Supporting Information ## Respirable Particulate Constituents and Risk of Cause-specific Mortality in the Hong Kong Population Shengzhi Sun^{1,2}, Wangnan Cao³, Vivian C. Pun⁴, Hong Qiu¹, Yang Ge⁵, and Linwei Tian^{1*} ¹School of Public Health, The University of Hong Kong, Hong Kong SAR, China ²Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912, USA ³Center for Evidence Synthesis in Health, School of Public Health, Brown University, Providence, RI 02912, USA ⁴Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China ⁵School of Public Health, Department of Epidemiology and Biostatistics, University of Georgia 30606, USA ## **Table of Contents** - **Figure S1.** Time-series plots of PM_{10} mass and its constituents. - **Figure S2.** Excess risk (%) of five categories of deaths associated with an interquartile range increase in respirable particulate matter total mass by lag days in Hong Kong, 2001-2010. - **Figure S3**. Cumulative excess risk (%) of cause-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag₀₋₇ days among people aged less than 65 years old in Hong Kong, 2001-2010. - **Figure S4**. Cumulative excess risk (%) of cause-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag₀₋₇ days among people aged 65 years and older in Hong Kong, 2001-2010. - **Figure S5.** Cumulative excess risk (%) of causes-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag₀₋₇ days with missing data replaced by previous day measurement values in Hong Kong, 2001-2010. - **Figure S6.** Cumulative excess risk (%) of causes-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag_{0-7} days using 7 degrees of freedom per year to control for seasonal and long-term trend in the regression models in Hong Kong, 2001-2010. - **Figure S7.** Cumulative excess risk (%) of causes-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag_{0-7} days using 9 degrees of freedom per year to control for seasonal and long-term trend in the regression models in Hong Kong, 2001-2010. ^{*}Corresponding author, linweit@hku.hk **Figure S1.** Time-series plots of PM_{10} mass and its constituents. Abbreviations: IQR=interquartile range; EC=elemental carbon; OC=organic carbon; NO_3 = nitrate; SO_4^2 = sulfate; NH_4 +=ammonium; Na+=sodium ion; K+=potassium ion; Cl=chloride ion. **Figure S2.** Excess risk (%) of five broad causes of deaths associated with an interquartile range increase in respirable particulate matter total mass by lag days in Hong Kong, 2001-2010. **Figure S3**. Cumulative excess risk (%) of cause-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag₀₋₇ days among people aged less than 65 years old in Hong Kong, 2001-2010. Abbreviations: PM_{10} = respirable particulate matter; IQR=interquartile range; EC=elemental carbon; OC=organic carbon; NO_3 = nitrate; SO_4^2 = sulfate; NH_4^+ =ammonium; Na^+ =sodium ion; K^+ =potassium ion; Cl=chloride ion. **Figure S4**. Cumulative excess risk (%) of cause-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag₀₋₇ days among people aged 65 years and older in Hong Kong, 2001-2010. Abbreviations: PM_{10} = respirable particulate matter; IQR=interquartile range; EC=elemental carbon; OC=organic carbon; NO_3 = nitrate; SO_4 ²= sulfate; NH_4 ⁺=ammonium; Na⁺=sodium ion; K⁺=potassium ion; Cl=chloride ion. **Figure S5.** Cumulative excess risk (%) of causes-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag₀₋₇ days with missing data replaced by previous day measurement values in Hong Kong, 2001-2010. Abbreviations: PM_{10} = respirable particulate matter; IQR=interquartile range; EC=elemental carbon; OC=organic carbon; NO_3 = nitrate; SO_4 ²= sulfate; NH_4 ⁺=ammonium; Na⁺=sodium ion; K⁺=potassium ion; Cl=chloride ion. **Figure S6.** Cumulative excess risk (%) of causes-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag_{0-7} days using 7 degrees of freedom per year to control for seasonal and long-term trend in the regression models in Hong Kong, 2001-2010. Abbreviations: PM_{10} = respirable particulate matter; IQR=interquartile range; EC=elemental carbon; OC=organic carbon; NO_3 = nitrate; SO_4^2 = sulfate; NH_4^+ =ammonium; Na^+ =sodium ion; K^+ =potassium ion; Cl=chloride ion. **Figure S7.** Cumulative excess risk (%) of causes-specific mortality associated with an interquartile range increase in respirable particulate constituents over lag_{0-7} days using 9 degrees of freedom per year to control for seasonal and long-term trend in the regression models in Hong Kong, 2001-2010. Abbreviations: PM_{10} = respirable particulate matter; IQR=interquartile range; EC=elemental carbon; OC=organic carbon; NO_3 = nitrate; SO_4^2 = sulfate; NH_4 +=ammonium; Na+=sodium ion; K+=potassium ion; Cl=chloride ion.