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Section S1. Optical Lamb shift of an emitter label

The results in Fig. 2b show a shift between the emitter frequency at the maximum sensitivity

enhancement ωe = 2.03 eV and the gap plasmonic resonance ωp = 1.89 eV. This shift is a

result of the optical Lamb shift1 where the emitter experiences back-scattered fields from its

surroundings. We elaborate on this effect by placing a single emitter at different positions

1, 2 and 3 (black, red and blue dots in Fig. S1a), with the coordinates r1 = (0, 0, 0) nm, r2

= (42, 0, 0) nm, and r3 = (21, 21, 0) nm. The emitter’s polarization is set along the x-axis

with transition frequency ωe = 2.03 eV. The electric field distribution of the bare hemisphere

dimer is plotted in Fig. S1b. It shows that the electric field is the strongest at position 1

and the weakest at position 3.

Figure S1c shows the spectra of the emitter at each position, which are the Fourier
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transforms F [P ] =
∫
P (t)exp(−iωt)dt of the emitter’s polarization density in Eq. 7-8. At

positions 2 and 3 (red and blue curves), the coupling between the emitter and the plasmonic

environment leads to the red-shifted emitter frequency (major peaks) compared to ωe = 2.03

eV of the emitter in vacuum (gray curve). Stronger electric field results in a larger Lamb shift.

Note that, the minor peaks at 1.89 eV represent for the plasmonic resonance. At position 1

where the electric field is the strongest, the emitter resonance experiences the largest red-shift

and reaches values around the plasmonic resonance ωp = 1.89 eV. Meanwhile, the emitter and

plasmon-polaritons enter into the strong coupling regime, where the Rabi splitting results in

two comparable peaks centered at 1.89 eV. In other words, the optical Lamb shift changes

the emitter resonance from 2.03 eV to 1.89 eV, and results in the sensitivity enhancement

peaked at 2.03 eV (Fig. 2b) when ωp = 1.89 eV.
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Figure S1: Optical Lamb shift of a single emitter due to the interaction with gap plasmons.
(a) Top-view schematic diagram of the single emitter’s position near the hemisphere dimer.
The black, red and blue dots indicate the position of the emitter r = r1, r2 and r3, respec-
tively. (b) The xy-plane electric field distribution at ω = 1.89 eV for an empty hemisphere
dimer, where |E(r1)|/|E0| = 194.8, |E(r2)|/|E0| = 11.9 and |E(r3)|/|E0| = 8.79. (c) The
Fourier transforms of the emitter’s polarization densities |F [P ]| at positions r1 (black), r2
(red) and r3 (blue). |F [P ]| of an emitter in vacuum is also shown as a gray curve. The dashed
line at ω = 2.03 eV denotes the emitter’s transition frequency ωe, and the dash-dotted line
at ω = 1.89 eV denotes the gap plasmonic resonance ωp.
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Section S2. Location of the emitter label

For the hemisphere dimers with gap size d > 2 nm in Fig. 2c, the analyte-emitter complexes

are not kept at the gap center r = 0. Instead, they are placed 1 nm away from the gold

hemisphere on the right, as summarized in Table S1. The reason for doing so is to ensure

efficient coupling between the emitter label and plasmon-polaritons. In the following, we

will prove this by placing the analyte-emitter complex at different locations.

We first define the distance between the emitter label and the hemisphere surface as l, as

illustrated in the inset of Fig. S2a. Taking the case of d = 6 nm as an example, we calculate

the extinction spectrum as the emitter label is moved with l = 3, 2, 1 nm, as shown in Fig.

S2a. The Rabi splitting δω is extracted and summarized in Fig. S2b, where the emitter

gives a better performance at l = 1 nm.

For a dimer gap with d = 3–6 nm, the extinction spectra when the emitter is placed in

the gap center and 1 nm away from the hemisphere are compared in Fig. S3. It shows that

the sensitivity improvement offered by placing the emitter label at the optimized positions

re is small in the case of small gaps, but becomes more significant at larger gap size.

Table S1: Position of the emitter label re for hemisphere dimer with gap d = 2–6 nm.

d (nm) 2 3 4 5 6
re (nm) (0.0, 0, 0) (0.5, 0, 0) (1.0, 0, 0) (1.5, 0, 0) (2.0, 0, 0)

Section S3. Quasinormal modes

The mth-order gap plasmonic mode can be represented as a quasi-normal mode (QNM) with

complex frequency ω̃m = ωm− iκm, where the real part ωm describes its resonance frequency

and the imaginary part κm describes the corresponding linewidth.2 Given the electric field

Ẽm(re) of mth-order QNM at position re, the local mode volume and Purcell factor are then
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Figure S2: Extinction cross-sections and detection sensitivities of single-analyte detection at
different locations for the hemisphere dimer with gap size 6 nm. (a) Extinction cross-section
σext for emitter labels located at l = 3 nm (red dash-dotted line), l = 2 nm (blue dashed line)
and l = 1 nm (black solid line) away from the right gold hemisphere. (b) The splitting-type
sensitivity δω as a function of the distance l.
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Figure S3: Extinction cross-sections of single-analyte detection at non-optimized and opti-
mized locations. ((a)-(d)) Extinction cross-section σext for emitter labels at location r = 0
and r = re for hemisphere dimer with gap size d = 3–6 nm.
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evaluated as:3

Vm(re) =
1

2ε0εB[Ẽm(re) · ne]2
, (S1)

Fm(re;ω) =
3

4π2
Im

[(
λm
nB

)3
Q

Vm(re)

ω2
mκ

ωω̃m(ω̃m − ω)

]
. (S2)

In this study, we denote the the 1st-order gap plasmonic mode with complex frequency

ω̃1 = ω1 − iκ1 = ωp − iκ. The Purcell factor Fm=1(re;ωp) of the 1st-order gap plasmonic

mode is then evaluated in the FDTD environment using the technique developed by Ge et

al.4,5

Section S4. Multi-mode Purcell enhancement estimations

To predict the photoluminescence (PL) spectra in Fig. 3a, the interaction between a gap

plasmonic mode and an emitter label is analyzed within the cavity quantum electrodynam-

ics (cQED) framework. We assume that the 1st-order gap plasmonic mode can be well

approximated as a single cavity mode with a bosonic operator a and frequency ωp. The

emitter label is treated as a two-level system with a Pauli-1/2 operator σ and frequency

ω′e. The Jaynes-Cummings Hamiltonian under the unitrary transformation with operator

U = exp(−iωpa
†at) is written as:

H = (ω′e − ωp)σ†σ + g(aσ† + a†σ), (S3)

where g =
√
Fm=1(re;ωp)γ0κ/2 is the coupling strength,6 and Fm=1(re;ωp) is the local

Purcell factor of the 1st-oder (m = 1) gap plasmon mode at the emitter’s location re.

The PL spectra can be calculated from the steady-state number of photons 〈a†a〉 in the

system, subject to the decoherence from an external reservoir. The steady-state solution can

be found by solving the Lindblad master equation ∂ρ/∂t = Lρ = 0. The Lindblad operator
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is defined as:

Lρ =− i[H, ρ] +
κ

2
(2aρa† − a†aρ− ρa†a)

+
γ

2
(2σρσ† − σ†σρ− ρσ†σ)

+
Λ

2
(2σ†ρσ − σσ†ρ− ρσσ†) +

Γ

2
(σzρσz − ρ),

(S4)

where κ = −Im[ω̃1] is the cavity decay rate, Γ = 13 meV is the dephasing rate, and Λ =

1 meV is the incoherent pumping rate, which is sufficiently weak so that 〈a†a〉 � 1. The

relaxation rate γ is defined as the total decay rate due to higher-order plasmonic modes,

which behave as a single collective pseudomode:7,8

γ(re;ω) = Fm>1(re;ω)γ0(ω), (S5)

where Fm>1(re;ω
′
e) is the Purcell factor of the higher-order modes. We estimate Fm>1 by

subtracting Fm=1 from the total Purcell factor Ftot which is defined as:

Ftot(re;ω) =
γ(re;ω)

γ0(ω)
=

Im[ne ·G(re, re;ω) · ne]

Im[ne ·G0(re, re;ω) · ne]
, (S6)

where G and G0 are dyadic Green functions1 of the hemisphere dimer and the homogeneous

background with refractive index nB = 1.33, respectively. By placing a dipole source with

the same dipole moment µ, position re, and orientation ne as the quantum emitter, we can

obtain G from the dipole source power:

dW

dt
=

ω3µ2

2εε0c2
Im[ne ·G(re, re;ω) · ne]. (S7)

Figure S4 shows Fm=1, Fm>1 and Ftot for the hemisphere dimer with gap size d = 2–6 nm,

where the dipole source and emitter are placed at position re.

Finally, the PL spectra are calculated from the Wiener-Khintchine theorem and the
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quantum regression theorem:9

σPL(ω) ∝ −Re{Tr[a†(L − i(ω − ωp)I)−1aρ0]}, (S8)

where ρ0 is the steady-state solution to Eq. S4.
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Figure S4: Multi-mode Purcell factors of the hemisphere dimer. (a)-(e) The total Purcell
factor Ftot calculated by using a dipole source (blue lines), the Purcell factor of the 1st-order
QNM Fm=1 (red lines) and higher-order QNMs Fm>1 (black dashed lines) for an emitter
placed at position re in the dimer with gap size d = 2–6 nm.

Section S5. Statistical study of multi-analyte detection

Figure 4 demonstrates the classical and quantum regimes for detection of randomly dis-

tributed multiple analyte-emitter complexes using the hemisphere dimer with gap size d = 2

nm. We obtained the random analyte-emitter complexes by assigning them on a 2D hexag-

onal lattice with the center-to-center distance between adjacent hexagons being a = 2 nm,

which ensures non-overlapping distribution of the analyte-emitter complexes and corresponds

to a surface density of lattice sites (2/
√

3)a−2 = 0.289 nm−2. A random number generator
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was used to determine whether a given lattice site is occupied by an analyte-emitter complex

subject to occurrence probabilities of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, which correspond to the

average surface densities of emitters S = 0.029, 0.058, 0.087, 0.115, 0.144, and 0.173 nm−2,

respectively. In order to find the average numbers of analyte-emitter complexes surrounding

the plasmonic nanocavity, we define the cavity mode area as the region where the electric

field intensity |E|2 exceeds 10% of its maximum as |E(x, y, 0)|2 > 0.1|E(x, y, 0)|2max. This

definition gives a cavity mode area of 35.75 nm2 when d = 2 nm (Fig. 1c), which contains

10.3 lattice sites for analyte-emitter complexes. In this case, the average surface density

of emitters and the number of emitters at each occurrence probability are summarized in

Table S2. Note that, the number of emitters that practically participate in the coupling with

plasmon-polaritons varies for each simulation sample. The number of emitters summarized

here is only an average value.

In this study, 30 simulation samples for each surface density were taken, with the cor-

responding spectra of extinction cross-section σext shown in Figs. S5-S10. With sparsely

distributed analyte-emitter complexes, the extinction spectra are clean, exhibiting either in-

crementally shifted resonance (classical regime) or two split peaks (quantum regime). As

the surface density of analyte-emitter complexes increases, the extinction spectra become

irregular and show multiple peaks such that the line-shapes are no longer well-defined.

From these extinction spectra, we calculated their figure of merit (FoM) with Eq. 6,

and plotted the frequency histogram of FoMs in Fig. S11. At low surface density, two

sensing regimes are clearly observed, where the samples have either FoM < 0.3 or FoM >

0.3 depending on whether an analyte-emitter complex is located near the plasmonic hotspot.

However, the boundary between the two regimes gradually vanishes at higher surface density,

as the analytes tend to occupy all the vacancies on the substrate.
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Figure S5: Random samples of extinction spectra. 30 random samples of extinction cross-
sections σext with analyte-emitter complex surface density S = 0.029 nm−2. The C and Q
highlighted in red denote the representatives in Fig. 4b for classical and quantum regimes,
respectively.
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Figure S6: Random samples of extinction spectra. 30 random samples of extinction cross-
sections σext with analyte-emitter complex surface density S = 0.058 nm−2. The C and Q
highlighted in red denote the representatives in Fig. 4b for classical and quantum regimes,
respectively.
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Figure S7: Random samples of extinction spectra. 30 random samples of extinction cross-
sections σext with analyte-emitter complex surface density S = 0.087 nm−2. The C and Q
highlighted in red denote the representatives in Fig. 4b for classical and quantum regimes,
respectively.
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Figure S8: Random samples of extinction spectra. 30 random samples of extinction cross-
sections σext with analyte-emitter complex surface density S = 0.115 nm−2. The C and Q
highlighted in red denote the representatives in Fig. 4b for classical and quantum regimes,
respectively.
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Figure S9: Random samples of extinction spectra. 30 random samples of extinction cross-
sections σext with analyte-emitter complex surface density S = 0.144 nm−2. The C and Q
highlighted in red denote the representatives in Fig. 4b for classical and quantum regimes,
respectively.
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Figure S10: Random samples of extinction spectra. 30 random samples of extinction cross-
sections σext with analyte-emitter complex surface density S = 0.173 nm−2. The C and Q
highlighted in red denote the representatives in Fig. 4b for classical and quantum regimes,
respectively.
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Table S2: Average surface densities and average numbers of analyte-emitter complexes. The
analyte-emitter complexes are randomly distributed with occurrence probabilities from 0.1
to 0.6 on a 2D hexagonal lattice with lattice constant a = 2 nm. The average emitter
numbers are determined from the numbers of lattice sites within the area where |E(x, y, 0)|2 >
0.1|E(x, y, 0)|2max.

Occurrence probability Average surface density (nm−2) Average emitter number
0.1 0.029 1.03
0.2 0.058 2.06
0.3 0.087 3.10
0.4 0.115 4.13
0.5 0.144 5.16
0.6 0.173 6.19
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Figure S11: Statistics on figure of merit with different surface density of analyte-emitter
complexes. Histogram of FoM in Fig. 4c with surface density S = 0.029, 0.058, 0.087, 0.115,
0.144 and 0.173 nm−2. The histogram is classified into two colors for classical regime (blue,
FoM < 0.3) and quantum regime (red, FoM > 0.3), with dashed lines denoting the boundary.
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