Oxazoline/Copper Catalyzed Alkoxyl Radical Generation: Solvent-Switched to Access 3a, $3^{\text {a'-Bisfuroindoline and }}$ 3-Alkoxyl Furoindoline
 Hai Ren*, Jun-Rong Song, Zhi-Yao Li, Wei-Dong Pan*
 State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, (China);
 The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, (China)
 Email: renh0206@163.com; wdpan@163.com

Supporting Information

Content

1. General Information 2
2. Detailed Reaction Optimizations 3
3. Mechanistic Studies 4
4. General Procedure for Dimerization and Product Characterizations 12
5. X-Ray Dates 20
6. General Procedure for Alkoxylation and Product Characterizations 23
7. 1.0 mmol Scale Experiment 29
8. References 30
9. ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR spectras 31
10. HPLC spectras of $\mathbf{2 a}$, 62

1. General information

Unless stated, otherwise all reactions were carried out under an atmosphere of nitrogen using standard Schlenk techniques. All solvents and reagents were obtained from commercial sources and were purified according to standard procedures before use. Column chromatography was performed on silica gel (Qingdao, 300-400 mesh) using the indicated eluents. NMR spectra were recorded on a Varian Mercury 400 MHz or Agilent Mercury 400 MHz spectrometer $\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right)$ in chloroform-d or Agilent Mercury 600 MHz spectrometer $\left({ }^{1} \mathrm{H}: 600 \mathrm{MHz}\right.$ and ${ }^{13} \mathrm{C}: 150$ MHz) in chloroform-d. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were internally referenced to the proton $\left({ }^{1} \mathrm{H}\right)$ of the internal TMS signal at 0.00 ppm or the solvent residue of DMSO at 2.54 ppm and the residual carbon nuclei $\left({ }^{13} \mathrm{C}\right)$ of the solvent at 77.0 or 40.5 ppm , respectively. Data for ${ }^{1} \mathrm{H}$ NMR were recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, coupling constant(s) in Hz, integration). IR spectra were recorded using a FTIR spectrometer (IR 200) and the KBr disk method was adopted; High resolution mass spectra were obtained using Bruker ESI-QTOF mass spectrometry.

2. Optimization of the reaction conditions ${ }^{[a]}$

Table S1: Ligand screening

${ }^{[a]}$ The reactions were carried out under Ar atmosphere: Metal salts (0.02 mmol$), \mathbf{L}(0.024 \mathrm{mmol}), \mathrm{THF}(2.0 \mathrm{~mL})$, $\mathbf{1 a}(0.20 \mathrm{mmol}) .{ }^{[b]}$ Yield was determined by ${ }^{1} \mathbf{H}$ NMR with TTCE as internal standard, in parentheses is isolated yield. ${ }^{[c]}$ Dr was determined by ${ }^{1} \mathrm{H}$ NMR of the crude product. ${ }^{[d]}$ The enantioinduction of the current catalyst for the reaction was, however, found to be problematic ($6 \% \mathrm{ee}$), remaining an interesting and challenging subject for further investigation

Procedure for eliminating the oxygen dissolved in THF: A mixture of $\mathrm{CuBr}_{2}(4.5$ $\mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{CuBr}(2.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{L 4}(11.7 \mathrm{mg}, 0.024 \mathrm{mmol})$ and 2a (35.0 mg) in dry THF (2 mL) was stirred at room temperature for 1 minute under the atmosphere of nitrogen and frozen in liqulid nitrogen under reduced pressure of oil-pump for another 30 minutes, then the mixture was warmed to $50^{\circ} \mathrm{C}$ for 24 h . The reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, yield and dr were determined by ${ }^{1} \mathrm{H}$ NMR with TTCE as internal standard.

3. Mechanistic Studies

3.1 Controlled experiments with different radical scavengers

3.2 Radical clock experiments

Following theliteratureprocedure ${ }^{1}$, ester ($3 \mathrm{mmol}, 1.0$ eq.), titanium isopropoxide ($3 \mathrm{mmol}, 1$ eq.) and THF (10 mL) were added to a 100 mL round-bottomed flask under the atmosphere of Ar. 9 mL of ethylmagnesium bromide (1 M in THF, 3.0 eq.) was added dropwise by syringe under Ar atmosphere at $0{ }^{\circ} \mathrm{C}$, then the mixture was warmed to room temperature for 20 mins. The mixture was then quenched with ammonium chloride solution and the precipitate was removed by filtration. The filtrate was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), washed with sodium chloride solution, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and concentration, the residue was purified by column chromatography.

17 white solid, $543.0 \mathrm{mg}, 90 \%$ yield. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 3.77$ (s, 3H), 3.03 (s, 2H), 0.83 (q, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.67$ (q, $J=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0,128.2,127.6,121.6,119.4,119.0$, 111.0, 109.2, 77.2, 55.9, 33.9, 32.7, 13.6. IR (KBr): 3369.3, 2984.5, 2832.9, 1741.5, 1375.1, $1244.4,1024.0 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 202.1226; Found: 202.1230.

Procedure: A mixture of $\mathrm{CuBr}_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{CuBr}(2.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{L} 4$ $(11.7 \mathrm{mg}, 0.024 \mathrm{mmol})$ and $\mathbf{1 7}(35.0 \mathrm{mg})$ in THF (2 mL) was stirred at $50^{\circ} \mathrm{C}$ for 12 h under the atmosphere of Ar. Then, the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash
chromatography (hexane/ethyl acetate $=10 / 1$) to afford the product 18, which is unstable in air.

18 yellow liquid, $9.1 \mathrm{mg}, 23 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=11.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=17.5,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.74(\mathrm{dd}, J=10.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 198.0,136.9,135.1,128.5,127.9,127.7,121.7,119.2,118.7,109.3,106.5$, 37.3, 32.7. IR (KBr): 2984.7, 2942.8, 1742.2, 1373.9, $1242.2,1047.1 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 200.1070; Found: 200.1074.

Procedure: A mixture of $\mathrm{CuBr}_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{CuBr}(2.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{L} 4$ $(11.7 \mathrm{mg}, 0.024 \mathrm{mmol})$, TEMPO $(31.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $17(35.0 \mathrm{mg})$ in THF (2 mL) was stirred at $50^{\circ} \mathrm{C}$ for 2 h under the atmosphere of Ar. Then, the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash chromatography (hexane/ethyl acetate $=12 / 1$) to afford the product 18 and 19 , the product 19 is unstable in the reaction system and air.

19 oil, $14.1 \mathrm{mg}, 20 \%$ yield. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}$, $1 \mathrm{H}), 3.98(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.42$ - $1.41(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 207.5,136.7,127.7,127.6,121.6,119.0,118.6,109.1,106.7,71.8,59.6$, 40.5, 40.2, 39.4, 32.7, 32.5, 19.9, 16.9. IR (KBr): 2985.2, 1738.1, 1374.3, 1244.2, $1047.1 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 357.2537$; Found: 357.2539.

3.3. Crossover experiments

Procedure: A mixture of $\mathrm{CuBr}_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{CuBr}(2.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{L} 4$ ($12.7 \mathrm{mg}, 0.024 \mathrm{mmol}$) and two substrates in THF (2 mL) was stirred at $50^{\circ} \mathrm{C}$ under the atmosphere of Ar. After the reaction was completed (monitored by TLC), the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash chromatography to afford the product.

21 white solid, $10.0 \mathrm{mg}, 33 \%$ yield. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.43(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.90(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{dt}, J=$ $17.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9,137.9,132.5,128.5,126.7$, $125.9,124.2,121.7,120.0,119.0,117.3,117.0,109.5,105.1,104.0,67.8,55.9,40.8$, 32.6, 30.8. $\mathrm{IR}(\mathrm{KBr}): 2984.9,2946.7,1742.5,1374.0,1241.9,1047.3 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 305.1648; Found: 305.1654.

3.4. Controlled experiments with hydroxyl group protected substrates

a)

b)

no any TEMPO-adduct products were observed
c)

no any TEMPO-adduct products were observed

3.5 Mechanistic Investigations of the Catalyst

Procedure for preparing $\mathbf{L 4} / \mathbf{C u B r}_{2}$ complex $\mathbf{C 1}:{ }^{2}$ A mixture of $\mathrm{CuBr}_{2}(44.6 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ and $\mathbf{L 4}(97.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF (2 mL) was stirred at room temperature for 2 h under the atmosphere of Ar until the cupric salts disappeared. The reaction solution was concentrated under reduced pressure, affording the product $\mathbf{C 1}$ as a reddish brown solide, which is stable in Air. However, we failed to get the X-Ray crystal structure of the $\mathbf{C 1}$ after many tries.

Results: When chose previously prepared $\mathbf{L 4} / \mathrm{CuBr}_{2}$ complex $\mathbf{C} \mathbf{1}$ as the catalyst, the reaction procced smoothly (Table S 2 , entry 1). In combination with CuBr as a co catalyst, the reaction efficiency improved significantly to give 2a in 75% yield and $2.4 / 1 \mathrm{dr}$ (entry 2). However, a lower yield was obtained with CuBr_{2} (entry 3). Notably, when CuBr was used as the single metal catalyst, trace amounts of product were observed (entries 4-5), suggesting that the $\mathrm{Cu}^{\mathrm{II}}$-active species formed directly from CuBr oxidated with O_{2} is impossible in the catalytic cycle.

Table S2. Mechanistic Investigations of the Catalyst

* Carried out under the atmosphere of O_{2}.

Procedure for reaction with C1 as catalyst: A mixture of $\mathbf{C 1}$ (14.1 mg, 0.02 mmol) and 1a ($35.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) in THF (2 mL) was stirred at $50^{\circ} \mathrm{C}$ under the atmosphere of Ar. After the reaction was completed (monitored by TLC), the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, the yields and dr of $\mathbf{2 a}$ were determined by ${ }^{1} \mathrm{H}$ NMR with TTCE as internal standard.

3.6 The Cyclic Voltammetry Experiments

Cyclic Voltammetry was performed on a GU Instruments Electrochemical Workstation model $\mathrm{CH} / 1660 \mathrm{D}$. CV measurement were carried out in $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{CN}$ solution of Catalyst $\left(\mathbf{L} 4 / \mathrm{CuBr}_{2}=1 / 1\right.$ prepared in situ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$ or $\mathbf{2 a}$ was prepared with $0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ at a scan rate of $100 \mathrm{mV} / \mathrm{s}$ with the protection of Ar. The working electrode is a glassy carbon, the counter electrode is a Pt wire, and the reference electrode is saturated calomel electrode.

Scheme S1: The Cyclic Voltammetry Experiment of complex $\left(\mathbf{L 3} / \mathrm{CuBr}_{2}=1 / 1\right)$ prepared in situ in $\mathrm{CH}_{3} \mathrm{CN}$

Scheme S2: The Cyclic Voltammetry Experiment of substrate 2a

4. General Procedure for Dimerization and Product Characterizations

Procedure: A mixture of $\mathrm{CuBr}_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{CuBr}(2.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{L 4}$ $(11.7 \mathrm{mg}, 0.024 \mathrm{mmol})$ and $\mathbf{1 a}(35.0 \mathrm{mg})$ in THF $(2 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ for 24 h under the atmosphere of Ar. After the reaction was completed (monitored by TLC), the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash chromatography (hexane/ethyl acetate $=8 / 1$) to afford the product $2 \mathbf{a}$.

8, 8^{\prime}-dimethyl-2,2',3, ${ }^{\prime}$ ',8,8a, $8^{\prime}, 8^{\prime}$ 'a-octahydro-3a, ${ }^{\prime}$ 'a-bifuro[2,3-b]indole
2a white solid, $24 \mathrm{~h}, 26.0 \mathrm{mg}, 75 \%$ yield. 2.6 dr ; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13-7.06(\mathrm{~m}, 2.4 \mathrm{H}), 6.61(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51(\mathrm{br}, 0.4 \mathrm{H}), 6.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 5.22$ (s, $1 \mathrm{H}), 5.11(\mathrm{~s}, 0.4 \mathrm{H}), 4.04-4.01(\mathrm{~m}, 0.4 \mathrm{H}), 3.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{ddd}, J=11.9$, $8.8,4.8 \mathrm{~Hz}, 0.4 \mathrm{H}$), 3.34 (ddd, $J=11.5,8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.93 (s, 3H), 2.72 (s, 1.2H), $2.46-2.41(\mathrm{~m}, 1+0.4 \mathrm{H}), 2.23(\mathrm{dd}, J=11.8,4.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.07(\mathrm{dd}, J=12.0,4.7 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,151.8,130.3,128.7,124.1,123.9,117.0$, $117.0,105.0,105.0,105.0,101.3,100.7,66.9,66.8,61.4,60.9,37.8,36.8,31.0,30.6$.

IR (KBr): 3435.0, 2925.1, 2854.1, 1606.6, 1498.1, 1302.8, 1261.7, 1038.7, $911.9 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 349.1911$; Found: 349.1909.

4,4',8,8'-tetramethyl-2,2',3,3',8,8a,8',8'a-octahydro-3a,3'a-bifuro[2,3-b]indole
$\mathbf{2 b}$ white solid, $28 \mathrm{~h}, 11.2 \mathrm{mg}, 30 \%$ yield. the spectral data of the isolated isomer: ${ }^{1} \mathbf{H}$
NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.98(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, J=8.6,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{ddd}, J=10.8$, 8.6, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6,135.5,128.6,127.5,121.0,103.3,101.5,67.7$, 63.0, 35.7, 31.3, 19.3. IR (KBr): 3447.3, 2922.6, 2848.4, 2359.4, 2342.6, 1587.1, 1475.7, 1283.7, 1045.7, $924.0 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 377.2224; Found: 377.2221.

5, $5^{\prime}, 8,8^{\prime}$-tetramethyl-2, 2',3,3',8,8a, $8^{\prime}, 8^{\prime} \mathrm{a}-$ octahydro-3a, $3^{\prime} \mathrm{a}-\mathrm{bifuro}[2,3-b]$ indole
2c oil, $18 \mathrm{~h}, 31.3 \mathrm{mg}, 83 \%$ yield. $2 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 1+1.5 \mathrm{H}), 6.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.10-5.10(\mathrm{~s}, 1+0.5 \mathrm{H}), 4.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (ddd, $J=12.0,8.7,4.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.33$ (ddd, $J=11.4$, $8.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 1.5 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 1+0.5 \mathrm{H}), 2.26-2.20(\mathrm{~m}$, $3+0.5 \mathrm{H}), 2.13(\mathrm{~s}, 1.5 \mathrm{H}), 2.04(\mathrm{dd}, J=12.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,130.7,130.4,129.0,129.0,126.1,126.0,125.5,124.8,105.0,104.9,101.5$, 101.2, 67.1, 66.9, 61.4, 60.6, 37.5, 36.5, 31.5, 30.9, 20.9, 20.8. IR (KBr): 3456.6, $2925.5,2865.0,1738.6,1616.2,1504.9,1288.5,1039.4,1006.0,913.8 \mathrm{~cm}^{-1}$;

HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 399.2048; Found: 399.2040.

5,5'-dimethoxy-8, 8^{\prime}-dimethyl-2,2',3,3',8,8a, $8^{\prime}, 8^{\prime} a$-octahydro-3a,3'a-bifuro[2,3-b]indole
2d yellow solid, $18 \mathrm{~h}, 24.2 \mathrm{mg}$, 59% yield. $1.3 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 1+0.8 \mathrm{H})$, 6.25-6.23 (m, 1+1.6H), $5.19(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 0.8 \mathrm{H}), 4.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.8 \mathrm{H}), 3.91(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 2.4 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 0.8 \mathrm{H}), 3.34(\mathrm{ddd}, J=$ 11.4, 8.6, 4.9 Hz, 1H), 2.89 (s, 3H), 2.68 (s, 2.4H), 2.47-2.39 (m, 1.8H), 2.23 (dd, J $=11.7,4.6 \mathrm{~Hz}, 0.8 \mathrm{H}), 2.05(\mathrm{dd}, J=12.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 152.2, 152.2, 146.6, 146.4, 131.6, 114.0, 113.1, 112.2, 111.0, 105.7, 105.3, 101.9, $101.5,66.9,66.8,61.5,60.9,56.1,56.0,37.5,36.6,32.0,31.3$. IR (KBr): 3455.8, 2940.5, 2825.2, 2356.6, 1595.6, 1498.9, 1281.3, 1215.2, $1036.6,915.2 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 431.1941$; Found: 431.1937.

5,5'-dibromo-8,8'-dimethyl-2,2',3,3',8,8a,8',8'a-octahydro-3a,3'a-bifuro[2,3-b]indole
2e white solid, $72 \mathrm{~h}, 12.0 \mathrm{mg}$ (recycle $\mathbf{1 e}, 13.1 \mathrm{mg}$), 24% yield (brsm, 49%). $2 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.20-6.17(\mathrm{~m}, 1+0.5 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 0.5 \mathrm{H})$, 4.06-4.03 (m, 0.5H), $3.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 0.5 \mathrm{H}), 3.37(\mathrm{ddd}, J=$ $11.4,8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.72$ (s, 1.5H), 2.42-2.35 (m, 1.5H), 2.22 (dd, J $=11.8,4.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.06(\mathrm{dd}, J=12.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $150.8,150.7,132.1,131.7,131.5,126.8,126.7,108.5,108.5,106.4,106.3,101.3$,
$100.6,66.9,66.8,61.2,60.8,37.4,36.3,30.9,30.7$. The purified major isomer $\mathbf{2 e} \mathbf{e}^{\prime}$ was recrystallized from cold DCM/hexane. Major isomer $\mathbf{2 e} \mathbf{e}^{\mathbf{1}}{ }^{\mathbf{H}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.19-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.37 (ddd, $J=11.5,8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (s, 3H), $2.40(\mathrm{td}, J=11.7,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.06(\mathrm{dd}, J=12.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.6,132.1,131.5$, 126.7, 108.5, 106.4, 101.3, 66.8, 60.8, 36.3, 30.7. IR (KBr): 3435.2, 2928.6, 2866.4, $2359.5,1710.6,1599.3,1492.8,1271.6,1036.1,1003.2,912.4 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 505.0121; Found: 505.0104.

6,6',8,8'-tetramethyl-2,2',3,3',8,8a, $8^{\prime}, 8^{\prime}$ a-octahydro-3a,3'a-bifuro[2,3-b]indole
2f white solid, $20 \mathrm{~h}, 29.0 \mathrm{mg}, 77 \%$ yield. $3.5 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06-7.05(\mathrm{~m}, 1+0.3 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{br}, 0.3 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 0.3 \mathrm{H}), 5.11(\mathrm{~s}, 1+0.3 \mathrm{H}), 4.01(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.88(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 0.3 \mathrm{H}), 3.32(\mathrm{ddd}, J=11.5,8.6$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 0.9 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 1+0.3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}$, $0.9 \mathrm{H}), 2.18(\mathrm{dd}, J=11.7,4.7 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.01(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 152.2,152.0,138.7,138.5,127.8,127.6,124.1,123.6,117.8$, 117.7, 106.1, 105.8, 101.5, 101.1, 67.0, 66.7, 61.1, 60.6, 37.9, 36.8, 31.0, 30.6, 23.2, 21.7. IR (KBr): 3447.3 , 2922.6, 2848.4, 2359.4, 2342.6, 1587.1, 1475.7, 1422.5, 1287.7, 1045.7, $924.0 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 377.2224; Found: 377.2222.

6,6'-dimethoxy-8,8'-dimethyl-2,2',3,3',8,8a, $8^{\prime}, 8^{\prime} a-$ octahydro-3a, 3^{\prime} 'a-bifuro[2,3-b]indole
$\mathbf{2 g}$ white solid, $24 \mathrm{~h}, 18.5 \mathrm{mg}, 45 \%$ yield. $3.5 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05-7.04(\mathrm{~m}, 1.3 \mathrm{H}), 6.17(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.06$ (br, 0.3H), 5.93 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (d, $J=2.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.12$ (s, $1+0.3 \mathrm{H}), 4.01(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.90(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}$, 0.9 H), $3.46-3.42(\mathrm{~m}, 0.3 \mathrm{H}), 3.34(\mathrm{ddd}, J=11.6,8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.73$ (s, 0.9H), 2.39-2.34 (m, 1+0.3H), $2.16(\mathrm{dd}, J=11.6,4.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.00(\mathrm{dd}, J=$ $11.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,161.0,153.4,124.6,124.2$, 122.9, 101.7, 101.1, 92.4, 92.0, 67.1, 66.8, 60.9, 60.4, 55.2, 36.9, 30.9, 30.6. IR (KBr): 3445.7, 2925.6, 2859.9, 2358.5, 2342.7, 1618.7, 1499.9, 1259.9, 1094.0, $1031.1 \mathrm{~cm}^{-1}$; Exact mass calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 409.2122; Found: 409.2117.

7,7'-dibromo-8,8'-dimethyl-2,2',3,3',8,8a, 8', 8'a-octahydro-3a, 3'a-bifuro[2,3-b]indole
2h white solid, $48 \mathrm{~h}, 14.8 \mathrm{mg}$ (recycle, 21.2 mg), 29% yield (brsm, 71%). $2.4 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 0.4 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.93(\mathrm{~m}, 1+0.4 \mathrm{H}), 6.48-6.45(\mathrm{~m}, 1+0.4 \mathrm{H})$, $5.18(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 0.4 \mathrm{H}), 4.04(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-$ $3.46(\mathrm{~m}, 0.4 \mathrm{H}), 3.41$ (ddd, $J=11.6,8.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{br}, 1.2 \mathrm{H})$, $2.44-2.38(\mathrm{~m}, 1+0.4 \mathrm{H}), 2.20(\mathrm{dd}, J=11.8,4.5 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.06(\mathrm{dd}, J=12.0,4.7 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0,134.3,134.2,133.6,123.0,122.9,119.6$, 119.0, 103.2, 100.5, 66.7, 66.2, 60.8, 60.2, 37.0, 35.0. IR (KBr): 3444.4, 2962.1, 2852.2, $1598.2,1260.9,1026.3 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 505.0121$; Found: 505.0108.

7,7'-diethyl-8, 8^{\prime}-dimethyl-2,2',3,3',8,8a, $8^{\prime}, 8^{\prime}$ a-octahydro-3a, 3^{\prime} 'a-bifuro[2,3-b]indole
$\mathbf{2 i}$ white solid, $48 \mathrm{~h}, 29.0 \mathrm{mg}, 71 \%$ yield. $2 / 1 \mathrm{dr}$; for the major isomer: ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.91(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92$ (s, 1H), 3.82 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (ddd, $J=11.3,8.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (s, 3H), 2.68 (dt, $J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{td}, J=$ $11.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,131.7,130.2,124.7,122.1,118.4,103.7,66.5,60.0,36.8$, 35.8, 25.2, 15.4. for the minor isomer: ${ }^{1} \mathbf{H}$ NMR (600 MHz , d-DMSO, $80{ }^{\circ} \mathrm{C}$) 6.90 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{br}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.31 (ddd, $J=11.2,8.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.65$ (ddt, $J=22.1,14.6$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{td}, J=11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{d}-\mathrm{DMSO}, 80^{\circ} \mathrm{C}$) $\delta 149.9,132.9,130.4,125.1$, 122.2, 119.0, 103.6, 66.5, 60.9, 37.7, 36.2, 25.0, 15.7. IR (KBr): 3446.8, 2965.7, 2860.6, 2364.3, 1464.9, 1261.4, 1018.2, $919.8 \mathrm{~cm}^{-1}$; Exact mass calcd. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 405.2537$; Found: 405.2531.

7,7',8,8'-tetramethyl-2,2',3,3',8,8a, 8', 8'a-octahydro-3a, 3'a-bifuro[2,3-b]indole
$\mathbf{2 j}$ white solid, $17 \mathrm{~h}, 35.0 \mathrm{mg}, 93 \%$ yield. $1.5 / 1 \mathrm{dr}$; for the major isomer: ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{ddd}, J=11.3,8.6,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.19 (s, 3H), 2.44 (td, $J=11.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{dd}, J=12.0,4.7 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,131.9,131.3,122.3,118.4,118.2,103.6$, $66.5,60.2,37.0,36.0,19.4$. for the minor isomer: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.85$ (br, 1H), 6.54 (br, 2H), 4.95 (s, 1H), 4.02 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (ddd, $J=12.0,8.8$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{dd}, J=19.0,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{dd}, J=$ $11.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.7,132.1,131.8,121.9,119.0$, 103.8, 66.7, 61.2, 37.5, 36.7, 19.2. IR (KBr): 3419.8, 2924.3, 2360.1, 1595.7, 1465.9,
1261.0, $1093.4 \mathrm{~cm}^{-1}$. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 399.2048; Found: 399.2042.

8,8'-dibenzyl-2,2',3,3',8,8a,8',8'a-octahydro-3a,3'a-bifuro[2,3-b]indole
$\mathbf{2 k}$ white solid, $48 \mathrm{~h}, 22.6 \mathrm{mg}, 45 \%$ yield. $1.5 / 1 \mathrm{dr}$; A purified mixture isomers of $5 / 1$ dr were determined by NMR: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (dt, $J=12.9,7.4$ $\mathrm{Hz}, 4 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 0.4 \mathrm{H}), 4.04-4.01(\mathrm{~m}, 0.2 \mathrm{H}), 3.96(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.49(\mathrm{~m}, 0.2 \mathrm{H}), 3.44(\mathrm{ddd}, J=11.6,8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-$ $2.44(\mathrm{~m}, 1.2 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 0.2 \mathrm{H}), 2.08(\mathrm{dd}, J=11.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.1,138.3,130.2,128.5,128.5,127.5,127.1,124.1,117.2,105.4$, 100.2, 66.4, 61.4, 48.6, 37.2. IR (KBr): 3446.0, 2934.3, 2873.7, 2358.2, 2337.3, 1608.9, 1473.7, 1368.6, 1109.5, 1031.5, $913.6 \mathrm{~cm}^{-1}$. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 501.2537$; Found: 501.2535.

8,8a, 8', 8'a-tetramethyl-2,2',3,3',8,8a, 8', 8'a-octahydro-3a, $\mathbf{3}^{\prime}$ 'a-bifuro[2,3-b]indole
21 white solid, $48 \mathrm{~h}, 12.0 \mathrm{mg}, 32 \%$ yield. $1 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}$, $3 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.31(\mathrm{~m}, 3 \mathrm{H}), 2.95-2.90$ (m, 2H), 2.77 (s, 3H), 2.44 (td, $J=11.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=11.7,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.24(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.2,136.4,133.6,130.2$, 127.7, 126.3, 124.7, 120.4, 118.6, 117.8, 117.4, 108.4, 107.0, 106.1, 91.7, 65.8, 65.5, 40.0, 29.4, 27.8, 25.8, 19.2, 10.1. IR (KBr): 3439.4, 2934.5, 2867.7, 1608.7, 1371.9,
1110.0, 1031.7, $913.8 \mathrm{~cm}^{-1}$. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 377.2221; Found: 377.2224.

5. X-ray Dates

Figure S1. Crystal structure of major isomer 2j’ (CCDC number: 1915998)
Bond precision: $\quad \mathrm{C}-\mathrm{C}=0.0044 \mathrm{~A} \quad$ Wavelength $=1.54184$

Cell: \quad| $\mathrm{a}=38.8350(15)$ | $\mathrm{b}=12.1246(6)$ | $\mathrm{c}=8.3689(4)$ |
| :--- | :--- | :--- |
| | $\mathrm{alpha}=90$ | $\mathrm{beta}=90$ |

Temperature: $\quad 293 \mathrm{~K}$

	Calculated	Reported
Volume	$3940.6(3)$	$3940.6(3)$
Space group	F d d 2	F d d 2
Hall group	F 2 -2d	F 2 -2d
Moiety formula	C24 H28 N2 O2	C24 H28 N2 O2
Sum formula	C24 H28 N2 O2	C24 H28 N2 O2
Mr	376.48	376.48
Dx,g cm-3	1.269	1.269
Z	8	8
Mu (mm-1)	0.635	0.635
F000	1616.0	1616.0
F000'	1620.50	
h,k,lmax	$45,14,9$	20

Tmin,Tmax 0.892,0.927 0.650,1.000
Tmin’ 0.892
Correction method= \# Reported T Limits: Tmin=0.650 Tmax=1.000
AbsCorr $=$ MULTI-SCAN

Data completeness $=1.84 / 0.99$
R (reflections) $=0.0404(1548)$
$\mathrm{S}=1.068$

Theta $(\max)=64.920$
$w R 2$ (reflections) $=0.1132$ (1659)
Npar $=130$

Figure S2. Crystal structure of minor isomer 2j" (CCDC number: 1915999)

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0047 \mathrm{~A}$	Wavelength=0.71073	
Cell:	$\mathrm{a}=30.916(2)$	$\mathrm{b}=30.916(2)$	$\mathrm{c}=8.2746(14)$
	alpha=90	beta=90	gamma=90
Temperature:	293 K		
	Calculated	Reported	
Volume	$7908.9(17)$	$7908.9(17)$	
Space group	$\mathrm{I} 41 / \mathrm{a}$	$\mathrm{I} 41 / \mathrm{a}$	
Hall group	-I 4 ad	-I 4 ad	
Moiety formula	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$	
Sum formula	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$	

6. General procedure for alkoxylation and Product

Characterizations

Procedure: A mixture of $\mathrm{CuBr}_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{CuBr}(2.9 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{L} 3$ $(7.0 \mathrm{mg}, 0.024 \mathrm{mmol})$ and $\mathbf{1 a}(35.0 \mathrm{mg})$ in dry $\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred at $70^{\circ} \mathrm{C}$ under the atmosphere of Ar. After the reaction was completed (monitored by TLC), the reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash chromatography (hexane/ethyl acetate $=8 / 1$) to afford the product 3 .

3a-methoxy-8-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
3 Light yellow oil, $23 \mathrm{~h}, 25.5 \mathrm{mg}$, 62% yield. $20 / 1 \mathrm{dr}$; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31(\mathrm{~s}, 1 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H})$, 2.42 (td, $J=11.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (ddd, $J=11.4,5.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,130.2,126.2,124.4,117.5,105.8,100.0,93.5,70.0,53.1,40.5$, 30.8. IR (KBr): 3441.8, 2945.3, 2823.2, 1709.7, 1422.3, 1224.3, $1033.6 \mathrm{~cm}^{-1}$; HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$206.1176; Found: 206.1176.

3a-methoxy-4,8-dimethyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
4 Light yellow oil, $17 \mathrm{~h}, 39.4 \mathrm{mg}, 90 \%$ yield. $3 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.33 \mathrm{H}), 7.11(\mathrm{t}, J=$
$7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $0.33 \mathrm{H}), 5.33(\mathrm{~s}, 1+0.33 \mathrm{H}), 4.04-4.01(\mathrm{~m}, 1+0.33 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1+0.33 \mathrm{H}), 3.04$ $(\mathrm{s}, 3+1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 1+0.33 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~d}$, $\mathrm{J}=2.6 \mathrm{~Hz}, 0.33 \mathrm{H}), 2.31(\mathrm{~s}, 3+1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0,151.1$, $135.6,135.1,133.7,130.1,125.2,123.2,119.5,112.8,104.7$, 103.2, 100.2, 100.0, 94.2, 66.4, 66.3, 53.0, 52.9, 40.1, 39.8, 31.0, 30.9, 17.4, 17.1. IR (KBr): 3419.0, 2945.5, 1709.8, 1422.2, 1364.3, 1224.4, 1030.9. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$220.1332; Found: 220.1331.

4-chloro-3a-methoxy-8-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
5 Light yellow oil, $23 \mathrm{~h}, 22.9 \mathrm{mg}, 48 \%$ yield. $6 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.19(\mathrm{~m}, 0.18 \mathrm{H}), 7.13(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.18 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $0.18 \mathrm{H}), 6.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1+0.18 \mathrm{H}), 4.07-4.03(\mathrm{~m}$, $1+0.18 \mathrm{H}), 3.56-3.55(\mathrm{~m}, 1+0.18 \mathrm{H}), 3.11(\mathrm{~s}, 3+0.54 \mathrm{H}), 2.92(\mathrm{~s}, 3+0.54 \mathrm{H}), 2.60-2.57$ $(\mathrm{m}, 1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1+0.18 \mathrm{H}), 2.28-2.25(\mathrm{~m}, 0.18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.4,131.6,131.6,130.2,126.6,124.4,122.0,118.1,117.5,105.8,103.9$, $100.0,99.8,93.9,67.0,66.7,53.3,53.1,40.5,39.0,30.8,30.7$. IR (KBr): 3418.8, 2946.3, 2832.2, 1704.6, 1422.9, 1365.0, 1228.7, 1093.4, 1031.7. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 240.0786; Found: 240.0785.

3a-methoxy-5,8-dimethyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
6 Light yellow oil, $24 \mathrm{~h}, 24.1 \mathrm{mg}$, 55% yield. $>20 / 1 \mathrm{dr}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.03$ (ddd, $J=9.2$, $7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{ddd}, J=11.2,8.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.43$ $(\mathrm{td}, J=11.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{ddd}, J=11.9,5.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,130.6,126.9,126.4,125.0,105.8,100.4,93.5,67.0$, 53.0, 40.4, 31.2, 20.7. IR (KBr): 3441.9, 3002.6, 2945.6, 2827.1, 1709.5, 1422.1,
1364.4, 1224.6, 1031.7. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 220.1332; Found: 220.1331.

3a,5-dimethoxy-8-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
7 Light yellow oil, $23 \mathrm{~h}, 33.0 \mathrm{mg}, 70 \%$ yield. $>20 / 1 \mathrm{dr} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{td}, J=11.5,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (ddd, $J=12.0,5.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7,146.5$, $127.5,115.4,110.9,106.6,100.7,93.5,66.9,56.0,53.1,40.4,31.8$. IR (KBr): 3424.9, 2945.8, 2831.0, 1709.5, 1422.4, 1364.9, 1226.5. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 236.1281; Found: 236.1281.

5-bromo-3a-methoxy-8-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
8 Light yellow oil, $41 \mathrm{~h}, 35.0 \mathrm{mg}, 63 \%$ yield. $16 / 1 \mathrm{dr}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.03(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31(\mathrm{~s}, 1 \mathrm{H}), 4.06-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.45-$ $2.40(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.20(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 153.1, 125.6, 125.4, 124.3, 120.2, 108.8, 99.8, 93.1, 66.9, 53.1, 40.5, 30.5. IR (KBr): 3350.75, 2974.09, 2884.99, 1708.86, 1423.21, 1379.87. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$284.0281; Found: 284.0278.

3a-methoxy-6,8-dimethyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
9 Light yellow oil, $29 \mathrm{~h}, 36.3 \mathrm{mg}$, 83\% yield. $12 / 1 \mathrm{dr}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 4.07-4.04(\mathrm{~m}, 1 \mathrm{H})$, 3.60-3.55 (m, 1H), $3.13(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.27$ (ddd, $J=$ $11.8,5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,140.5,124.2,123.4,118.3$, 106.6, 100.3, 93.3, 67.0, 53.0, 40.5, 30.8, 21.9. IR (KBr): 3418.9, 2947.7, 2832.9,
1705.0, 1656.5, 1421.2, 1366.9, 1231.1, 1031.7. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 220.1332$; Found: 220.1331.

3a-methoxy-7,8-dimethyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
10 Light yellow oil, $23 \mathrm{~h}, 35.6 \mathrm{mg}, 81 \%$ yield. $>20 / 1 \mathrm{dr}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}$, 1H), 3.96-3.93 (m, 1H), 3.52 (ddd, $J=10.7,9.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (s, 3H), 3.03 (s, $3 \mathrm{H}), 2.38-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{ddd}, J=11.9,5.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,133.2,127.6,122.4,119.5,119.3,102.7,92.8,66.6$, 53.0, 40.5, 36.4, 19.2. IR (KBr): 3415.9, 2946.9, 2834.8, 1708.9, 1421.3, 1365.8, 1229.7, 1025.9. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 220.1332$; Found: 220.1331.

7-ethyl-3a-methoxy-8-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
11 Light yellow oil, $23 \mathrm{~h}, 42.6 \mathrm{mg}, 92 \%$ yield. $14 / 1 \mathrm{dr} ;{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{ddd}, J=9.4,7.8,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.51-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{td}$, $J=11.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8,131.4,127.9,125.9,122.3,119.4,102.8,92.6,66.6,53.0,40.6$, 36.5, 25.0, 15.2. IR (KBr): 3350.8, 2974.4, 2925.5, 2886.9, 1450.2, 1415.5, 1270.9, 1324.9, 1089.5. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 234.1489$; Found: 234.1483.

3a-methoxy-8,8a-dimethyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

12 Light yellow oil, $19 \mathrm{~h}, 86 \%$ yield. $5.5 / 1 \mathrm{dr}$; for the mixture of the two diastereomers: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.20(\mathrm{~m}, 2.6 \mathrm{H}), 6.81-6.77(\mathrm{~m}$, $0.33 \mathrm{H}), 6.74(\mathrm{dd}, J=10.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.33 \mathrm{H}), 6.46(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=8.3 \mathrm{~Hz}, 0.33 \mathrm{H}), 3.91-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.43(\mathrm{~m}, 0.33 \mathrm{H}), 3.38$ - $3.33(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.60(\mathrm{~m}$, $0.33 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1+0.33 \mathrm{H}), 2.36-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3+0.7 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz, CDCl_{3}) $\delta 152.2,130.5,130.2,125.5,124.8,124.7,118.2,117.3,107.3$, 106.1, 102.4, 92.7, 91.7, 67.4, 65.8, 53.3, 52.7, 39.2, 39.1, 31.6, 29.1, 27.7, 18.8. IR (KBr): 3350.9, 2974.2, 2883.0, 1708.9, 1378.9, 1230.3, 1093.44. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 220.1332; Found: 220.1331.

8-benzyl-3a-methoxy-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
13 Light yellow oil, $18 \mathrm{~h}, 39.1 \mathrm{mg}, 70 \%$ yield. $>20 / 1 \mathrm{dr}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{dt}, J=7.4,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.76-6.73(m, 1H), $6.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{ddd}, J=11.6,9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.08(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{td}, J=11.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{ddd}, J=11.8,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 151.5,138.0,130.2,128.5,127.3,127.1,124.6,117.8$, 106.1, 98.5, 93.5, 66.8, 53.1, 48.5, 40.9. IR (KBr): 3441.8, 2932.5, 2869.1, 2817.4, 2361.4, 1607.6, 1492.0, 1315.13, 1363.7, 1130.4, 1040.3, 946.1. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 282.1489; Found: 282.1489.

3a-ethoxy-8-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
14 Light yellow oil, $23 \mathrm{~h}, 30.2 \mathrm{mg}, 69 \%$ yield. $3 / 1 \mathrm{dr}$; A purified mixture isomers of $10 / 1 \mathrm{dr}$ were determined by NMR: ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.18(\mathrm{~m}$, $2 \mathrm{H}), 6.75$ (ddd, $J=8.4,5.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{ddd}, J=9.0,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{qd}, J=7.0,3.4$

Hz, 2H), 2.94 (s, 3H), 2.85 (s, 0.26H), 2.47-2.44 (m, 1H), 2.33-2.27 (m, 1H), 1.15 $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,130.1,127.1,124.3,117.4$, 105.7, 100.3, 92.9, 66.8, 60.9, 40.9, 30.8, 15.6. IR (KBr): 3368.2, 2974.7, 1708.5, 1616.0, 1380.2, 1232.2, 1087.6, 1047.1, 946.1. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 220.1332$; Found: 220.1332.

3a-butoxy-8-methyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
15 Light yellow oil, $48 \mathrm{~h}, 16.7 \mathrm{mg}, 34 \%$ yield. $3 / 1 \mathrm{dr}$; A purified mixture isomers of $5 / 1 \mathrm{dr}$ were determined by NMR: ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.16(\mathrm{~m}$, $2+0.4 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 1+0.2 \mathrm{H}), 6.44-6.42(\mathrm{~m}, 1+0.2 \mathrm{H}), 5.30(\mathrm{~s}, 1+0.2 \mathrm{H}), 4.08(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.03(\mathrm{ddd}, J=9.1,7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{ddd}, J=11.4,8.9,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.35$ (ddd, $J=12.1,8.9,5.1 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 2+0.4 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H})$, $2.82(\mathrm{~s}, 0.6 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 0.2 \mathrm{H}), 2.45(\mathrm{td}, J=11.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=$ $12.0,4.9 \mathrm{~Hz}, 0.2 \mathrm{H}), 2.27$ (ddd, $J=11.9,5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 2+0.4 \mathrm{H})$, $1.34-1.29(\mathrm{~m}, 2+0.4 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.9,150.2,130.3,130.0,127.2,125.9,124.5,124.4,117.9$, $117.4,106.0,105.6,100.2,92.9,87.8,66.8,65.2,64.8,64.0,63.7,40.9,40.0,32.5$, 32.3, 32.2, 30.8, 19.3, 19.2, 14.0, 13.9. IR (KBr): 3367.8, 2974.4, 2923.5, 2883.0, 1656.5, 1612.2, 1452.1, 1087.6, 1048.8. HRMS-ESI: Exact mass calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 248.1645$; Found: 248.1651.

7. 1.0 mmol Scale experiment

Procedure: A mixture of $\mathrm{CuBr}_{2}(22.3 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{CuBr}(14.3 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathbf{L} 4$ ($58.5 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathbf{1 a}(175 \mathrm{mg})$ in THF $(10 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ for 43 h under the atmosphere of Ar. The reaction was filtered through a glass funnel with thin layer (30 mm) of silica gel (100-200 mesh) and eluted with DCM/Ethyl Acetate. The filtrate was concentrated under reduced pressure, purified by flash chromatography (hexane/ethyl acetate $=8 / 1$) to afford the product $\mathbf{2 a}(73.8 \mathrm{mg}, 42 \%$ yield, $2.3 / 1 \mathrm{dr})$.

8. References

1. Jia, K.; Zhang, F.; Huang, H.; Chen, Y. J. Am. Chem. Soc. 2016, 138, 1514.
2. (a) Evans, D. A.; Olhava, E. J.; Johnson, J. S.; Janey, J. M. Angew. Chem. Int. Ed. 1998, 37, 3372. (b) Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851.

9. ${ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR Spectras After purification

Parameter	Value
1 Title	Rh-201
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	1024
6 Acquisition Date 2019-04-23T09:49:55	
7 7 Nucleus	13C

Parameter	Value
1 Title	rh-0204
2 Origin	Bruker BioSpin Gmbh
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	1024
6 Acquisition Dat	2019-03-22T05:55:06
7 Nucleus	13 C

200													70		50	40	30	20				
						1	10		10	10	(ppm)								10	0	-10	20

Parameter	Value
1 Title	rh0203-1
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	410
6 Acquisition Dat	2019-03-19T14:16:26
7 Nucleus	13 C

6 Acquisition Date 2019-04-11T16:43:0
Nucleus $\quad 1 \mathrm{H}$

Parameter	Value
1 Title	rh0154-1r
20 rigin	Bruker
BioSpin GmbH	
3 Solvent	CDC13
4 Temperature	295.0
5 Number of Scans	697
6 Acquisition Date 2019-04-11T17: $16: 58$	
7 Nucleus	$13 C$

RS-24-2

3 ($>20 / 1 \mathrm{dr})$

RS-24-2

$\begin{aligned} & \text { O} \\ & \text { ì } \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \overline{\vec{G}} \\ & \stackrel{y}{=} \end{aligned}$			¢	E.	$\begin{gathered} \infty \\ \stackrel{n}{n} \\ \dot{q} \end{gathered}$
「	151	$\stackrel{\square}{1}$	-	$\xrightarrow{\mathrm{N}}$	\|	n	

Parameter	Value
1 Title	RS-32
2 Origin	Bruker BioSpin Gmbh
3 Solvent	CDC13
4 Number of Scans 8	8
5 Acquisition Time 2	2.7525
6 Acquisition Date 2	2019-04-08716:37:29
7 Nucleus	1 H

RS-32

Parameter	Value
1 Title	RS-32
20 rigin	Bruker BioSpin Gmbi
3 Solvent	CDC13
5 Acquisition Time 0.8061	
6 Acquisition Date 2019-04-10T13:55:39	

RS -370

Parameter	Value
1 Title	RS-37
20 rigin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Number of Scans 1	16
5 Acquisition Time 2	2. 7525
6 Acquisition Date/2	2019-04-11110:03:53
7 Nucleus	1 H

RS-37

6 ($>20 / 1 \mathrm{dr}$)

RS-39

Parameter	Value
1 Title	RS-38
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Number of Scans	16
5 Acquisition Time	2. 7525
6 Acquisition Date	2019-04-11T10:08:24
7 Nucleus	1H

RS-38

Parameter	Value
1 Title	RS-38
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Receiver Gain	101
5 Acquisition Time 0. 8061	
6 Acquisition Date 2019-04-11722:56:57	
7 Nucleus	13 C

Parameter		value
1 Title	RS-31	
2 Origin	Bruker	BioSpin Gmb
3 Solvent	CDC13	
4 Number of Scans	8	
5 Acquisition Time	2. 7525	
6 Acquisition Date	2019-04	4-08T16:34:00
7 Nucleus	1H	

8 (16/1 dr)

RS-31

Parameter	Value
1 Title	RS-31
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Number of Scans	406
5 Acquisition Time 0.8061	
6 Acquisition Date 2019-04-10T13:24:52	
7 Nucleus	13 C

1	1	1	1		1	1		1					1						
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Parameter	Value
1 Title	RS-41
20 rigin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Number of Scans	16
5 Acquisition Time	2. 7525
6 Acquisition Date	2019-04-15716:46:44
7 Nucleus	1 H

9 (12/1 dr)

RS-41

Parameter	Value
1 Title	RS-36
20 rigin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Number of Scans 512	
5 Acquisition Time 0. 8061	
6 Acquisition Date 2019-04-11T22:18:51	
7 Nucleus	${ }^{13 C}$

[^0]

11 ($14 / 1 \mathrm{dr}$)

RS-29

$\begin{aligned} & \dot{O} \\ & \dot{G} \\ & \dot{G} \end{aligned}$			$\begin{aligned} & \text { M} \\ & \text { í } \\ & \text { an } \end{aligned}$		$\begin{aligned} & \bar{n} \\ & n \\ & \tilde{0}^{2} \end{aligned}$	$\begin{aligned} & \check{n} \\ & \stackrel{i}{i} \\ & i \end{aligned}$		$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y}{d} \end{aligned}$
	1 1 1 1	I			I			

Parameter	Value
1 Title	RS-29
20 rigin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Number of Scans	856
5 Acquisition Time	0. 8061
6 Acquisition Date	2019-04-09T20:47:07
7 Nucleus	13 C

RS-43-0416

Parameter	Value
1 Title	RS-43-0416
2 Origin	Bruker
3ioSpin GmbH	
3 Solvent	CDC13
4 Number of Scans	1024
5 Acquisition Time 0.8061	
6 Acquisition	Date 2019-04-16T21:34:21
7 Nucleus	13C

Parameter	Value
1 Title	RS-42
20 rigin	Bruker BioSpin Gmbil
3 Solvent	CDC13
4 Number of Scans 8	
5 Acquisition Time 2. 7525	
6 Acquisition Date 2019-04-11T21:46:26	
7 Nucleus	1H

RS-42

Parameter	Value
1 Title	RS-42
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Number of Scans 5125 Acquisition Time 0.8061	
6 Acquisition Date 2019-04-15T23:16:47	
7 Nucleus	13 C

1	1	1	1	1	1	,	1	1	1	1		1	,	1	1	1	,		
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Parameter	Value
1 Title	rs-62-20
2 Origin	Bruker BioSpin Gmb
3 Solvent	CDC13
4 Temperature	295.0
5 Number of Scans	1024
6 Acquisition Date	2019-05-23T04: 14:31
7 Spectrometer Frequency 150.90	
8 Nucleus	13 C

[^1]rh0237-2

Un

Parameter	Value
1 Title	rho237-2
2 Origin	Bruker
BioSpin GmbH	
3 Solvent	CDC13
4 Temperature	295.0
5 Number of Scans	1204
6 Acquisition Date2019-05-30T18:37:43	
7 Nucleus	$13 C$

Parameter	Value
1 Title	rho238-3
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	16
6 Acquisition Date	2019-06-04714:08:16
7 Spectrometer Frequency600. 13	
8 Nucleus	1H

19

Parameter	Value
1 Title	rho238-3
2 Origin	Bruker BioSpin Gmb
3 Solvent	CDC13
4 Temperature	298.3
5 Number of Scans	78
6 Acquisition Date	2019-06-04T14:12:40
7 Spectrometer Frequency 150.90	
8 Nucleus	13 C

Parameter	Value
1 Title	rh0234
2 Origin	Bruker BioSpin Gmb
3 Solvent	CDC13
4 Temperature	295.0
5 Number of Scans	16
6 Acquisition Date	2019-05-31T02:49:12
7 Spectrometer Frequency600.	
Nucleus	1H

21

Parameter	Value
1 Title	rh0234
2 Origin	Bruker BioSpin Gmbl
3 Solvent	CDC13
4 Temperature	295.0
5 Number of Scans	1024
6 Acquisition Date	2019-05-31703:39:02
7 Spectrometer Frequency 150.90	
8 Nucleus	13 C

[^2]
10．HPLC Spectras of 2a＇

数据文件：C：\CHEM32\1\DATA\SONGJUNRONG\RS－0299．D
样品名称：rs－0299（99－1）

排序	$:$	信号
乘积因子：	$:$	1.0000
稀释因子：	：	1.0000
内标中不使用乘积因子和稀释因子		

信号 1：VWD1 A，波长 $=254 \mathrm{~nm}$

峰 \＃	保留时间 ［min］	类型	峰宽[min]	峰面积		峰高		峰面积
				mAU	＊s	［mAU	U ］	
1	25.812	MM	0.8151	1881	72437		8.47661	49.9367
2	28.586	MM	0.9454	1886	49390		3.25739	50.0633
总量				3768	21826		1.73400	

＊＊＊报告结束＊＊＊

数据文件：C：\CHEM32\1\DATA\SONGJUNRONG\RS－0298．D
样品名称：rs－0298（99－1）

附加信息：峰已手动积分

面积百分比报告

排序	：	信号	
乘积因子：	$:$	1.0000	
稀释因子：	$:$	1.0000	
内标使用乘积因子和稀释因子			

信号 1：VWD1 A，波长 $=254 \mathrm{~nm}$

峰 \＃	保留时间 ［min］	类型	峰宽 ［min］	峰面积		峰高		峰面积 \％
				mAU	＊s	［mAU	U ］	
1	25.885	MM	0.9577	2139	19189		7.22751	47.1872
2	28.960	MM	1.2497	2394	22363		1．93000	52.8128
总量	：			4533	41553		9.15751	

[^0]:

[^1]:

[^2]:

