Visible	Liquid-solid, water/	СО	~9.5 µmol g ⁻¹ h ⁻¹	S7
quantum dots	light	TEOA			
g-C ₃ N ₄ @T-paper	Visible	Gas-solid, water	СО	0.16 µmol g ⁻¹ h ⁻¹	S 8
	light				
carbon nitride	Visible	Liquid-solid,	СО	2.9 µmol g ⁻¹ h ⁻¹	S9
nanosheets	light	MeCN/TEOA = 4:1			
(001) facet exposed	Xe lamp	Gas-solid, water	СО	4.45 μmol g ⁻¹ h ⁻¹	S10
BiOBr					
Bi ₄ O ₅ Br ₂	Visible	Gas-solid, water	СО	2.73 µmol g ⁻¹ h ⁻¹	S11
	light				
defective Bi ₂ MoO ₆	Xe lamp	Liquid-solid, water	СО	3.62 µmol g ⁻¹ h ⁻¹	S12
BiOIO ₃ {010}/{100}	Xe lamp	Gas-solid, water	СО	5.42 µmol g ⁻¹ h ⁻¹	S13
facet junctions					

copper oxide	UV light	Liquid-solid, 0.5 M	СО	~0.68 µmol g ⁻¹ h ⁻¹	S14
nanoclusters-grafted		KHCO ₃ aqueous			
Nb ₃ O ₈ ⁻ nanosheets		solution			
Au-CNS-ZIF-9	Xe lamp	Gas-solid water	CO	~0.5 umol $a^{-1} h^{-1}$	\$15
	ne nump	Gub sond, water	00	10.5 µmorg n	515
ZrPP-1-Co	Visible	Liquid-solid,	СО	~14 µmol g ⁻¹ h ⁻¹	\$15 \$16

[S1] Liang, L.; Li, X. D.; Sun, Y. F.; Tan, Y. L.; Jiao, X. C.; Ju, H. X.; Qi, Z. M.; Zhu,
J. F.; Xie, Y. Infrared Light-Driven CO₂ Overall Splitting at Room Temperature. *Joule* 2018, *2*, 1-13.

[S2] Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO₂ on BiOCl Nanoplates with the Assistance of Photoinduced Oxygen Vacancies. *Nano Res.* 2015, *8*, 821-831.

[S3] Yu, H. J.; Huang, H. W.; Xu, K.; Hao, W. C.; Guo, Y. X.; Wang, S. B.; Shen, X. L.; Pan, S. F.; Zhang, Y. H. Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction. *ACS Sustainable Chem. Eng.* **2017**, *5*, 10499-10508.

[S4] Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung,
C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-Rich Ultrathin ZnAl-Layered
Double Hydroxide Nanosheets for Efficient Photoreduction of CO₂ to CO with Water. *Adv. Mater.* 2015, *27*, 7824-7831.

[S5] Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J.
F.; Pan, Y.; Yan, W. S.; Lin, Y.; Xie, Y. Partially Oxidized SnS₂ Atomic Layers Achieving Efficient Visible-Light-Driven CO₂ Reduction. *J. Am. Chem. Soc.* 2017, *139*, 18044-18051.

[S6] Cui, X. F.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO₂ Reduction through Bridging Ligands. J. Am. Chem. Soc. 2018, 140, 16514-16520.

[S7] Wang, J.; Xia, T.; Wang, L.; Zheng, X. S.; Qi, Z. M.; Gao, C.; Zhu, J. F.; Li, Z. Q.;

Xu, H. X.; Xiong, Y. J. Enabling Visible-Light-Driven Selective CO₂ Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H₂ Evolution. *Angew. Chem. Int. Ed.* **2018**, *57*, 16447-16451.

[S8] Wang, Y. G.; Li, T.; Yao, Y. G.; Li, X.; Bai, X.; Yin, C. C.; Williams, N.; Kang, S.
F.; Cui, L. F.; Hu, L. B. Dramatic Enhancement of CO₂ Photoreduction by Biodegradable Light-Management Paper. *Adv. Energy Mater.* 2018, *8*, 1703136.

[S9] Shi, L.; Wang, T.; Zhang, H. B.; Chang, K.; Ye, J. H. Electrostatic Self-Assembly of Nanosized Carbon Nitride Nanosheet onto a Zirconium Metal-Organic Framework for Enhanced Photocatalytic CO₂ Reduction. *Adv. Funct. Mater.* **2015**, *25*, 5360-5367.

[S10] Wu, D.; Ye, L. Q.; Yip, H. Y.; Wong, P. K. Organic-Free Synthesis of {001} Facet Dominated BiOBr Nanosheets for Selective Photoreduction of CO₂ to CO. *Catal. Sci. Technol.* 2017, 7, 265-271.

[S11] Ye, L. Q.; Jin, X. L.; Liu, C.; Ding, C. H.; Xie, H. Q.; Chu, K. H.; Wong, P. K. Thickness-Ultrathin and Bismuth-Rich Strategies for BiOBr to Enhance Photoreduction of CO₂ into Solar Fuels. *Appl. Catal. B* **2016**, *187*, 281-290.

[S12] Di, J.; Zhao, X. X.; Lian, C.; Ji, M. X.; Xia, J. X.; Xiong, J.; Zhou, W.; Cao, X. Z.; She, Y. B.; Liu, H. L.; Loh, K. P.; Pennycook, S. J.; Li, H. M.; Liu, Z. Atomically-Thin Bi₂MoO₆ Nanosheets with Vacancy Pairs for Improved Photocatalytic CO₂ Reduction. *Nano Energy* **2019**, *61*, 54-59.

[S13] Chen, F.; Huang, H. W.; Ye, L. Q.; Zhang, T. R.; Zhang, Y. H.; Han, X. P.; Ma, T.
Y. Thickness-Dependent Facet Junction Control of Layered BiOIO₃ Single Crystals for
Highly Efficient CO₂ Photoreduction. *Adv. Funct. Mater.* **2018**, 1804284.

[S14] Yin, G.; Nishikawa, M.; Nosaka, Y.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M. Photocatalytic Carbon Dioxide Reduction by Copper Oxide Nanocluster-Grafted Niobate Nanosheets. *ACS Nano* **2015**, *9*, 2111-2119.

[S15] Zhou, H.; Li, P.; Liu, J.; Chen, Z. P.; Liu, L. Q.; Dontsova, D.; Yan, R. Y.; Fan, T.
X.; Zhang, D.; Ye, J. H. Biomimetic Polymeric Semiconductor Based Hybrid Nanosystems for Artificial Photosynthesis towards Solar Fuels Generation via CO₂ Reduction. *Nano Energy* 2016, 25, 128-135.

[S16] Chen, E. X.; Qiu, M.; Zhang, Y. F.; Zhu, Y. S.; Liu, L. Y.; Sun, Y. Y.; Bu, X. H.; s-12 Zhang, J.; Lin, Q. P. Acid and Base Resistant Zirconium Polyphenolate-Metalloporphyrin Scaffolds for Efficient CO₂ Photoreduction. *Adv. Mater.* **2018**, *30*, 1704388.