Cobalt-Catalyzed α-Arylation of Substituted α-Halogeno- β-Lactams

Vanessa Koch, ${ }^{\ddagger, \dagger,+}$ Mélanie M. Lorion, ${ }^{\ddagger,+}$ Etienne Barde, ${ }^{\ddagger}$ Stefan Bräse, ${ }^{\dagger, \xi}$ and Janine Cossy ${ }^{\ddagger *}$
${ }^{\dagger}$ Molecular, Macromolecular Chemistry and Materials, ESPCI Paris, CNRS, PSL University, 10 rue Vauquelin, 75231 Paris Cedex 05, France
${ }^{+}$Institute for Organic Chemistry (IOC), Karlsruhe Institute for Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
${ }^{\text {§ }}$ Institute for Toxicology and Genetics (ITG), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Table of content

General remarks 3
Optimization Studies 4
General Procedure A: synthesis of (3,4-trans)-3-bromo-4-aryl- β-lactams 1. 5
General Procedure B: cobalt-catalyzed arylation of β-lactam 1. 6
General Procedure for the synthesis of Grignard reagents 6
Reactions with (3,4-cis)-3-bromo-4-aryl- β-lactams 1 7
Reaction on 2 mmol scale 8
Synthesis and Characterization Data of Substrates 1 8
Synthesis and Characterization Data of Substrates 5, 6 and 7 21
Characterization Data of Products 2 and 4 25
Characterization Data of Products 8, 9 and 10 45
Synthetic transformations of α-arylated β-lactams 48
References 53
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$-NMR Spectra 54

General remarks

NMR spectra were recorded on a Bruker Avance 400 as solutions at room temperature. Chemical shifts δ are expressed in parts per million (ppm) downfield from tetramethylsilane (TMS). References for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were the residual solvent peaks of chloroform $\left({ }^{1} \mathrm{H}: \delta=7.26 \mathrm{ppm}\right) /$ acetone $\left({ }^{1} \mathrm{H}: \delta=2.84 \mathrm{ppm}\right)$ and d1-chloroform ($\left.{ }^{13} \mathrm{C}: \delta=77.16 \mathrm{ppm}\right) / \mathrm{d} 6$-acetone (${ }^{13} \mathrm{C}: \delta=206.26 \mathrm{ppm}$). All coupling constants (J) are absolute values and are expressed in Hertz (Hz). The description of signals includes: $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t, ~ q u i n=$ quintet, hept = septet, $m=$ multiplet, $d d=$ doublet of doublets and ddd = double doublet of doublets and so forth. The spectra were analyzed according to first order. IR spectra were recorded on a FT-IR Bruker IFS 88 spectrometer. The compounds were measured as pure substances by ATR technique (ATR = attenuated total reflection). The position of the absorption band is given in wave numbers \tilde{v} in cm^{-1}. Mass spectra were measured by EI-MS (electron impact mass spectrometry) and were recorded on a Finnigan MAT 95. The peaks are given as mass-to-charge-ratio (m / z). The molecule peak is given as $[\mathrm{M}]^{+}$and characteristic fragment peaks are given as [M - fragment] ${ }^{+}$or [fragment] ${ }^{+}$. The signal intensities are given in percent, relatively to the intensity of the base signal (100\%). For the high resolution mass, the following abbreviations were used: calc. = calculated data, found = measured data. Analytical thin layer chromatography (TLC) was carried out on Merck silica gel coated aluminum plates (silica gel 60, F254), detected under UVlight at $\lambda=254 \mathrm{~nm}$ or stained with "Seebach staining solution" (mixture of molybdato phosphoric acid, cerium(IV)-sulfate tetrahydrate, sulfuric acid and water) or basic potassium permanganate solution. Solvent mixtures are understood as volume/volume. Solvents, reagents and chemicals were purchased from Sigma-Aldrich, TCI and Alfa Aesar. All solvents, reagents and chemicals were used as purchased unless stated otherwise. THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and PhMe were dried using a Mbraun SPS800 purification system. Air- or moisture-sensitive reactions were carried out under argon atmosphere in oven-dried and previously evacuated glassware. Liquids were transferred with plastic syringes and steel cannula. If not stated otherwise, crude products were purified by flash chromatography by the procedure of Still. ${ }^{1}$ Silica gel 60 (Merck, 230-400) was used as stationary phase and as mobile phase.

Optimization Studies

Table S1. Optimization of the cobalt-catalyzed arylation of β-lactam 1a. ${ }^{[a]}$

entry	[Co] (x mol \%)	ligand (y mol \%)	x equiv	T $\left(^{\circ} \mathrm{C}\right.$)	yield (\%)	Note
$1^{[b]}$	$\mathrm{CoCl}_{2}(10)$	XantPhos (10)	2.0	0	34	
$2^{[b]}$	$\mathrm{CoCl}_{2}(10)$	dppbz (10)	2.0	0	10	
$3^{[b]}$	$\mathrm{CoCl}_{2}(10)$	dppe (10)	2.0	0	16	
$4{ }^{[b]}$	$\mathrm{CoCl}_{2}(10)$	PPh ${ }_{3}$ (20)	2.0	0	13	
$5^{[b]}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	2.0	0	68	
$6^{[b]}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (1.9 equiv)	2.0	0	72	
$7^{[b]}$	$\mathrm{CoF}_{2}(10)$	TMEDA (10)	2.0	0	0	
$8{ }^{[b]}$	$\mathrm{CoBr}_{2}(10)$	TMEDA (10)	2.0	0	47	
$9^{[b]}$	$\mathrm{Col}_{2}(10)$	TMEDA (10)	2.0	0	45	
$10^{[b]}$	$\mathrm{Co}(\mathrm{acac})_{2}(10)$	TMEDA (10)	2.0	0	41	
$11^{[b]}$	$\mathrm{Co}(\mathrm{OAc})_{2}(10)$	TMEDA (10)	2.0	0	31	
$12^{[b]}$	$\mathrm{CoCl}_{2}(10)$	TMCD (10)	2.0	0	66	
$13^{[b]}$	$\mathrm{CoCl}_{2}(10)$	PyBox (10)	2.0	0	26	
$14^{[b]}$	$\mathrm{CoCl}_{2}(10)$	bipy (10)	2.0	0	0	
$15^{[b]}$	$\mathrm{CoCl}_{2}(10)$	--	2.0	0	20	
$16^{[b]}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	2.0	25	69	Formation of dehalogenated byproducts observed
$17^{\text {[c] }}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	1.5	0	32	+ LiCl (1.5 equiv)
$18^{[\mathrm{c}]}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	1.5	25	35	In 1,4-dioxane
$19^{[c]}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	1.5	0	36	In PhMe
$20^{[c]}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	1.5	0	56	In Et O_{2}
$21^{\text {[c] }}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	1.5	-20	67	
$22^{[\mathrm{c]}}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	1.5	- 50	48	

$23^{[b]}$	--	--	2.0	0	0	
$24^{[c]}$	--	TMEDA (10)	1.5	0	0	
$25^{[c]}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	1.5	0	36	Using p - $\mathrm{Tol} \mathrm{MgBr} \bullet \mathrm{LiCl}$
$26^{[\mathrm{c}, \mathrm{d}]}$	$\mathrm{CoCl}_{2}(10)$	TMEDA (10)	1.5	0	76	
$27^{[c, ~ d]}$	$\mathrm{CoCl}_{2}(5)$	TMEDA (5)	1.5	0	82	
$28^{[\mathrm{c}, \mathrm{d}]}$	CoCl 2 (2)	TMEDA (2)	1.5	0	79	
$29^{[c, ~ e]}$	$\mathrm{CoCl}_{2}(2)$	TMEDA (2)	1.5	0	73	
$30^{[c, ~ d, ~ f] ~}$	$\mathrm{CoCl}_{2}(2)$	TMEDA (2)	1.5	0	52	

[a] Reaction conditions: 1a (0.225 mmol), 3 h ; yields of isolated products. [b] Manual addition of $p-\mathrm{TolMgBr}$ over 5 min. [c] Syringe pump addition of $p-\mathrm{Tol} \operatorname{MgBr}(2.4 \mathrm{~mL} / \mathrm{h})$. [d] 1a (0.750 mmol), $p-\mathrm{Tol} \operatorname{MgBr}$ (1.50 equiv). [e] 1a (2.00 mmol), p - $\mathrm{Tol} \operatorname{MgBr}$ (1.50 equiv). [$f]$ Using (3,4-trans)-3-Chloro 1-isopropyl-4-phenylazetidin-2-one 1a'.

General Procedure A: synthesis of (3,4-trans)-3-bromo-4-aryl- β-lactams 1.

1

Based on a reported procedure, ${ }^{2}$ the arylaldehyde ($10.0 \mathrm{mmol}, 1.00$ equiv), the alkylamine (11.0 mmol , 1.10 equiv) and $\mathrm{MgSO}_{4}\left(2.40 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.00\right.$ equiv) were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and refluxed for 3 hours. After cooling to room temperature, the mixture was filtered over Celite ${ }^{\circledR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the solvent was removed in vacuo. The imine was obtained in high quality according to the ${ }^{1} \mathrm{H}$ NMR spectrum and was used without further purification. The corresponding imine (10.0 mmol) was dissolved in PhMe $(60 \mathrm{~mL})$ and 2,6 -lutidine ($3.5 \mathrm{~mL}, 3.21 \mathrm{~g}, 30.0 \mathrm{mmol}, 3.00$ equiv) was added. The reaction mixture was heated to $120^{\circ} \mathrm{C}$ and bromoacetyl bromide ($1.2 \mathrm{~mL}, 1.69 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.50$ equiv) was added dropwise. The reaction mixture was refluxed for 2 hours and then stirred at $80^{\circ} \mathrm{C}$ overnight. The reaction was cooled to room temperature and then filtered over Celite ${ }^{\circledR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The filtrate was washed with aqueous 1 M HCl solution $(220 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The bromo β-lactam 1 was purified by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}$) followed by recrystallization $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ or a second flash column chromatography on silica gel (PE/EtOAc).

General Procedure B: cobalt-catalyzed arylation of β-lactam 1.

In a 25 mL round bottom flask, bromo β-lactam 1 ($0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (in total $0.1 \mathrm{M})$ under argon atmosphere and cooled to $0^{\circ} \mathrm{C} . \mathrm{CoCl}_{2}(0.015 \mathrm{mmol}, 0.30 \mathrm{~mL}$ of 0.05 M solution in THF, $2.0 \mathrm{~mol} \%$) and TMEDA ($0.015 \mathrm{mmol}, 0.30 \mathrm{~mL}$ of 0.05 M solution in THF, $2.0 \mathrm{~mol} \%$) were added. The Grignard reagent in THF (if not stated otherwise: $1.14 \mathrm{mmol}, 1.50$ equiv) was then added dropwise with a syringe pump (rates of addition were given). After stirring for 3 hours at $0^{\circ} \mathrm{C}$, the reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(0.30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 30 \mathrm{~mL})$ and EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine $(20 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration the solvent was removed in vacuo and the crude product was purified via flash column chromatography on silica gel (n-pentane/EtOAc).

General Procedure for the synthesis of Grignard reagents

The commercially available Grignard reagents were purchased from Sigma Aldrich whereby the concentrations were determined by using Knochel's titration method ${ }^{3}$ for organometallic magnesium reagents: p-tolylmagnesium bromide solution in THF, p-methoxyphenylmagnesium bromide solution in THF, p-fluorophenylmagnesium bromide solution in THF and m-methoxyphenylmagnesium bromide solution in THF.

When not commercially available, the Grignard reagents were synthesized as follows:
A two-necked round bottom flask equipped with a reflux condenser was charged with magnesium ($379 \mathrm{mg}, 15.6 \mathrm{mmol}, 1.30$ equiv) under argon atmosphere. THF ($2.0-4.0 \mathrm{~mL}$) and 1,2-dibromoethane ($0.10 \mathrm{~mL}, 225 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.10$ equiv) were added and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ for a couple of minutes in order to activate the magnesium. The aryl bromide ($12.0 \mathrm{mmol}, 1.00$ equiv) dissolved in THF (10.0 mL) was added dropwise and the mixture was heated to $60^{\circ} \mathrm{C}$ for $2-4 \mathrm{~h}$. The concentration of the Grignard reagent in THF was determined by Knochel's titration method. ${ }^{3}$

Reactions with (3,4-cis)-3-bromo-4-aryl- β-lactams 1

3,4-cis-1j

3,4-cis/trans-1k
(cis/trans $=1 / 4$)

Reaction on $\mathbf{2 m m o l}$ scale

In a 50 mL round bottom flask, bromo β-lactam $1(2.00 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (in total $0.1 \mathrm{M})$ under argon atmosphere and cooled to $0^{\circ} \mathrm{C}^{\mathrm{C}} \mathrm{CoCl}_{2}(0.04 \mathrm{mmol}, 0.80 \mathrm{~mL}$ of 0.05 M solution in THF, $2.0 \mathrm{~mol} \%$) and TMEDA ($0.04 \mathrm{mmol}, 0.80 \mathrm{~mL}$ of 0.05 M solution in THF, $2.0 \mathrm{~mol} \%$) were added. p tolylmagnesium bromide (0.70 M in THF, $4.35 \mathrm{~mL}, 3.04 \mathrm{mmol}, 1.52$ equiv) was then added dropwise with a syringe pump ($4.35 \mathrm{~mL} / \mathrm{h}$). After stirring for 3 hours at $0^{\circ} \mathrm{C}$, the reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 50 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \times 40 \mathrm{~mL})$. The combined organic phases were washed with brine (40 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration the solvent was removed in vacuo. After flash column chromatography on silica gel (npentane/EtOAc = 10:1), 2a(407 mg, $1.45 \mathrm{mmol}, 73 \%)$ was obtained as a colorless oil.

Synthesis and Characterization Data of Substrates 1

(3,4-trans)-3-Bromo-1-isopropyl-4-phenylazetidin-2-one (1a):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrNO}$
Molecular Weight: 268,15 g.mol ${ }^{-1}$

Prepared according to the general procedure A using benzaldehyde ($3.0 \mathrm{~mL}, 3.18 \mathrm{~g}, 30.0 \mathrm{mmol}$) and isopropylamine ($2.8 \mathrm{~mL}, 1.95 \mathrm{~g}, 33.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$ and recrystallisation $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $1 \mathrm{a}(6.99 \mathrm{~g}, 26.1 \mathrm{mmol}, 87 \%)$ as a white solid.
m.p. (uncorrected) $=46-47^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2968,2912,1759,1497,1459,1380,1363,1339,1313,1285,1247,1204,1012,928 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.48-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=163.5,136.9,129.5,129.3$ (2C), 126.7 (2C), 65.2, 49.9, 46.2, 21.1, 20.1.
MS (+ESI) m/z (\%) = $270\left({ }^{81} \mathrm{Br}\right) / 268\left({ }^{79} \mathrm{Br}\right)(96: 100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 270.0311; found: 270.0311; calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 268.0332; found: 268.0332.

(3,4-trans)-3-Chloro-1-isopropyl-4-phenylazetidin-2-one (1a'):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClNO}$
Molecular Weight: 223,70 g.mol ${ }^{-1}$

Prepared according to the general procedure A using benzaldehyde ($1.0 \mathrm{~mL}, 10.0 \mathrm{mmol}$), isopropylamine ($0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$) and chloroacetyl chloride. Purification by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}, 10: 1$) and recrystallisation ($\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded $1 \mathrm{a}^{\prime}(1.52 \mathrm{~g}$, $6.80 \mathrm{mmol}, 68 \%$) as a white solid.
m.p. (uncorrected) $=39^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2969,2912,1762,1498,1459,1384,1363,1263,1252 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.74(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.7,136.7,129.5,129.3$ (2C), 126.8 (2C), 65.2, 62.7, 46.0, 21.2, 20.2. MS (+ESI) $m / z(\%)=224(100)[M+H]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{CINO}[\mathrm{M}+\mathrm{H}]^{+}$: 224.0837; found: 224.0387.

The analytical data match with those reported in the literature. ${ }^{4}$
However, contrary to the description in the literature, the β-lactam 1a' was obtained as a solid and not as a yellow oil as reported.

(3,4-trans)-3-Bromo-1-isopropyl-4-(p-tolyl)-azetidin-2-one (1b):

$$
\text { Chemical Formula: } \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}
$$

Molecular Weight: 282,18 g.mol ${ }^{-1}$

Prepared according to the general procedure A using p-tolylaldehyde ($1.2 \mathrm{~mL}, 1.20 \mathrm{~g}, 10.0 \mathrm{mmol}$) and isopropylamine ($0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel $(P E / E t O A c=10: 1)$ yielded $1 \mathrm{~b}(1.77 \mathrm{~g}, 6.27 \mathrm{mmol}, 63 \%)$ as a light yellow oil.

IR (ATR): $\tilde{v}=2972,2931,1757,1514,1367,1330,1182 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21-7.12(\mathrm{~m}, 4 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.6,139.5,133.9,129.9$ (2C), 126.7 (2C), 65.0, 50.0, 46.1, 21.3, 21.1, 20.1.

MS (+ESI) $m / z(\%)=567\left({ }^{81,81} \mathrm{Br}\right) / 565\left({ }^{81,79} \mathrm{Br}\right) / 563\left({ }^{79,79} \mathrm{Br}\right)(30: 100: 34)[2 \mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 284.0468$, found: 284.0467.; calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 282.0488$; found: 282.0488 .

(3,4-trans)-3-Bromo-1-isopropyl-4-(p-methoxyphenyl)azetidin-2-one (1c):

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}_{2}$
Molecular Weight: 298,18 g.mol ${ }^{-1}$

Prepared according to the general procedure \mathbf{A} using p-methoxybenzaldehyde ($1.36 \mathrm{~g}, 10.0 \mathrm{mmol}$) and isopropylamine ($0.95 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel $(P E / E t O A c=9: 1)$ yielded $1 \mathrm{c}(1.56 \mathrm{~g}, 5.23 \mathrm{mmol}, 52 \%)$ as a colorless oil.

IR (ATR): $\tilde{v}=2972,1753,1610,1585,1512,1366,1289,1248,1174,1029 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.27(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=163.6,160.5,128.7,128.0(2 \mathrm{C}), 114.6$ (2C), 64.8, 55.5, 50.0, 46.0, 21.2, 20.1.

MS (ESI) m/z (\%) = $300\left({ }^{81} \mathrm{Br}\right) / 298\left({ }^{79} \mathrm{Br}\right)(95: 100)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{2}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 300.0417$, found: 300.0412; calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{2}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 298.0437$, found: 298.0433.

(3,4-trans)-3-Bromo-4-(p-(benzyloxy)phenyl)-1-isopropylazetidin-2-one (1d):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNO}_{2}$
Molecular Weight: 374,28 g.mol ${ }^{-1}$

Prepared according to the general procedure \mathbf{A} using p-(benzyloxy)benzaldehyde ($2.12 \mathrm{~g}, 10.0 \mathrm{mmol}$) and isopropylamine ($0.95 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=9: 1$) and recrystallisation $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded 1d (970 $\left.\mathrm{mg}, 2.59 \mathrm{mmol}, 26 \%\right)$ as a white solid.
m.p. (uncorrected): $100-101^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2978,2930,2900,1759,1610,1583,1511,1467,1454,1394,13731331,1305,1231,1205$, $1175,1138,1116,1003,937 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.08$ $(\mathrm{s}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74($ hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, 1.05 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=163.6,159.7,136.7,129.1,128.8(2 \mathrm{C}), 128.3,128.1$ (2C), 127.6 (2C), 115.6 (2C), 70.3, 64.8, 50.1, 46.1, 21.2, 20.2.

MS (ESI) m/z (\%) = $751\left({ }^{81,81} \mathrm{Br}\right) / 749\left({ }^{81,79} \mathrm{Br}\right) / 747\left({ }^{79,79} \mathrm{Br}\right)(20: 52: 20)[2 \mathrm{M}+\mathrm{H}]^{+}, 376\left({ }^{81} \mathrm{Br}\right) / 374\left({ }^{79} \mathrm{Br}\right)$ $(98: 100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrNO}_{2}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 376.0730$, found: 376.0728; calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrNO}_{2}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 374.0750$, found: 374.0749.

(3,4-trans)-3-Bromo-4-[p-(N,N-dimethylamino)phenyl]-1-isopropylazetidin-2-one (1e):

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}$
Molecular Weight: 311,22 g.mol ${ }^{-1}$

Prepared according to the general procedure A using p-(N, N-dimethylamino)benzaldehyde (1.22 mL , $1.49 \mathrm{~g}, 10.0 \mathrm{mmol}$) and isopropylamine ($0.95 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=9: 1)$ and recrystallisation $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $\mathbf{1 e}(1.44 \mathrm{~g}$, $4.62 \mathrm{mmol}, 46 \%$) as a pale yellow solid.
m.p. (uncorrected): $84-85^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2997,2800,1747,1612,1524,1448,1390,1355,1289,1243,1229,1195,1124,1060$, $945 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.52 .(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.96(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.6,151.1,127.7$ (2C), 123.4, 112.4 (2C), 65.1, $50.1,45.8,40.4$ (2C), 21.1, 20.0.

MS (+ESI) m/z (\%) = $313\left({ }^{81} \mathrm{Br}\right) / 311\left({ }^{79} \mathrm{Br}\right)(98: 100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 313.0733; found: 313.0733; calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Br} \mathrm{N}_{2} \mathrm{O}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 311.0754; found: 311.0754.
(3,4-trans)-3-Bromo-4-(p-fluorophenyl)-1-isopropylazetidin-2-one (1f):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrFNO}$
Molecular Weight: 286,14 g.mol ${ }^{-1}$

Prepared according to the general procedure A using p-fluorobenzaldehyde ($1.1 \mathrm{~mL}, 1.24 \mathrm{~g}, 10.0 \mathrm{mmol}$) and isopropylamine ($0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$). Purification by flash column chromatography on
silica gel ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$) and crystallization $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $\mathbf{1 f}(1.90 \mathrm{~g}, 6.63 \mathrm{mmol}, 66 \%)$ as a white solid.
m.p. (uncorrected) $=50-51^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2973,2932,1758,1601,1513,1422,1377,1366,1248,1221,1147 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.10\left(\mathrm{br} \mathrm{t} \mathrm{t}_{\text {app }}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.59(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-111.7$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.4,163.3(\mathrm{~d}, J=249.2 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 C), 116.4(\mathrm{~d}, \mathrm{~J}=21.9 \mathrm{~Hz}, 2 \mathrm{C}), 64.4,49.9,46.2,21.1,20.2$.

MS (+ESI) $m / z(\%)=288\left({ }^{81} \mathrm{Br}\right) / 286\left({ }^{79} \mathrm{Br}\right)(97: 100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrFNO}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 288.0217; found: 288.0219; calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 286.0237; found: 286.0240.

(3,4-trans)-3-Bromo-4-(p-bromophenyl)-1-isopropylazetidin-2-one (1g):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{NO}$ Molecular Weight: 347,05 g. mol^{-1}

Prepared according to the general procedure \mathbf{A} using p-bromobenzaldehyde ($1.85 \mathrm{~g}, 10.0 \mathrm{mmol}$) and isopropylamine ($0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel $(P E / E t O A c=10: 1)$ and crystallization $\left(P E / C H_{2} C_{2}\right)$ yielded $1 \mathrm{~g}(2.00 \mathrm{~g}, 5.75 \mathrm{mmol}, 58 \%)$ as a white solid.
m.p. (uncorrected) $=61-62{ }^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3010,1751,1606,1596,1411,1331,1293,1194,1163,1086,1040 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.4,136.1,132.5$ (2C), 128.3 (2C), 123.5, 64.5, 49.7, 46.3, 21.2, 20.2. MS (+ESI) $m / z(\%)=349\left({ }^{81,81} \mathrm{Br}\right) / 347\left({ }^{79,81} \mathrm{Br}\right) / 345\left({ }^{79,79} \mathrm{Br}\right)(42: 100: 31)[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (+ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}\left({ }^{81,81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 349.9396; found: 349.9396, calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}\left({ }^{79,81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 347.9415$; found: 347.9416, calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{NO}\left({ }^{79,79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 345.9437; found: 345.9438 .

(3,4-trans)-3-Bromo-4-(p-chlorophenyl)-1-isopropylazetidin-2-one (1h):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrCINO}$ Molecular Weight: 302,60 g.mol ${ }^{-1}$

Prepared according to the general procedure \mathbf{A} using p-chlorobenzaldehyde ($1.41 \mathrm{~g}, 10.0 \mathrm{mmol}$) and isopropylamine ($0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel $(P E / E t O A c=10: 1)$ and crystallization $\left(P E / C_{2} \mathrm{Cl}_{2}\right)$ yielded $1 \mathrm{~h}(2.10 \mathrm{~g}, 6.96 \mathrm{mmol}, 70 \%)$ as a slightly yellow oil.

IR (ATR): $\tilde{v}=2973,1757,1491,1414,1320,1088,1011,856,833,758 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (d, J=1.6 Hz, 1H), 3.75 (hept, J=6.8 Hz, 1H), $1.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=163.4,135.6,135.4,129.6$ (2C), 128.0 (2C), 64.5, 49.7, 46.3, 21.1, 20.2.
MS (+ESI) $m / z(\%)=303\left({ }^{81} \mathrm{Br}\right) / 301\left({ }^{79} \mathrm{Br}\right)(100: 74)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrClNO}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 303.9921; found: 303.9917; calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrClNO}\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 301.9942; found: 301.9941.

(3,4-trans)-3-Bromo-1-isopropyl-4-[p-(trifluoromethyl)phenyl]azetidin-2-one (1i):

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrF}_{3} \mathrm{NO}$
Molecular Weight: 336,15 g.mol ${ }^{-1}$

Prepared according to the general procedure A using p-(trifluoromethyl)benzaldehyde (1.4 mL, 1.74 g , $10.0 \mathrm{mmol})$ and isopropylamine $(0.90 \mathrm{~mL}, 650 \mathrm{mg} 11.0 \mathrm{mmol})$. Purification by flash column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$ and crystallization $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $\mathbf{1 i}(2.21 \mathrm{~g}$, $6.57 \mathrm{mmol}, 66 \%)$ as a white solid.
m.p. (uncorrected) $=63-65^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2973,2929,1766,1741,1621,1425,1321,1158,1110,1066,1015 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.68(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.3,141.1,131.7(\mathrm{q}, J=32.8 \mathrm{~Hz}), 127.1(2 \mathrm{C}), 126.3(\mathrm{q}, J=3.8 \mathrm{~Hz}, 2 \mathrm{C})$, $123.8(q, J=272.3 \mathrm{~Hz}), 64.4,49.6,46.5,21.1,20.2$.

MS (+ESI) $m / z(\%)=338\left({ }^{81} \mathrm{Br}\right) / 336\left({ }^{79} \mathrm{Br}\right)(96: 100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrF}_{3} \mathrm{NO}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 338.0185; found: 338.0185; calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrF}_{3} \mathrm{NO}\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 336.0205; found: 336.0206.

(3,4-trans)- and (3,4-cis)-3-Bromo-1-isopropyl-4-(o-methoxyphenyl)azetidin-2-one (1j):

Prepared according to the general procedure A using o-methoxybenzaldehyde ($1.21 \mathrm{~mL}, 1.36 \mathrm{~g}$, 10.0 mmol) and isopropylamine $(0.95 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol})$. Purification by flash column chromatography on silica gel $(P E / E t O A c=9: 1)$ and recrystallisation $\left(P E / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded trans-1j$(1.25 \mathrm{~g}$, $4.20 \mathrm{mmol}, 42 \%$) as a white solid and cis-1j ($686 \mathrm{mg}, 2.30 \mathrm{mmol}, 23 \%$) as a white solid.

- (3,4-trans)-3-Bromo-1-isopropyl-4-(o-methoxyphenyl)azetidin-2-one (trans-1j):

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}_{2}$
Molecular Weight: 298,18 g.mol ${ }^{-1}$
m.p. (uncorrected) $=77-78^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2970,1754,1600,1587,1494,1464,1437,1381,1366,1289,1249,1195,1165,1153,1049$, $1024 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35(\mathrm{ddd}, J=8.3,7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98\left(\mathrm{t}_{\text {app }}\right.$, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, 3 H), 3.73 (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.29 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.03 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=163.9,158.0,130.5,128.5,124.5,120.9,111.2,61.1,55.6,48.8,46.0$, 20.7, 20.0.

MS (ESI) m/z (\%) = $599\left({ }^{81,81} \mathrm{Br}\right) / 597\left({ }^{81,79} \mathrm{Br}\right) / 595\left({ }^{79,79} \mathrm{Br}\right)(10 / 20: 10)[2 \mathrm{M}+\mathrm{H}]^{+}, 300\left({ }^{81} \mathrm{Br}\right) / 298\left({ }^{79} \mathrm{Br}\right)$ $(98: 100)[\mathrm{M}+\mathrm{H}]^{+}$.

HR-MS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{2}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 300.0417$, found: 300.0413; calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{2}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}:$298.0437, found: 298.0435.

- (3,4-cis)-3-Bromo-1-isopropyl-4-(o-methoxyphenyl)azetidin-2-one (cis-1j):

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}_{2}$
Molecular Weight: 298,18 g.mol ${ }^{-1}$
m.p. (uncorrected) $=98-99^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2980,1746,1602,1590,1491,1466,1443,1404,1382,1367,1327,1300,1242,1200$, $1185,1110,1047,1021,949 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35(\mathrm{ddd}, J=8.3,7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98\left(\mathrm{t}_{\text {app }}\right.$, $J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, 3 H), 3.73 (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.41(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=164.7,157.5,129.8,127.8,124.0,120.1,110.5,55.6,53.6,50.2,46.7$, 21.1, 20.4.

MS (ESI) m/z (\%) = $599\left({ }^{81,81} \mathrm{Br}\right) / 597\left({ }^{81,79} \mathrm{Br}\right) / 595\left({ }^{79,79} \mathrm{Br}\right)(20: 50: 20)[2 \mathrm{M}+\mathrm{H}]^{+}, 300\left({ }^{81} \mathrm{Br}\right) / 298\left({ }^{79} \mathrm{Br}\right)$ $(98: 100)[\mathrm{M}+\mathrm{H}]^{+}$

HR-MS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{2}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 300.0417$, found: 300.0412; calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{2}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 298.0437$, found: 298.0434.
(3,4-trans)- and (3,4-cis)-3-Bromo-4-(o-fluorophenyl)-1-isopropyl-azetidin-2-one (1k):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrFNO}$
Molecular Weight: 286,14 g.mol ${ }^{-1}$

Prepared according to the general procedure \mathbf{A} using o-fluorobenzaldehyde ($1.1 \mathrm{~mL}, 1.24 \mathrm{~g}, 10.0 \mathrm{mmol}$, 1.00 equiv) and isopropylamine ($0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$) yielded trans-1k and cis-1k ($1.23 \mathrm{~g}, 7.45 \mathrm{mmol}, 75 \%$) as inseparable mixture (cis/trans $=1: 4$) as a light yellow oil.

IR (ATR): $\tilde{v}=2973,2932,1759,1490,1457,1368,1318,1238,1221 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3},[$ cis,trans $\left.]\right): \delta=7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 1 \mathrm{H})$, $5.32[(d, J=5.1 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.89(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 0.8 \mathrm{H})], 5.17[(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})], 3.77$ (hept, J = 6.6 Hz, 1H), [1.38 (d, J = 6.8 Hz, 0.6H), 1.29 (d, J = 6.8 Hz, 2.4H)], [1.17 (d, J = 6.7 Hz, 0.6H), 1.05 (d, J = 6.7 Hz, 2.4H)].
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-118.4$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $3,[$ cis,trans]): $\delta=[163.9,163.2],[161.0(\mathrm{~d}, \mathrm{~J}=247.8 \mathrm{~Hz}), 160.9(\mathrm{~d}, \mathrm{~J}=249.2 \mathrm{~Hz})$], [131.0 (d, $J=8.4 \mathrm{~Hz}), 130.5(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz})$], [128.9 (d, $J=3.1 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=3.7 \mathrm{~Hz})$], [123.8 (d, $J=3.5 \mathrm{~Hz}), 124.8(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz})$], [123.9, 123.8], [115.6 (d, J=21.2 Hz), $116.3(\mathrm{~d}, J=21.3 \mathrm{~Hz})],[52.3(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}), 58.9(\mathrm{~d}, J=3.4 \mathrm{~Hz})$], [49.4, $48.6(\mathrm{~d}, J=2.3 \mathrm{~Hz})$], [46.5, 46.0], [20.9, 20.7], [20.2, 20.0].
MS (+ESI) $m / z(\%)=288\left({ }^{81} \mathrm{Br}\right) / 286\left({ }^{79} \mathrm{Br}\right)(96: 100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrFNO}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 288.0215; found:288.0217; calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrFNO}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 286.0236$; found:286.0236.

(3,4-trans)-3-Bromo-1-isopropyl-4-(m-methoxypheny)-azetidin-2-one (1I):

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}_{2}$
Molecular Weight: 298,18 g.mol ${ }^{-1}$

Prepared according to the general procedure A using m-methoxybenzaldehyde ($1.1 \mathrm{~mL}, 1.23 \mathrm{~g}$, $10.0 \mathrm{mmol})$ and isopropylamine $(0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol})$. Purification by flash column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$ and crystallization $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $1 \mathrm{l}(1.89 \mathrm{~g}$, $6.36 \mathrm{mmol}, 64 \%$) as a slightly yellow solid.
m.p. (uncorrected) $=51-52^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=1750,1602,1491,1466,1329,1291,1260,1161,1038 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32\left(\mathrm{t}_{\text {app }}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H},\right), 6.96-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, 1.07 ($d, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=163.5,160.3,138.6,130.4,118.9,114.8,112.2,65.1,55.5,49.8,46.3$, 21.1, 20.1.

MS (+ESI) $m / z(\%)=300\left({ }^{81} \mathrm{Br}\right) / 298\left({ }^{79} \mathrm{Br}\right)(98: 100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{2}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 300.0417$; found: 300.0416; calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}_{2}$
$\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 298.0437 ; found: 298.0437.

(3,4-trans)-3-Bromo-1-isopropyl-4-(3',4',5'-trimethoxyphenyl)azetidin-2-one (1m):

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrNO}_{4}$
Molecular Weight: 358, 23 g. mol^{-1}

Prepared according to the general procedure A using $3^{\prime}, 4^{\prime}, 5^{\prime}$-trimethoxybenzaldehyde (1.96 g , 10.0 mmol) and isopropylamine $(0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol})$. Purification by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$) and crystallization ($\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded $1 \mathrm{~m}(1.94 \mathrm{~g}$, $5.42 \mathrm{mmol}, 54 \%$) as a white solid.
m.p. (uncorrected) $=124-125^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2974,2936,1752,1591,1506,14591420,1349,1320,1234 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.55(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77($ hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.7,154.0(2 \mathrm{C}), 132.5,103.3$ (2C), 65.5, 61.0, 56.4 (3C), 49.9, 46.3, 21.2, 20.2.

MS (+ESI) $m / z(\%)=719\left({ }^{81,81} \mathrm{Br}\right) / 717\left({ }^{81,79} \mathrm{Br}\right) / 715\left({ }^{79,79} \mathrm{Br}\right)(22: 66: 24)[2 \mathrm{M}+\mathrm{H}], 360\left({ }^{81} \mathrm{Br}\right) / 358\left({ }^{79} \mathrm{Br}\right)$ (96:100) [M+H], 278 (68).

HRMS (+ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 358.0648 / 360.0628$; found: 358.0645/360.0623.

(3,4-trans)-3-Bromo-1-isopropyl-4-(naphth-1'-yl)-azetidin-2-one (1n):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNO}$
Molecular Weight: 318,21 g. mol^{-1}

Prepared according to the general procedure \mathbf{A} using 1-naphthaldehyde ($1.36 \mathrm{~mL}, 1.56 \mathrm{~g}, 10.0 \mathrm{mmol}$.) and isopropylamine $(0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol})$. Purification by multiple flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=20: 1 \rightarrow 10: 1$) yielded $1 \mathrm{n}(1.93 \mathrm{~g}, 6.09 \mathrm{mmol}, 61 \%)$ as a light
yellow oil.

IR (ATR): $\tilde{v}=2971,1756,1510,1456,1384,1330,1310,12171185 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.16(\mathrm{br} \mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{br} \mathrm{td}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1 H), $7.68-7.47(\mathrm{~m}, 4 \mathrm{H}), 5.44(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.48 ($\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), $1.22(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=164.1,133.9,132.9,130.7,129.4,129.2,127.2,126.4,125.4,123.1,122.7$, 61.7, 49.8, 47.1, 20.8, 20.3.

MS (+ESI) $m / z(\%)=320\left({ }^{81} \mathrm{Br}\right) / 318\left({ }^{79} \mathrm{Br}\right)(56: 60)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 320.0468; found: 320.0468; calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 318.0488; found: 318.0489.

(3,4-trans)-3-Bromo-1-isopropyl-4-(pyridin-3'-yl)azetidin-2-one (10):

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}$
Molecular Weight: 269,14 g.mol ${ }^{-1}$

Prepared according to the general procedure A using 3-pyridinecarboxaldehyde ($0.94 \mathrm{~mL}, 1.07 \mathrm{~g}$, $10.0 \mathrm{mmol})$ and isopropylamine $(0.95 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol})$. Purification by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1: 0 \rightarrow 4: 4: 1$) and recrystallisation ($\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded 10 (431 mg, $1.60 \mathrm{mmol}, 16 \%$) as a pale yellow solid.
m.p. (uncorrected) $=112-113^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2976,1746,1598,1577,1482,1435,1380,1369,1330,1256,1224,1183,1028 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.66-8.62(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{dt}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36\left(\mathrm{dd}_{\mathrm{app}}, J=7.9,4.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, 1.05 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.1,151.0,148.6,133.9,132.7,124.1,62.7,49.5,46.4,21.2,20.2$.
MS (ESI) m/z (\%) = $271\left({ }^{81} \mathrm{Br}\right) / 269\left({ }^{79} \mathrm{Br}\right)(100 / 96)[\mathrm{M}+\mathrm{H}]^{+}$.
HR-MS (ESI) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Br} \mathrm{N}_{2} \mathrm{O}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 271.0264, found: 271.0262; calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Br} \mathrm{N}_{2} \mathrm{O}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 269.0284$, found: 269.0283.

(3,4-trans)-3-Bromo-4-(furan-3'-yl)-1-isopropylazetidin-2-one (1p):

$$
\text { Chemical Formula: } \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrNO}_{2}
$$

Molecular Weight: 258,12 g.mol ${ }^{-1}$

Prepared according to the general procedure \mathbf{A} using 3-furaldehyde ($0.86 \mathrm{~mL}, 961 \mathrm{mg}, 10.0 \mathrm{mmol}$) and isopropylamine ($0.90 \mathrm{~mL}, 650 \mathrm{mg}, 11.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=9: 1$) and recrystallisation $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $\mathbf{1 p}(1.50 \mathrm{~g}, 5.81 \mathrm{mmol}, 58 \%)$ as a white solid.
m.p. (uncorrected) $=68-69^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3115,3071,2982,2972,1746,1593,1504,1464,1390,1350,1335,1225,1185,1159$, 1150, 1048, 1026, $978 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54(\mathrm{brt} \mathrm{tapp}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47\left(\mathrm{brt}_{\mathrm{app}}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.40(\mathrm{brdd}, J=2.1$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61 .(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $=\delta 163.0,144.8,141.2,122.4,107.9,56.9,48.9,45.9,21.2,20.1$.
MS (+ESI) m/z (\%) = $260\left({ }^{81} \mathrm{Br}\right) / 258\left({ }^{79} \mathrm{Br}\right)(98: 100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrNO}_{2}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 260.0104; found: 260.0104; calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrNO}_{2}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 258.0124 ;$ found: 258.0125 .

(3,4-trans)-3-Bromo-1-isopropyl-4-(thiophen-2'-yl)azetidin-2-one (1q):

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrNOS}$
Molecular Weight: 274,18 g.mol ${ }^{-1}$

Prepared according to the general procedure A using 2-thiophenecarboxaldehyde ($0.93 \mathrm{~mL}, 1.12 \mathrm{~g}$, $10.0 \mathrm{mmol})$ and isopropylamine $(2.6 \mathrm{~mL}, 1.88 \mathrm{~g}, 30.0 \mathrm{mmol}, 3.00$ equiv) and refluxing overnight. Purification by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$) and crystallization $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $\mathbf{1 q}(2.06 \mathrm{~g}, 7.50 \mathrm{mmol}, 75 \%)$ as a white solid.
m.p. (uncorrected) $=33-35^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3010,1759,1375,1365,1341,1309,1247,1198,1180,1125 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.37(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{br} \mathrm{dd}, J=3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, \mathrm{J}=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=162.9,140.6,127.5,127.0,126.7,60.5,50.4,46.3,20.9,20.0$.
MS (+ESI) $m / z(\%)=276\left({ }^{81} \mathrm{Br}\right) / 274\left({ }^{79} \mathrm{Br}\right)(98: 100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\left({ }^{81} \mathrm{Br}\right) \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrNOS}[\mathrm{M}+\mathrm{H}]^{+}$: 275.9875; found: 275.9879; calcd for (${ }^{79} \mathrm{Br}$) $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrNOS}[\mathrm{M}+\mathrm{H}]^{+}: 273.9896$; found: 273.9897 .

Synthesis and Characterization Data of Substrates 5, 6 and 7

(3,4-trans)-1-Allyl-3-bromo-4-phenylazetidin-2-one (5):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}$
Molecular Weight: 266,14 g.mol ${ }^{-1}$

Prepared according to the general procedure \mathbf{A} using benzaldehyde ($3.0 \mathrm{~mL}, 3.18 \mathrm{~g}, 30.0 \mathrm{mmol}$), MgSO_{4} $(7.22 \mathrm{~g}, 60.0 \mathrm{mmol})$ and allylamine $(2.5 \mathrm{~mL}, 1.88 \mathrm{~g}, 33.0 \mathrm{mmol})$. Purification by two flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=20: 1 \rightarrow 10: 1$) yielded 5 ($5.22 \mathrm{~g}, 19.7 \mathrm{mmol}, 66 \%$) as a light yellow oil.

IR (ATR): $\tilde{v}=2984,2914,1762,1456,1387,1203 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.72-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.11\left(\mathrm{dq}_{\text {app }}\right.$, $J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04\left(\mathrm{dq}_{\text {app }}, J=17.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.58(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12\left(\mathrm{ddt}_{\mathrm{app}}, J_{\mathrm{AB}}=15.6,5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.31\left(\mathrm{ddq}_{\mathrm{app}}, J_{\mathrm{AB}}=15.6,7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=163.5,135.2,130.3,129.5,129.3$ (2C), 126.5 (2C), 119.4, 65.6, 50.1, 43.6. MS (+ESI) $m / z(\%)=268\left({ }^{81} \mathrm{Br}\right) / 266\left({ }^{79} \mathrm{Br}\right)(98: 100)[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (+ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrNO}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 268.0155; found: 268.0154; calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrNO}$ $\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 266.0175$; found: 266.0155.

(3,4-trans)-3-Bromo-1-(p-methoxybenzyl)-4-phenylazetidin-2-one (6):

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{2}$ Molecular Weight: 346,22 g.mol ${ }^{-1}$

Prepared according to the general procedure A using benzaldehyde ($4.0 \mathrm{~mL}, 4.24 \mathrm{~g}, 40.0 \mathrm{mmol}$) and p methoxybenzylamine ($5.75 \mathrm{~mL}, 6.04 \mathrm{~g}, 44.0 \mathrm{mmol}$). Purification by flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$) yielded 6 ($8.04 \mathrm{~g}, 23.2 \mathrm{mmol}, 58 \%$) as a slightly yellow oil.

IR (ATR): $\tilde{v}=2911,2834,1755,1609,1584,1510,1456,1388,1355,1243,1174,1101,1028,911 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.80\left(\mathrm{~d}, J_{\mathrm{AB}}=14.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.55(\mathrm{br} \mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.76\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{AB}}=14.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=163.6,159.4,135.2,129.9(2 \mathrm{C}), 129.5,129.3$ (2C), 126.7 (2C), 126.3, 114.3 (2C), 65.1, 55.4, 50.3, 44.7.

MS (+ESI) m/z (\%) = $370\left({ }^{81} \mathrm{Br}\right) / 368\left({ }^{79} \mathrm{Br}\right)(98: 100)[\mathrm{M}+\mathrm{Na}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{Na}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 370.0236; found: 370.0236; calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{Na}\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}: 368.0257$; found: 368.0257.

Synthesis of Substrate 7

Scheme S1: Synthesis of (3,4-cis)-3-bromo-1-(p-methoxybenzyl)-4-(trifluoromethyl)azetidin-2-one 7. ${ }^{5}$
cis-1-(p-Methoxybenzyl)-3-trifluoromethyl-aziridine-2-ethyl ester (S1):

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{3}$ Molecular Weight: 303,28 g. mol^{-1}

According to a known procedure, ${ }^{6}$ 1-ethoxy-2,2,2-trifluoroethanol $(1.6 \mathrm{~mL}, 1.95 \mathrm{~g}, 13.6 \mathrm{mmol}$, 1.26 equiv) and p-methoxybenzylamine ($1.4 \mathrm{~mL}, 1.49 \mathrm{~g}, 10.8 \mathrm{mmol}, 1.00$ equiv) were dissolved in PhMe $(36 \mathrm{~mL})$ and refluxed for 2 d under Dean-Stark conditions. After evaporation of the solvent, the corresponding imine was obtained in high purity ($>95 \%$ based on ${ }^{1} \mathrm{H}$ NMR spectrum). Following the
literature ${ }^{5}$, the aldimine was dissolved in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. Boron trifluoride diethyl etherate ($133 \mu \mathrm{~L}, 153 \mathrm{mg}, 1.08 \mathrm{mmol}, 0.1$ equiv) was added followed by dropwise addition of ethyl diazoacetate ($1.4 \mathrm{~mL}, 1.48 \mathrm{~g}, 13.0 \mathrm{mmol}, 1.20$ equiv). The reaction was stirred for 4 h at rt and was then quenched with an aqueous saturated NaHCO_{3} solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 x 50 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. After phase separation, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. Purification by column chromatography on silica gel (PE/EtOAc $=10 / 1 \rightarrow 3 / 1$) yielded $\mathbf{S 1}$ as a white solid (2.64 g , $8.70 \mathrm{mmol}, 81 \%)$.
m.p. (uncorrected) $=74-75^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3675,2988,2971,1745,1613,1512,1400,1303,1289,1218,1141,1096,1033 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.76\left(\mathrm{~d}, J_{\mathrm{AB}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69\left(\mathrm{~d}, J_{\mathrm{AB}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.53(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 1 \mathrm{H})$, $1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-67.0$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=166.2,159.3,129.8(2 \mathrm{C}), 127.3,123.3(\mathrm{q}, \mathrm{J}=274.6 \mathrm{~Hz}), 114.0(2 \mathrm{C}), 61.7$, $61.3,55.3,42.0(q, J=40.6 \mathrm{~Hz}), 40.8,13.9$.

Analytical data match with those reported in the literature. ${ }^{5}$

cis-1-(p-Methoxybenzyl)-3-trifluoromethyl-aziridine-2-carboxylic acid (S2):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{3}$ Molecular Weight: 275,23 g.mol ${ }^{-1}$

According to a known procedure, ${ }^{5}$ aziridine $\mathbf{S 1}(2.64 \mathrm{~g}, 8.70 \mathrm{mmol}, 1.00$ equiv) was dissolved in EtOH (57 mL) and a 2 M aqueous solution of $\mathrm{NaOH}(43 \mathrm{~mL}, 87.0 \mathrm{mmol}, 10.0$ equiv) was added. The resulting solution was stirred overnight at rt before the solvent was removed in vacuo. Then, a 1 m aqueous solution of HCl was added until $\mathrm{pH}=1-2$. The white precipitate was dissolved in EtOAc (50 mL) and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated. The title compound S2 was obtained without further purification as a white solid (2.21 g , $8.04 \mathrm{mmol}, 92 \%)$.
m.p. (uncorrected) $=116{ }^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3674,2960,2900,1744,1514,1373,1258,1177,1115,1104,1090 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta=11.0(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.69$ $(\mathrm{s}, 3 \mathrm{H}), 3.68\left(\mathrm{~d}, \mathrm{~J}_{A B}=13.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.54\left(\mathrm{~d}, \mathrm{~J}_{A B}=13.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.85-2.78(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{19} \mathrm{~F}$ NMR (376 MHz , acetone $-d_{6}$): $\delta=-67.9$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, acetone $-d_{6}$): $\delta=167.4,160.1,130.4(2 \mathrm{C}), 130.1,124.9(\mathrm{q}, \mathrm{J}=272.3 \mathrm{~Hz}), 114.5(2 \mathrm{C})$, $61.9,55.5,43.1(q, J=39.8 \mathrm{~Hz}), 42.1$.

Analytical data match with those reported in the literature. ${ }^{5}$

(3,4-cis)-3-Bromo-1-(p-methoxybenzyl)-4-(trifluoromethyl)azetidin-2-one (7):

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrF}_{3} \mathrm{NO}_{2}$
Molecular Weight: 338,12 g.mol ${ }^{-1}$

According to a known procedure, ${ }^{5}$ the aziridine carboxylic acid $\mathbf{S 2}$ ($2.10 \mathrm{~g}, 7.63 \mathrm{mmol}, 1.00$ equiv) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and triphenylphosphine dibromide ($3.22 \mathrm{~g}, 7.63 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$ was added to the suspension. The reaction was stirred at rt. After 30 min , the reaction was quenched with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. After separation of the phases, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed. Purification by column chromatography on silica gel ($\mathrm{PE} / E t O A c=4: 1$) yielded 7 as white solid ($2.00 \mathrm{~g}, 5.92 \mathrm{mmol}, 78 \%$).
m.p. (uncorrected) $=92-93^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3012,2941,2844,1758,1725,1514,1443,1403,1376,1352,1281,1209,1180,1127,1112$, 1029, $948 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ $\left(\mathrm{d}, J_{\mathrm{AB}}=14.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05\left(\mathrm{p}_{\mathrm{app}}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.95\left(\mathrm{~d}, J_{\mathrm{AB}}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-69.1$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=162.4,159.9,130.1(2 \mathrm{C}), 125.6,123.2(\mathrm{q}, \mathrm{J}=280.5 \mathrm{~Hz}), 114.6$ (2C), 55.4, 54.7 ($q, J=33.6 \mathrm{~Hz}$), 45.9, 41.0.

HRMS (+ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrF}_{3} \mathrm{NO}_{2}\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 339.9978; found: 339.9977; calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrF}_{3} \mathrm{NO}_{2}\left({ }^{(79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$: 337.9998; found: 337.9997.

Analytical and spectroscopical data match with those reported in the literature. ${ }^{5}$

Characterization Data of Products 2 and 4

(3,4-trans)-1-isoPropyl-4-phenyl-3-(p-tolyl)azetidin-2-one (2a):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ Molecular Weight: 279,38 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc = 10:1), 2a (166 mg, $0.593 \mathrm{mmol}, 79 \%$) was obtained as a colorless oil.

IR (ATR): $\tilde{v}=2971,1744,1514,1454,1381,1364,1225,1021,910 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~s}, 4 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.5,139.2,137.2,132.4,129.6$ (2C), 129.0 (2C), 128.5, 127.2 (2C), 126.6 (2C), 64.0, 63.0, 45.2, 21.3, 21.1, 20.7.

MS (+ESI) m/z (\%) = 581 (48) [2M+Na] ${ }^{+} 559$ (100) [2M+H] ${ }^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 280.1696$, found: 280.1686 .

(3,4-trans)-1-isoPropyl-3,4-di-(p-tolyl)azetidin-2-one (2b):

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}$
Molecular Weight: 293,41 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1b ($212 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, 1.52 mL , $1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc = 10:1), 2b (162 mg, $0.551 \mathrm{mmol}, 73 \%$) was obtained as a colorless oil.

IR (ATR): $\tilde{v}=2970,2920,1742,1514,1380,1365,1321,1043,1016,822,787 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 4.46(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90($ hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.7,138.5,137.3,136.3,132.6,129.7$ (2C), 129.7 (2C), 127.4 (2C), 126.7 (2C), 64.0, 63.0, 45.2, 21.5, 21.3, 21.3, 20.8.

MS (+ESI) $m / z(\%)=587(24)[2 M+H], 294(100)[M+H]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 294.1852; found: 294.1852.

(3,4-trans)-1-isoPropyl-4-(p-methoxyphenyl)-3-(p-tolyl)azetidin-2-one (2c):

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$ Molecular Weight: 309,41 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam $1 \mathbf{c}(224 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1 \rightarrow 6: 1$), $\mathbf{2 c}(186 \mathrm{mg}, 0.601 \mathrm{mmol}, 80 \%)$ was obtained as a white solid.
m.p. (uncorrected) $=45-46^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2968,2928,1723,1612,1586,1512,1460,1438,1397,1366,1307,1239,1197,1037,1008$, $968 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.32(\mathrm{brd}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 4 \mathrm{H}), 6.92(\mathrm{brd}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89($ hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=168.6,159.9,137.3,132.6,131.2,129.7$ (2C), 127.9 (2C), 127.4 (2C), 114.4 (2C), 64.0, 62.8, 55.5, 45.1, 21.5, 21.3, 20.8.
MS (+ESI) m/z (\%) = 619 (15) [2M+H] ${ }^{+}, 310(100)[M+H]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 310.1802$; found: 310.1801.

(3,4-trans)-4-[p-(Benzyloxy)phenyl]-1-isopropyl-3-(p-tolyl)azetidin-2-one (2d):

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{2}$ Molecular Weight: 385,51 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1d ($281 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1 \rightarrow 6: 1$), 2d ($210 \mathrm{mg}, 0.551 \mathrm{mmol}, 73 \%$) was obtained as a white solid.
m.p. (uncorrected): $103-104{ }^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2965,2917,1737,1610,1582,1510,1454,1379,1360,1233,1173,1142,11101004 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 4 \mathrm{H}), 7.01(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.6,159.1,137.3,136.9,132.6,131.5,129.7$ (2C), 128.8 (2C), 128.2, 128.0 (2C), 127.6 (2C), 127.4 (2C), 115.3 (2C), 70.2, 64.0, 62.8, 45.1, 21.5, 21.3, 20.8.

MS (+ESI) m/z (\%) = 386 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 386.2115$; found: 386.2116.

(3,4-trans)-4-(p-(Dimethylamino)phenyl)-1-isopropyl-3-(p-tolyl)azetidin-2-one (2e):

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$
Molecular Weight: 322,45 g.mol ${ }^{-1}$

According to the general procedure \mathbf{B}, bromo lactam $1 \mathbf{e}(233 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump ($2.4 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1 \rightarrow 5: 1$), $\mathbf{2 e}(150 \mathrm{mg}, 0.470 \mathrm{mmol}, 62 \%$) was obtained as a pale yellow solid.
m.p. (uncorrected): $77-78^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2973,2898,1735,1611,1527,1394,1360,1228,1201,1187,1166,1140,1043,1020$, $946 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 4 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.05(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.8,150.8,137.1,132.9,129.6$ (2C), 127.8 (2C), 127.4 (2C), 126.3, 112.6 (2C), 63.9, 63.1, 45.0, 40.6 (2C), 21.5, 21.3, 20.8.

MS (+ESI) m/z (\%) = 323 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 323.2118; found: 323.2117.

(3,4-trans)-4-(p-Fluorophenyl)-1-isopropyl-3-(p-tolyl)azetidin-2-one (2f):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}$
Molecular Weight: 297,37 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam $1 \mathbf{1 f}(214 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$) , $2 \mathrm{f}(143 \mathrm{mg}, 0.480 \mathrm{mmol}, 64 \%$) was obtained as a colorless oil.

IR (ATR): $\tilde{v}=2971,2923,1742,1602,1508,1381,1366,1321,1227,1155 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 6 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-113.2$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.5,162.9(\mathrm{~d}, \mathrm{~J}=247.4 \mathrm{~Hz}), 137.5,135.2(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 132.2,129.7$ (2C), $128.3(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{C}), 127.3(2 \mathrm{C}), 116.1(\mathrm{~d}, J=21.9 \mathrm{~Hz}, 2 \mathrm{C}), 64.3,62.4,45.3,21.5,21.3,20.8$. MS (+ESI) m/z (\%) = 595 (8) [2M+H], 298 (100) [M+H] ${ }^{+}$.

HRMS (+ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}:$298.1602; found: 298.1601.

(3,4-trans)-4-(p-Bromophenyl)-1-isopropyl-3-(p-tolyl)azetidin-2-one (2g):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNO}$
Molecular Weight: 358,28 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1 g ($260 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump ($2.4 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $\mathbf{2 g}$ was obtained in an inseparable mixture with $\mathbf{2 g}$ and $\mathbf{2 a}$ as colorless oil (201 mg).

The yields of the products $\mathbf{2 g}, \mathbf{2 g}$ ' and $\mathbf{2 a}$ were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy:

Yield: 65\% (calcd)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (d, J=8.3 Hz, 2H), $4.52(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $1.44(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3): $\delta=168.3,138.4,137.5,132.2$ (2C), 132.0, 129.7 (2C), 128.2 (2C), 127.2 (2C), 122.4, 64.1, 62.4, 45.3, 21.4, 21.1, 20.7.

MS (LC-MS, +ESI) $m / z(\%)=719\left({ }^{81,81} \mathrm{Br}\right) / 717\left({ }^{81,79} \mathrm{Br}\right) / 715\left({ }^{79,79} \mathrm{Br}\right)(53: 100: 53)[2 \mathrm{M}+\mathrm{H}], 399 / 401(88: 88)$, $360\left({ }^{81} \mathrm{Br}\right) / 358\left({ }^{79} \mathrm{Br}\right)(92: 92)[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (LC-MS, +ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$: 360.0781; found: 360.0791.

Minor products 2g' and 2a:

(3,4-trans)-1-isoPropyl-4-[p-methyl-(1,1'-biphenyl)-4-yl]-3-(p-tolyl)azetidin-2-one 2g':

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}$
Molecular Weight: 369,51 g.mol ${ }^{-1}$

Yield: 10\% (calcd)

Only the aliphatic signals of the side product $\mathbf{2} \mathbf{g}^{\prime}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum were given.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.56(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (hept, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}),(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.

MS (LC-MS, +ESI) m/z (\%) = 761 (35), 535 (36), 433 (100), 370 (55) [M+H] ${ }^{+}$.
HRMS (LC-MS, +ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 370.2165$; found: 370.2166.

(3,4-trans)-1-isoPropyl-4-phenyl-3-(p-tolyl)azetidin-2-one (2a):

> Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$
> Molecular Weight: $279,38 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

Yield: 3.9\% (calcd)

Only the aliphatic signals of the side product $\mathbf{2 a}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum were given.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.60(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.

MS (LC-MS, +ESI) m/z (\%) = $581[2 \mathrm{M}+\mathrm{Na}] 559[2 \mathrm{M}+\mathrm{H}] 343(82), 280(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (LC-MS, +ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 280.1696; found: 280.1705.

Chromatogram of the LC-MS analysis:

(3,4-trans)-4-(p-Chlorophenyl)-1-isopropyl-3-(p-tolyl)azetidin-2-one (2h):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{CINO}$
Molecular Weight: 313,83 g.mol ${ }^{-1}$

According to the general procedure \mathbf{B}, bromo lactam 1 h ($227 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $\mathbf{2 h}(186 \mathrm{mg}, 0.592 \mathrm{mmol}, 79 \%)$ was obtained as a white oil.

IR (ATR): $\tilde{v}=2971,2921,1743,1541,1490,1380,1330,1088,1011 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87($ hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.4,138.0,137.6,134.4,132.1,129.7$ (2C), 129.3 (2C), 128.0 (2C), 127.3 (2C), 64.2, 62.4, 45.3, 21.4, 21.2, 20.8.

MS (+ESI) $m / z(\%)=627(6)[2 \mathrm{M}+\mathrm{H}] 370(12), 314(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$: 314.1306; found: 314.1307.

(3,4-trans)-1-isoPropyl-3-(p-tolyl)-4-[p-(trifluoromethyl)phenyl]azetidin-2-one (2i):

$$
\text { Chemical Formula: } \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}
$$

Molecular Weight: 347,38 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1 i ($252 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.3 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.7 \mathrm{~mL}, 1.28 \mathrm{mmol}, 1.71$ equiv) was added with a syringe pump $(2.7 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $\mathbf{2 i}(170 \mathrm{mg}, 0.488 \mathrm{mmol}, 65 \%)$ was obtained as a white oil.

IR (ATR): $\tilde{v}=2973,2929,1745,1618,1515,1423,1321,1162,1121,1109,1066,1015 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ ($\mathrm{s}, 3 \mathrm{H}$), $1.36(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.6$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.4,143.7,137.7,131.9,130.9$ ($\mathrm{q}, \mathrm{J}=32.5 \mathrm{~Hz}$), 129.8 (2C), 127.3 (2C), $126.9(2 \mathrm{C}), 126.15(\mathrm{q}, J=3.8 \mathrm{~Hz}, 2 \mathrm{C}), 125.4(\mathrm{q}, J=272.3 \mathrm{~Hz}), 64.4,62.5,45.5,21.5,21.3,20.9$.

MS (+ESI) $m / z(\%)=695(2)[2 \mathrm{M}+\mathrm{H}], 348(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 348.1570; found: 348.1570.

(3,4-trans)-1-isoPropyl-4-(o-methoxyphenyl)-3-(p-tolyl)azetidin-2-one (2j):

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$
Molecular Weight: 309,41 g.mol ${ }^{-1}$

- From trans- $\mathbf{1 j}$

According to the general procedure B, bromo lactam trans-1j ($224 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}$, 1.52 equiv) was added with a syringe pump ($2.4 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1 \rightarrow 6: 1$), $\mathbf{2 j}(199 \mathrm{mg}, 0.643 \mathrm{mmol}, 86 \%)$ was obtained as a pale yellow solid.

- From cis- $\mathbf{1 j}$

According to the general procedure B, bromo lactam cis-1j ($224 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide ($0.76 \mathrm{M} \mathrm{in} \mathrm{THF} 1.52 \mathrm{~mL},, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump ($2.4 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1 \rightarrow 6: 1$), $\mathbf{2 j}(184 \mathrm{mg}, 0.594 \mathrm{mmol}, 79 \%)$ was obtained as a pale yellow solid.
m.p. (uncorrected): $101-102{ }^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2970,1740,1600,1587,1514,1491,1463,1438,1381,1364,1320,1286,1243,1173,1160$, 1110, $1048,1024 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, J=8.2,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{ddd}, J=8.3,7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.90(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.35$ (d, J = 6.7 Hz, 3H), $1.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.9,157.7,136.9,133.1,129.5$ (2C), 129.4, 127.7, 127.5 (2C), 127.2, 120.9, 110.9, 62.2, 57.2, 55.5, 45.3, 21.3, 21.1, 20.7.

MS (+ESI) m/z (\%) = 619 (100) [2M+H $]^{+}, 310(40)[M+H]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 310.1802$; found: 310.1801.
(3,4-trans)-4-(o-Fluorophenyl)-1-isopropyl-3-(p-tolyl)azetidin-2-one (2k):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}$
Molecular Weight: 297,37 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1k ($214 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc = 10:1), 2k ($183 \mathrm{mg}, 0.615 \mathrm{mmol}, 82 \%$) was obtained as a colorless oil.

IR (ATR): $\tilde{v}=2970,2922,1745,1588,1514,1489,1456,1382,1366,1320 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.49\left(\mathrm{td}_{\mathrm{app}}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.39-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 5 \mathrm{H})$, 7.09 (ddd, J = 10.5, 8.2, 1.2 Hz, 1H), 4.83 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.18(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (hept, J = 6.7 Hz , $1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-119.1$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.4,160.9(\mathrm{~d}, J=247.9 \mathrm{~Hz}), 137.4,132.2,130.1(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 129.7$ (2C), 128.1 ($\mathrm{d}, J=3.8 \mathrm{~Hz}$), $127.3(2 \mathrm{C}), 126.3(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 124.8(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=21.4 \mathrm{~Hz})$, $62.8(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 55.8(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 45.3,21.3,21.2,20.7$.

MS (+ESI) $m / z(\%)=595(15)[2 \mathrm{M}+\mathrm{H}], 298(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}$: 298.1602; found: 298.1602.

(3,4-trans)-1-isoPropyl-4-(m-methoxyphenyl)-3-(p-tolyl)azetidin-2-one (2I):

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$
Molecular Weight: 309,41 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam $11(223 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $21(196 \mathrm{mg}, 0.632 \mathrm{mmol}, 84 \%)$ was obtained as a white solid.
m.p. (uncorrected) $=122-123^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2966,2929,1721,1597,1514,1489,1466,1436,1399,1259,1215,1163,1036 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31\left(\mathrm{t}_{\text {app }}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.01-6.85(\mathrm{~m}, 3 \mathrm{H}), 4.41(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.5,160.1,141.0,137.3,132.4,130.0,129.6$ (2C), 127.3 (2C), 118.9, 113.9, 111.9, 63.9, 63.0, 55.3, 45.3, 21.3, 21.2, 20.7.

MS (+ESI) $m / z(\%)=619(11)[2 M+H], 310(100)[M+H]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 310.1802$; found: 310.1801.

(3,4-trans)-1-isoPropyl-3-(p-tolyl)-4-(3',4',5'-trimethoxyphenyl)azetidin-2-one (2m):

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4}$ Molecular Weight: 369,46 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1m ($269 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was
added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $\mathbf{2 m}(187 \mathrm{mg}, 0.507 \mathrm{mmol}, 68 \%)$ was obtained as a white solid.
m.p. (uncorrected) $=134-135^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2968,1747,1593,1508,1462,1428,1352,1328,1239,1158,1121,1004 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 9 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.7,153.7$ (2C), 138.0, 137.4, 134.9, 132.3, 129.6 (2C), 127.3 (2C), 103.1 (2C), 64.1, 63.5, 60.9 (2C), 56.2, 45.3, 21.4, 21.2, 20.7.

MS (+ESI) $m / z(\%)=739(36)[2 \mathrm{M}+\mathrm{H}], 370(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 370.2013$; found: 370.2012.

(3,4-trans)-1-isoPropyl-3-(p-tolyl)-4-(naphth-1'-yl)azetidin-2-one (2n):

$$
\text { Chemical Formula: } \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}
$$

Molecular Weight: 329,44 g.mol ${ }^{-1}$

According to the general procedure \mathbf{B}, bromo lactam 1 n ($238 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $\mathbf{2 n}(185 \mathrm{mg}, 0.562 \mathrm{mmol}, 75 \%)$ was obtained as a colorless oil.

IR (ATR): $\tilde{v}=2970,2928,1753,1513,1455,1383,1366,1310 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.82(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, J = 7.0 Hz, 1H), $7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 4 \mathrm{H})$, $5.17(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.16$ ($\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.3,137.5,135.2,134.0,132.8,131.0,129.8$ (2C), 129.1, 128.7, 127.7 (2C), 126.6, 126.1, 125.6, 123.0, 122.9, 64.3, 60.3, 46.3, 21.3, 21.3, 21.0.

MS (+ESI) $m / z(\%)=659(21)[2 M+H], 330(100)[M+H]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 330.1852$; found: 330.1852.

(3,4-trans)-1-isoPropyl-4-(pyridin-3-yl)-3-(p-tolyl)azetidin-2-one (2o):

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$
Molecular Weight: 280,37 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 10 ($202 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/ $\mathrm{EtOAc}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}=4: 1: 0 \rightarrow 4: 4: 1$), $\mathbf{2 0}(101 \mathrm{mg}, 0.360 \mathrm{mmol}, 48 \%$) was obtained as a pale yellow solid.
m.p. (uncorrected): $99-100^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2968,2922,1733,1665,1597,1514,1457,1434,1388,1366,1311,1209,1190,1148,1124$, $1041,1014 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.64-8.62(\mathrm{~m}, 2 \mathrm{H}), 7.77\left(\mathrm{dt}_{\text {app }}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37(\mathrm{dd}, \mathrm{J}=7.9,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89($ hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ ($\mathrm{s}, 3 \mathrm{H}$), $1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.3,150.3,148.7,137.8,135.0,133.9,131.8,129.8$ (2C), 127.3 (2C), 124.1, 64.2, 60.7, 45.4, 21.6, 21.3, 20.9.

MS (+ESI) m/z (\%) = 281 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}:$281.1648, found: 281.1649.
(3,4-trans)-4-(Furan-3-yl)-1-isopropyl-3-(p-tolyl)azetidin-2-one (2p):

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$
Molecular Weight: 269,34 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1p ($194 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), 2p ($142 \mathrm{mg}, 0.530 \mathrm{mmol}, 70 \%$) was obtained as a white solid.
m.p. (uncorrected): $91-92{ }^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3132,2978,1723,1609,1592,1506,1452,1409,1392,1332,1232,1207,1180,1158,1045$, $1026,975 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.46(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 4 \mathrm{H}), 6.52(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=167.9,144.4,140.6,137.4,132.3,129.7$ (2C), 127.3 (2C), 124.4, 108.3, 62.4, 54.6, 44.9, 21.4, 21.2, 20.6.

MS (+ESI) m/z (\%) = 270 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 270.1489$; found: 270.1489.

(3,4-trans)-1-isoPropyl-3-(p-tolyl)-4-(thiophen-2'-yl)azetidin-2-one (2q):

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NOS}$
Molecular Weight: 285,41 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1q ($206 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.52 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), 2q ($140 \mathrm{mg}, 0.490 \mathrm{mmol}, 65 \%$) was obtained as a white solid.
m.p. (uncorrected) $=75-77^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2965,1728,1513,1438,1380,1367,1339,1315,1218,1186,1038 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (dd, J=5.0, 3.5 Hz, 1H), $4.74(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84($ hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ ($\mathrm{s}, 3 \mathrm{H}$) , $1.38(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=167.9,143.4,137.5,132.0,129.6$ (2C), 127.2 (2C), 127.1, 126.0, 125.8, 64.8, 58.5, 45.4, 21.2, 21.2, 20.6.

```
MS (+ESI) m/z (%) = 308 (100) [M+Na] +, 324 (46).
HRMS (+ESI) m/z calcd for }\mp@subsup{\textrm{C}}{17}{}\mp@subsup{\textrm{H}}{19}{}\mp@subsup{\textrm{NO}}{2}{}\textrm{SNa [M+Na]+
```


(3,4-trans)-1-isoPropyl-3-(p-methoxyphenyl)-4-phenylazetidin-2-one (4a):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$
Molecular Weight: 295,38 g. mol^{-1}

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (4.0 mL) and p-methoxyphenylmagnesium bromide ($0.38 \mathrm{M} \mathrm{in} \mathrm{THF} 3.0 \mathrm{~mL},, 1.14 \mathrm{mmol}$) was added with a syringe pump $(4.7 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1 \rightarrow 5: 1$), 4a ($162 \mathrm{mg}, 0.547 \mathrm{mmol}, 73 \%$) was obtained as a white solid.
m.p. (uncorrected) $=73-75^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2967,2929,1721,1597,1489,1466,1436,1399,1364,1259,1162,1036 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $1.35(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.8,159.1,139.3,129.1$ (2C), 128.6, 128.6 (2C), 127.6 (2C), 126.7, 114.4 (2C), 63.7, 63.3, 55.4, 45.3, 21.4, 20.8.

MS (+ESI) $m / z(\%)=591$ (31) [2M+H], 296 (100) [M+H] .
HRMS (+ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 296.1645$; found: 296.1644.

(3,4-trans)-3-(p-Fluorophenyl)-1-isopropyl-4-phenylazetidin-2-one (4b):

> Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FNO}$ Molecular Weight: $283,35 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.6 mL) and p-fluorophenylmagnesium bromide (0.80 M in THF, $1.4 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv)
was added with a syringe pump $(2.3 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $\mathbf{4 b}$ ($142 \mathrm{mg}, 0.501 \mathrm{mmol}, 67 \%$) was obtained as a colorless oil.

IR (ATR): $\tilde{v}=2971,2931,1740,1603,1509,1455,1382,1366,1334,1221,1157 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88($ hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta=-114.6$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta=168.2,162.3(\mathrm{~d}, J=246.2 \mathrm{~Hz}), 139.0,131.3(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 129.2$ (2C), [129.13, $128.94(d, J=31.2 \mathrm{~Hz}, 2 \mathrm{C})$] or [129.05, $128.98(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}, 2 \mathrm{C})$], 126.7 (2C), 115.9 (d , $J=21.7 \mathrm{~Hz}, 2 \mathrm{C}), 63.5,63.2,45.4,21.4,20.8$.

MS (+ESI) $m / z(\%)=284(100)[M+H]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}$: 284.1445; found: 284.1445.
(3,4-trans)-3-[p-(N,N-Dimethylamino)phenyl]-1-isopropyl-4-phenylazetidin-2-one (4c):

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
Molecular Weight: 308,43 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.6 mL) and p-(N, N-dimethylamino) phenylmagnesium bromide (0.80 M in THF, 1.4 mL , $1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump ($2.3 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1 \rightarrow 4: 1$), $4 \mathrm{c}(147 \mathrm{mg}, 0.477 \mathrm{mmol}, 64 \%)$ was obtained as a yellow oil.

IR (ATR): $\tilde{v}=2969,2926,1741,1614,1521,1454,1380,1336,1165,1125 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.42-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 6 \mathrm{H})$, $1.35(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=169.3,150.2,139.6,129.9(2 \mathrm{C}), 128.5,128.3$ (2C), 126.7 (2C), 123.2, 113.0 (2C), 64.0, 63.5, 45.2, 40.7 (2C), 21.5, 20.8.

MS (+ESI) $m / z(\%)=617$ (19) $[2 \mathrm{M}+\mathrm{H}], 309(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 309.1961$; found: 309.1962.

(3,4-trans)-1-isoPropyl-4-phenyl-3-[p-(trimethylsilyl)phenyl]azetidin-2-one (4d):

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NOSi}$
Molecular Weight: 337,54 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.7 mL) and p-trimethylsilylphenylmagnesium bromide (0.87 M in THF, $1.33 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump ($2.1 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc = 10:1), 4d ($137 \mathrm{mg}, 0.405 \mathrm{mmol}, 54 \%$) was obtained as a colorless oil.

IR (ATR): $\tilde{v}=2955,1748,1601,1455,1389,1365,1248,1108 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{br} \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{brd}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.36(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.3,139.9,139.3,135.9,134.0(2 \mathrm{C}), 129.1$ (2C), 128.7, 126.8 (2C), 126.7 (2C), 64.3, 62.8, 45.4, 21.4, 20.8, 1.0 (3C).

MS (+ESI) m/z (\%) = 338 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NOSi}[\mathrm{M}+\mathrm{H}]^{+}$: 338.1935; found: 338.1935.

(3,4-trans)-1-isoPropyl-4-phenyl-3-[p-(trifluoromethoxy)phenyl]azetidin-2-one (4e):

> Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}$ Molecular Weight: $349,35 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.750 \mathrm{mmol}, 1.00 \mathrm{mmol}$) was dissolved in THF (5.6 mL) and p-[(trifluoromethoxy) phenyl]magnesium bromide (0.82 M in THF, $1.4 \mathrm{~mL}, 1.14 \mathrm{mmol}$, 1.51 mmol) was added (an addition with a syringe pump with the corresponding rate of $2.2 \mathrm{~mL} / \mathrm{h}$ was
not possible, thus manually added over 5 min). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), 4 e ($107 \mathrm{mg}, 0.305 \mathrm{mmol}, 41 \%$) was obtained as a white oil.

IR (ATR): $\tilde{v}=2973,1745,1508,1382,1367,1253,1219,1160 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.44-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}$, $J=7.8,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.7,148.6,138.7,134.1,129.1$ (2C), 128.8 (2C), 126.5 (2C), 121.5 (2C), 120.45 ($q, J=257.3 \mathrm{~Hz}$), 63.3, 62.8, 45.4, 21.3, 20.6.

One quaternary carbon is not visible.
MS (+ESI) $m / z(\%)=372(100)[\mathrm{M}+\mathrm{Na}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 372.1182; found: 372.1183.

(3,4-trans)-3-[(1,1'-Biphenyl)-4-yl]-1-isopropyl-4-phenylazetidin-2-one (4f):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}$
Molecular Weight: $341,45 \mathrm{~g} . \mathrm{mol}^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.3 mL) and 4-[(1,1'-biphenyl)-4-yl]magnesium bromide (0.68 M in THF, $1.7 \mathrm{~mL}, 1.14 \mathrm{mmol}$) was added (an addition with a syringe pump with the corresponding rate of $2.7 \mathrm{~mL} / \mathrm{h}$ was not possible, manually added over 5 min). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $4 e(132 \mathrm{mg}, 0.444 \mathrm{mmol}, 59 \%)$ was obtained as a white solid.
m.p. (uncorrected) $=73-75^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2970,1741,1487,1455,1381,1365,1321,1224,1172,1007 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.65-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=168.3,140.8,140.7,139.2,134.5,129.1$ (2C), 128.9 (2C), 128.7, 127.9 (2C), 127.7 (2C), 127.5, 127.2 (2C), 126.7 (2C), 64.0, 63.0, 45.4, 21.4, 20.8.

MS (+ESI) m/z (\%) = 364 (100) [M+Na] ${ }^{+}, 380$ (50), 540 (38).
HRMS (+ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 364.1672; found: 364.1372.
(3,4-trans)-3-(m-Methoxyphenyl)-1-isopropyl-4-phenylazetidin-2-one (4g):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$
Molecular Weight: 295,38 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.7 mL) and m-methoxyphenylmagnesium bromide (0.80 M in THF, 1.4 mL , 1.14 mmol , 1.52 equiv) was added with a syringe pump ($2.0 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $4 \mathrm{~g}(185 \mathrm{mg}, 0.627 \mathrm{mmol}, 84 \%)$ was obtained as a white oil.

IR (ATR): $\tilde{v}=2969,2932,1741,1599,1582,1490,1454,1382.1321,1156,1047 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.83$ (m, 3H), $4.51(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{hept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.2,160.0,139.2,136.9,130.0,129.1$ (2C), 128.7, 126.7 (2C), 119.7, 113.2, 113.1, 64.2, 62.8, 55.3, 45.3, 21.4, 20.8.

MS (+ESI) m/z (\%) = 591 (5) [2M+H], 296 (100) [M+H] ${ }^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 296.1645$; found: 296.1645.

(3,4-trans)-1-isoPropyl-4-phenyl-3-(m-trifluorotolyl)azetidin-2-one (4h):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$
Molecular Weight: 333,35 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.6 mL) and m-(trifluorotolyl)magnesium bromide (0.60 M in THF, $2.1 \mathrm{~mL}, 1.28 \mathrm{mmol}, 1.70$ equiv) was added with a syringe pump ($3.4 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$) $\mathbf{4 h}(195 \mathrm{mg}, 0.584 \mathrm{mmol}, 78 \%)$ was obtained as a white oil.

IR (ATR): $\tilde{v}=2974,1742,1456,1384,1367,1352,1163,1119,1073 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~m}, 1 \mathrm{H})$, $4.49(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.7$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=167.3,138.6,136.3,131.3(\mathrm{q}, J=32.2 \mathrm{~Hz}), 130.7,123.9(\mathrm{q}, J=272.4 \mathrm{~Hz})$, $129.5,129.2(2 \mathrm{C}), 128.9,126.6(2 \mathrm{C}), 124.5(q, J=3.8 \mathrm{~Hz}), 124.3(q, J=3.8 \mathrm{~Hz}), 63.6,62.7,45.5,21.3,20.6$. MS (+ESI) $m / z(\%)=667(4)[2 \mathrm{M}+\mathrm{H}], 334(100)[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 334.1413; found: 334.1413.

(3,4-trans)-1-isoPropyl-3-(naphth-2'-yl)-4-phenylazetidin-2-one (4i):

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}$ Molecular Weight: 315,42 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.1 mL) and 2-naphthalenylmagnesium bromide (0.60 M in THF, $1.9 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump ($3.0 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $4 \mathbf{i}(189 \mathrm{mg}, 0.600 \mathrm{mmol}, 80 \%)$ was obtained as a white solid.
m.p. (uncorrected) $=89-90^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2976,1740,1455,1380,1328,1124,1014 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92($ hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.3,139.2,133.6,132.9,132.8,129.2$ (2C), 128.9, 128.8, 128.0, 127.8, 126.7 (2C), 126.5, 126.5, 126.1, 125.1, 64.4, 63.0, 45.4, 21.5, 20.8 .

MS (+ESI) $m / z(\%)=631(13)[2 M+H], 316(100)[M+H]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 316.1696$; found: 316.1696.
(3,4-trans)-3-(3',5'-Dimethoxyphenyl)-1-isopropyl-4-phenylazetidin-2-one (4j):

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$ Molecular Weight: 325,41 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1 ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.2 mL) and $3^{\prime}, 5^{\prime}$-dimethoxyphenylmagnesium bromide (0.62 M in THF, $1.9 \mathrm{~mL}, 1.14 \mathrm{mmol}$, 1.51 equiv) was added (an addition with a syringe pump with the corresponding rate of $2.9 \mathrm{~mL} / \mathrm{h}$ was not possible, thus manually added over 5 min). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $4 \mathbf{j}(155 \mathrm{mg}, 0.475 \mathrm{mmol}, 63 \%)$ was obtained as a white solid.
m.p. (uncorrected) $=69-70^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2966,1735,1596,1454,1222,1364,1184,1092,1039,989,963,920 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{t}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{hept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H})$, $1.35(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3): $\delta=168.1,161.2$ (2C), 139.2, 137.6, 129.1 (2C), 128.7, 126.7 (2C), 105.5 (2C), 99.5, 64.3, 62.7, 55.4 (2C), 45.3, 21.4, 20.8.

MS (+ESI) $m / z(\%)=651(12)[2 M+H], 326(100)[M+H]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 326.1751; found: 326.1751.

(3,4-trans)-3-(Benzo[1,3]dioxol-5'-yl)-1-isopropyl-4-phenylazetidin-2-one (4k):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3}$
Molecular Weight: 309,37 g.mol ${ }^{-1}$

According to the general procedure \mathbf{B}, bromo lactam 1 ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.6 mL) and 1,3-benzodioxol-5-ylmagnesium bromide (0.80 M in THF, $1.4 \mathrm{~mL}, 1.14 \mathrm{mmol}$, 1.51 equiv) was added with a syringe pump ($2.3 \mathrm{~mL} / \mathrm{h}$). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $\mathbf{4 k}(152 \mathrm{mg}, 0.490 \mathrm{mmol}, 65 \%)$ was obtained as a colorless oil.

IR (ATR): $\tilde{v}=2970,2900,1740,1501,1489,1455,1441,1382,1244,1035,928 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.68(\mathrm{~m}, 3 \mathrm{H}), 5.95(\mathrm{~d}$, $\left.J_{A B}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.94\left(\mathrm{~d}, J_{\mathrm{AB}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.41(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5,148.2,147.2,139.1,129.1$ (2C), 128.7, 126.6 (2C), 121.0, 108.7, 107.7, 101.2, 64.1, 63.3, 45.3, 21.4, 20.8.

One quaternary carbon is not visible.

```
MS (+ESI) m/z (%) = 619 (12) [2M+H], 310 (100) [M+H]+.
```

HRMS (+ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 310.1438$; found: 310.1438.

(3,4-trans)-1-isoPropyl-4-phenyl-3-(pyrid-3'-yl)azetidin-2-one (4I):

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
Molecular Weight: 266,34 g.mol ${ }^{-1}$

According to the general procedure B, bromo lactam 1a ($201 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.2 mL) and 3-pyridylmagnesium bromide solution in THF (0.59 M in THF, $1.9 \mathrm{~mL}, 1.14 \mathrm{mmol}$, 1.51 equiv) was added (an addition with a syringe pump with the corresponding rate of $2.9 \mathrm{~mL} / \mathrm{h}$ was not possible, thus manually added over 5 min). After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1 \rightarrow 5: 1$), 4 l ($55 \mathrm{mg}, 0.206 \mathrm{mmol}, 28 \%$) was obtained as a colorless oil.

IR (ATR): $\tilde{v}=2971,2930,1741,1455,1382,1366,1332,1025 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.54-8.50(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63\left(\mathrm{dt}_{\text {app, }}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48-7.36$ $(\mathrm{m}, 5 \mathrm{H}), 7.29(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (hept, $J=6.7 \mathrm{~Hz}$, 1 H), 1.35 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=167.2,149.1,149.1,138.5,134.8,131.3,129.3$ (2C), 129.0, 126.6 (2C), 123.9, 62.6, 61.7, 45.6, 21.4, 20.7.

MS (+ESI) $m / z(\%)=267(100)[M+H]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 267.1492; found: 267.1492.

Characterization Data of Products 8, 9 and 10

(3,4-trans)-1-Allyl-3-(p-tolyl)-4-phenylazetidin-2-one (8):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}$
Molecular Weight: $277,37 \mathrm{~g} . \mathrm{mol}^{-1}$

According to the general procedure B, bromo lactam 5 ($200 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.5 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $8(162 \mathrm{mg}, 0.584 \mathrm{mmol}, 78 \%)$ was obtained as a white solid.
m.p. (uncorrected) $=91^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2919,1741,1512,1494,1440,1393,1359,1153,1039,994,946 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.08(\mathrm{~m}, 2 \mathrm{H})$, $4.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (dddd, $\left.J_{A B}=15.6,5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.15\left(\mathrm{~d}, J_{\mathrm{AB}}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.41$ (dddd, $\left.J_{A B}=15.6,7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=168.6,137.7,137.5,132.2,131.7,129.7$ (2C), 129.2 (2C), 128.7, 127.4 (2C), 126.6 (2C), 118.9, 65.0, 63.7, 43.2, 21.3. MS (+ESI) $m / z(\%)=555$ (78) [2M+H], 296 (100), 278 (16) [M+H] ${ }^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 278.1539; found: 278.1523.

(3,4-trans)-1-(p-Methoxybenzyl)-4-phenyl-3-(p-tolyl)azetidin-2-one (9):

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{2}$ Molecular Weight: $357,45 \mathrm{~g} . \mathrm{mol}^{-1}$

According to the general procedure B, bromo lactam 6 ($260 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.80 M in THF, $1.59 \mathrm{~mL}, 1.27 \mathrm{mmol}, 1.70$ equiv) was added with a syringe pump $(2.5 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc $=10: 1$), $9(204 \mathrm{mg}, 0.570 \mathrm{mmol}, 76 \%)$ was obtained as a white solid.
m.p. (uncorrected): $93-94{ }^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3003,2933,2834,1760,1734,1613,1586,1511,1496,1456,1447,1426,1398,1351,1304$, $1242,1171,1124,1030,934,918 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 6 \mathrm{H}), 6.83(\mathrm{brd}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.91\left(\mathrm{~d}, J_{\mathrm{AB}}=14.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.29(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.77\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{AB}}=14.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.6,159.3,137.6,137.4,132.2,130.0(2 \mathrm{C}), 129.7$ (2C), 129.2 (2C), 128.7, $127.9,127.4$ (2C), 126.7 (2C), 114.3 (2C), 64.9, 63.2, 55.4, 44.1, 21.3.

MS (+ESI) m/z (\%) = 358 (100) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 358.1802; found: 358.1802.

(3,4-trans)-1-(p-Methoxybenzyl)-3-(p-tolyl)-4-(trifluoromethyl)azetidin-2-one (10):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}$ Molecular Weight: 349,35 g. mol^{-1}

According to the general procedure B, bromo lactam 7 ($254 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.00$ equiv) was dissolved in THF (5.5 mL) and p-tolylmagnesium bromide (0.76 M in THF, $1.5 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.52$ equiv) was added with a syringe pump $(2.4 \mathrm{~mL} / \mathrm{h})$. After flash column chromatography on silica gel (n-pentane/EtOAc = 10:1), 10 ($183 \mathrm{mg}, 0.524 \mathrm{mmol}, 70 \%$) was obtained as a slightly yellow solid.
m.p. (uncorrected) $=50-51^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2926,2913,1745,1614,1515,1387,1249,1217,1166,1126,1031,1107 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$ $(\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.92\left(\mathrm{~d}, J_{\mathrm{AB}}=15.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.40(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97\left(\mathrm{~d}, J_{\mathrm{AB}}=14.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81(\mathrm{~s}$, 3 H), 3.75 (qd, J=6.0, 2.4 Hz, 1H), 2.33 (s, 3H).
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-73.7$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.8,159.5,138.1,129.9$ (2C), 129.8 (2C), 129.7, 127.1 (2C), 126.7, 124.4 ($q, J=280.0 \mathrm{~Hz}$), $114.4(2 \mathrm{C}), 57.8(\mathrm{q}, J=33.8 \mathrm{~Hz}), 55.8(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 55.3,45.1$, 21.1.

MS (+ESI) m/z (\%) = 372 (90) [M+Na] ${ }^{+}, 388$ (48), 740 (90).
HRMS (+ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 372.1182; found: 372.1181.

Synthetic transformations of α-arylated β-lactams

(3,4-trans)-1-isoPropyl-3-(p-tolyl)-2-phenylazetidine (11):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}$
Molecular Weight: 265,40 g. mol^{-1}
$\mathrm{AlCl}_{3}\left(226 \mathrm{mg}, 1.70 \mathrm{mmol}, 3.00\right.$ equiv) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(3.8 \mathrm{~mL})$ and at $0{ }^{\circ} \mathrm{C}$, $\mathrm{LiAlH}_{4}(64 \mathrm{mg}$, $1.70 \mathrm{mmol}, 3.00$ equiv) was slowly added. The reaction was stirred for 10 min at $0^{\circ} \mathrm{C}$ and then refluxed for 30 min . After cooling to rt , the azetidin-2-one $\mathbf{2 a}$ ($158 \mathrm{mg}, 0.566 \mathrm{mmol}, 1.00$ equiv) dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(3.8 \mathrm{~mL})$ was added dropwise. The reaction was refluxed for 4 h and quenched with an aqueous 1 m NaOH solution (2 mL). After addition of $\mathrm{H}_{2} \mathrm{O}$ and extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, the combined organic phases were washed brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed in vacuo to obtain 11 as a white oil ($120 \mathrm{mg}, 0.451 \mathrm{mmol}, 80 \%$).

IR (ATR): $\tilde{v}=3023,2963,2925,2818,1515,1451,1364,1329,1065,1020 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 4 \mathrm{H})$, $3.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74\left(\mathrm{br} \mathrm{t}_{\mathrm{app}}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.29\left(\mathrm{q}_{\mathrm{app}}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.93(\mathrm{dd}, J=9.2,6.6 \mathrm{~Hz}$, 1 H), 2.46 (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.24(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): $\delta=144.1,138.2,136.2,129.1$ (2C), 128.3 (2C), 127.4 (2C), 127.2, 126.9 (2C), 76.7, 59.4, 56.4, 45.3, 21.2, 21.1, 20.3.

MS (+ESI) $m / z(\%)=266(100)[M+H]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 266.1903; found: 266.1903.

Lactam 10 ($342 \mathrm{mg}, 0.979 \mathrm{mmol}, 1.00$ equiv) was dissolved in 9:1 mixture of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ under air. At $0^{\circ} \mathrm{C}$, ceric ammonium nitrate ($1.61 \mathrm{~g}, 2.94 \mathrm{mmol}, 3.00$ equiv) was added in one portion. The mixture was stirred for 64 h at rt and was then quenched with a saturated aqueous NaHCO_{3} solution $(20 \mathrm{~mL})$ followed by extraction with EtOAc $(3 \times 40 \mathrm{~mL})$. The combined organic phases were washed with an aqueous $10 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$ solution and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed in vacuo. Flash column chromatography on silica gel ($P E / E t O A c=10: 1$) yielded 12 (95 mg , $0.416 \mathrm{mmol}, 43 \%$) as a white solid.

(3,4-trans)-3-(p-Tolyl)-4-(trifluoromethyl)azetidin-2-one (12):

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}$
Molecular Weight: 229,20 g.mol ${ }^{-1}$
m.p. (uncorrected) $=98-99^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3186,3118,2985,1734,1516,1389,1283,1167,1148,1130,1043,1020 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{qd}, \mathrm{J}=5.9$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (s, 3H).
${ }^{19}$ F NMR (376 MHz, CDCl_{3}): $\delta=-76.5$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.2,138.4,130.0(2 \mathrm{C}), 129.4,127.2(2 \mathrm{C}), 124.3(\mathrm{q}, \mathrm{J}=278.7 \mathrm{~Hz}), 57.7$ ($\mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}$), 55.9 ($\mathrm{q}, J=35.0 \mathrm{~Hz}$), 21.3.

HRMS (+ESI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 230.0787$; found: 230.0786.

Lactam 9 ($185 \mathrm{mg}, 0.518 \mathrm{mmol}, 1.00$ equiv) was dissolved in 9:1 mixture of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL})$ under air. At $0^{\circ} \mathrm{C}$, ceric ammonium nitrate ($855 \mathrm{mg}, 1.56 \mathrm{mmol}, 3.00$ equiv) was added in one portion. The mixture was stirred for 16 h at rt and was then quenched with a saturated aqueous NaHCO_{3} solution $(15 \mathrm{~mL})$ followed by extraction with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with an aqueous $10 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$ solution and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed in vacuo. Flash column chromatography on silica gel (PE/EtOAc $=8: 1 \rightarrow 3: 1$) yielded 13 (100 mg, 0.421 mmol, 81\%) as a white solid

(3,4-trans)-4-Phenyl-3-(p-tolyl)azetidin-2-one (13):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$
Molecular Weight: 237,30 g.mol ${ }^{-1}$
m.p. (uncorrected): $125-126{ }^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3292,2913,1745,1514,1494,1450,1426,1401,1348,1298,1152,1108,1139,1025$, $975 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{brd}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.38$ (br s, 1H), 4.65 (d, J = 2.5 Hz, 1H), $4.18(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl 3): $\delta=169.3,139.7,137.7,131.8,129.8$ (2C), 129.1 (2C), 128.5, 127.4 (2C), 125.7 (2C), 66.3, 60.5, 21.3.

MS (+ESI) m/z (\%) = 238 (100) [M+H] ${ }^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 238.1226; found: 238.1227.

2a
LiAlH_{4} (1.3 equiv)

$$
\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \text { to reflux, } 3 \mathrm{~h}
$$

$$
52 \%
$$

 14

(2,3-anti)-3-isoPropylamino-2-(p-tolyl)-3-phenylpropan-1-ol (14):

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}$
Molecular Weight: 283,42 g.mol ${ }^{-1}$

The azetidin-2-one $\mathbf{2 a}$ ($84 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.00$ equiv) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ and at $0{ }^{\circ} \mathrm{C}, \mathrm{LiAlH}_{4}$ ($15 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.25$ equiv) was slowly added. The reaction was warmed to rt and refluxed for 3 h . After cooling to rt , the reaction was quenched with an aqueous 1 m NaOH solution (2 mL). After addition of $\mathrm{H}_{2} \mathrm{O}$ and extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and after flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$) , 14 ($45 \mathrm{mg}, 0.158 \mathrm{mmol}, 52 \%$) was obtained as a white solid.
m.p. (uncorrected) $=110-112{ }^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=3280,2992,2969,1470,1407,1163,1062,1034,957,926 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.12\left(\mathrm{dd}, J_{A B}=11.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.04(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80\left(\mathrm{dd}, J_{A B}=11.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.11 (td, $J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62 (hept, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.18(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.

OH and NH are not visible.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3): $\delta=142.3,137.1,135.9,129.0(2 \mathrm{C}), 128.4$ (2C), 128.0 (2C), 127.1 (2C), 127.0, 69.7, 67.0, 52.8, 45.5, 24.5, 21.6, 21.1.

MS (+ESI) $m / z(\%)=284(100)[M+H]^{+}$.
HRMS (+ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 284.2009; found: 284.2008.

2a
$\mathrm{MeOH}, 4 \mathrm{M} \mathrm{HCl}$ 1,4-dioxane, rt, 16 h 67\%

15

(2,3-anti)-3-isoPropylamino-2-(p-tolyl)-3-phenylpropanoic methyl ester (15):

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$
Molecular Weight: 311,43 g.mol ${ }^{-1}$

Azetidin-2-one 2a ($150 \mathrm{mg}, 0.537 \mathrm{mmol}, 1.00$ equiv) was dissolved in $\mathrm{MeOH}(1.3 \mathrm{~mL})$ under air and HCl (4 M in 1,4-dioxane, $1.3 \mathrm{~mL}, 5.37 \mathrm{mmol}, 10.0$ equiv) was added. The mixture was heated to $60^{\circ} \mathrm{C}$ for 20 h . The reaction was cooled to rt and a saturated aqueous NaHCO_{3} solution (5 mL) was added carefully. After addition of water and extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure. Flash column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}=10: 1$) yielded 15 ($112 \mathrm{mg}, 0.358 \mathrm{mmol}, 67 \%$) as a white solid.
m.p. (uncorrected) $=108-109^{\circ} \mathrm{C}$.

IR (ATR): $\tilde{v}=2950,2919,1727,1431,1277,1262,1176,1159,1147,1130 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.17-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.55($ hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$, $1.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9,141.3,136.8,133.2,129.0$ (2C), 128.7 (2C), 128.1 (2C), 127.8 (2C), 127.0, 63.5, 59.8, 52.0, 45.7, 24.6, 21.8, 21.1.

MS (+ESI) $m / z(\%)=312$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.
HRMS (+ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 312.1958$; found: 312.1958.

References

1. Still, W. C.; Kahn, M.; Mitra, A., J. Org. Chem. 1978, 43, 2923-2925.
2. D'Hooghe, M.; Mollet, K.; Dekeukeleire, S.; De Kimpe, N., Org. Biomol. Chem. 2010, 8, 607-615.
3. Krasovskiy, A.; Knochel, P., Synthesis 2006, 2006, 0890-0891.
4. Van Driessche, B.; Van Brabandt, W.; D'Hooghe, M.; Dejaegher, Y.; De Kimpe, N., Tetrahedron 2006, 62, 6882-6892.
5. Decamps, S.; Sevaille, L.; Ongeri, S.; Crousse, B., Org. Biomol. Chem. 2014, 12, 6345-6348.
6. Dao Thi, H.; Decuyper, L.; Mollet, K.; Kenis, S.; De Kimpe, N.; Van Nguyen, T.; D’hooghe, M., Synlett 2016, 27, 1100-1105.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$-NMR Spectra

* = impurity (solvent, water, unknown)

1a
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

1a'
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

员品

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

ジ

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

1	1	1	1		1			1	1	1	1	1	1	1	1	1	1			
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

- تٌ

${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

$\underset{V}{\underset{\sim}{i}} \underset{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty}$
1
\iint

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

| |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

1h

$$
\stackrel{\text { 우N NiN N}}{N}
$$

*
L

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

\circ
i
1

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

(3,4-trans)-1j
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

(3,4-trans)-1 \mathbf{j}
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

(3,4-cis)-1j
NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\underbrace{\dot{m} \underbrace{\dot{m}} \underbrace{\dot{m} m}}$
Vivin

(3,4-cis)-1j
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

(3,4-trans)-1k / (3,4-cis)-1k (4:1)
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\int|\mid$

1p
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

8	人	7
¢	ます	$\underset{\sim}{\sim}$
，	｜।	।

1p
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$


```
*)
```

バָ

 f

1q
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$$
\begin{aligned}
& \text { - } \\
& \stackrel{\substack{m \\
\underset{\sim}{m}\\
}}{\substack{0 \\
i n}}
\end{aligned}
$$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

1			1			1			1			18	70		50			10		
200	19	180	17	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \mathrm{ppm} \end{array}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

S2
${ }^{1} \mathrm{H}$ NMR (acetone- $\mathrm{d}_{6}, 400 \mathrm{MHz}$)

S2
${ }^{13} \mathrm{C}$ NMR (acetone- $d_{6}, 400 \mathrm{MHz}$)

${ }^{19} \mathrm{~F}$ NMR (acetone $-d_{6}, 376 \mathrm{MHz}$)

[^0]

$\begin{array}{lllll}134 & 132 & 130 \quad 128 & 126 \quad 124 \quad 122 \\ & p p m & & \end{array}$

2a
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

2b
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

2b
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

[^1]

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$2 f$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

2f
${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

$\mathrm{R}=\mathrm{Br}$ (main product), $\mathbf{2 g}$
$\mathrm{R}=p$-Tol (minor product), $\mathbf{2 g}^{\prime}$
$R=H$ (minor product), 2a
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$2 g$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

2h

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

$\begin{array}{ll}n \\ \\ \dot{\sim} \\ 0 & 0 \\ i\end{array}$

2h
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
 $\stackrel{\sim}{\sim}$

'Tr
$\stackrel{y}{m}$

\qquad 1 2.0

$2 i$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

2i
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

2k
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

200	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \mathrm{ppm} \end{array}$	90	80	70	60	50	40	30	20	10	0

z)


```
# (%)
```


2p
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

2q
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

2q

| 1 | |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

4b
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

4c
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ppm										

4d
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

4e
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

जす。

4e

4e
${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

4f

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ppm										

$4 g$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

4 g
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

4h
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

$4 i$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

4i
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

品

4k
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

9
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										ppm										

10
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

12
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

$\stackrel{\square}{\square}$	
$\stackrel{\square}{-1}$	
	4－3／1

$\begin{array}{ll}\text { n } & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1\end{array}$
$\stackrel{\stackrel{N}{n}}{\stackrel{1}{+}}$

13
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

14

孚号禺禺

	$\stackrel{\sim}{\sim}$				
		${\underset{y}{\mathrm{~m}}}_{\dot{\prime}}$			inio.

15
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

[^0]:

[^1]: $\begin{array}{lllllllllllllllllllllllllll}1 \\ 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -11\end{array}$

