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Figure S1 Ultraviolet photoelectron spectra for Ni, Pd, Pt, Ir, and Au. The work function
for each element is indicated. The intersections of the two red lines on the low and high
kinetic energy sides indicate the positions of energy of the secondary electron cutoff and
the Fermi energy, respectively.
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Figure S2 Normalized differential conductance for a p*-Si|a-TiO,|Ni device and J-V data plotted
to show specific regions. The ohmic regime (region I) is depicted in a) and b), with the Schottky
regime (region II) as well as the Fowler-Nordheim (like) transport (region III) depicted in c¢) and

d). The normalized differential conductance is defined as 7)

Table S1. Contact resistance measured by transmission line measurement method for various
metal contacts. The compensated voltage was using the current respectively listed to the left.

Top Contact Current @ Compensated | Current @ | Compensated
Contact Resistance (€2) 102V (A) Voltage (V) 0.1 V(A)| Voltage (V)
Ti 945 + 44 ~8x10° 7.6x1073 ~100x10° 9.5x102
Ir 5450 + 750 ~1x10° 5.5x1073 ~10x10° 5.5x102
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Figure S3 - J-V characteristics of a solid-state (a) p*-Sija-TiO,|Au, (b) p*-Si|a-TiO,|Ir and (c) p*-

Si|a-TiO,|Pd device, extended to applied biases > 5 V. The a-TiO, was ~ 68 nm thick. The

inset is a plot of the crossover into the trap-filled regime. Linear regressions are shown for the

ohmic region at low bias (blue dashed line), and the trap-filled space-charge-limited regimes
(red dashed line in the inset). All devices had a secondary region except the p™-Si|a-TiO,|Pd

device which exceeded the current limit of the potentiostat.



Table S2. Calculated trap densities, mobilities, and effective mobile charge-carrier densities for
*-Si|a-TiO,|metal devices with various metal top contacts.

Trap Density Mobility | Effective Mobile Charge-carrier Density

(cm) (cm? V-1 (cm)

Mg N/A N/A (1.64+1.0) x10'6
Ti N/A N/A (2.54+1.2) x10'6
Ni N/A N/A (2.88+1.5) x1016
Au (1.40+0.17)x10'° | (2.08+0.02)x10* (3.83+£2.4) x101"
Ir (9.65£0.32)x10'8 | (9.45+0.26)x 104 (2.66+1.3) x101'
Pd (1.1440.081)x10"° N/A (6.38+3.29) x10'
Pt (9.36+0.26)x10'8 | (5.67+0.15)x10 (6.35+4) x10'4




The interdigitated electrodes (IDEs) were used to measure the potential resolved
conductance (EC-FET) in the a-Ti0O, (Figure 5). The conductance, G, was obtained from the
conductivity by use of the cell constant, (gocfer = K * Gecfer) Where K is the cell constant and was

estimated from:
1/3

K- o

where s is the spacing between the electrode digits, w is the width of the electrode, / is the length,
and 7 is the number of digits, 20 um, 20 pm, 0.2 cm and 224, respectively. This relationship
produced a cell constant of K = 0.045 cm™!. Samples showed a weak potential dependence of the
conductance (Ge) in the potential range -0.25 to 1.75 V vs RHE.

Table S3. Conductance and conductivity for the corresponding IDE samples.

Sample Gectet /' S Oectet / S cm!
1 2.2x104 9.8x10
3 3.8x10 1.7x10°5
4 1.9x10 8.6x10-
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Figure S4 — a) Raman measurement of the various ALD deposited TiCly precursor TiO,; films
and the same films measured by b) glancing incident x-ray diffraction (GIXRD). TiCly films
deposited at 50 and 100 °C as well as the TDMAT film had an undetectable amount of
crystallinity as evident in the lack of signal in the appropriate region of the Raman and GIXRD
measurements. The film deposited at 150 °C had a small fraction of crystallinity (Anatase) from
the regions marked in both the Raman and GIXRD measurements.




Figure S5.a,b shows the ATR-IR spectra for ALD TiO, films deposited using glass and
silicon as the substrates, and TiCl, and TDMAT as the titanium precursor. On the ATR-IR
spectra we observed that main peak features can be assigned to IR absorptions coming from the
substrate. Furthermore, we observed the absence of Ti-OH absorption peaks related to
metatitanic acid (H,TiO3) within the IR region of 3310 cm™! and 1200-1071 cm™!, indicating that
the ALD TiO, films deposited in this work are free of H,TiO; species.!
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Figure S5 — ATR-IR spectra for ALD TiO2 films on a) glass and b) silicon substrate.



The charge transfer across the Ti|a-TiO,|Ti|Ir|electrolyte junction can be modeled in terms of a
double barrier generating a potential drop across the metal-insulator-catalyst (V) and catalyst-
electrolyte junctions (Vig),>

L i
Viotat = Va + Vrafer = ml + a X 2.303In (%) (S2)

where L,  and ij are the a-TiO, film thickness, Tafel slope and the exchange current density,
respectively. We assumed that the current is kinetically controlled across the potential range.
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Figure S6. Comparison of the current-voltage curve obtained for p™-Si|a-TiO,|Ti|Ir films in 1 M
H,SO, with the values obtained from eq. S2, taking @ =41 mV dec! and I, = 0.07 mA cm?2 . It
should be noted that the current has been renormalized with respect to the area covered by the Ir
islands (14% coverage), since charge transfer is negligible in the absence of the catalysts. The
orange trace shows the Tafel limit (charge transfer unhindered by the TiO, layer), which is very
close to the experimental values though somewhat lower than on state-of-the-art Ir catalysts.>©
The simulations show that a-TiO, conductivity of the order of 10 S cm™! has very little
influence on the voltammetric responses, while significant current damping can be observed
upon decreasing the conductivity by one order of magnitude. These trends demonstrate that the
characteristic conductivity measured for the a-TiO, film obtained by ALD are capable of
sustaining current in the range of 10 mA c¢m? without the need of invoking mediation by the
valence or conduction bands.
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Figure S7. a) Comparison of the EPR spectra of TDMAT TiO, to the EPR spectra of ALD-
deposited Al,Os;, substrate-only and the background (an empty EPR tube). The broad peak was
only present in the TDMAT TiO, whereas the slight bend at ~3300 G was due to the substrate. b)
Comparison EPR spectra of TDMAT a-TiO, at various angles of rotation. The signal was
independent of any rotation that the sample had with respect to the magnetic field.

Table S4. Attenuation length d for valence band states depending on excitation energy and take
off angle ®. A was calculated with QUASES-IMFP-TPP2M.

d for ®=0° d for ®@=70°
AlKa (1486.6eV) 28.23 A 9.66 A
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Figure S8. XPS spectra of the Ti 2p core levels and of the valence band for different emission
angles (®=0° and 70°) relative to the surface normal. With increased surface sensitive (increased
©), an increase in the oxygen shoulder at 532.5 eV was observed.’
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Figure S9. Average XPS (a) Ti 2p and (b) valence band spectra for TDMAT, TiCl;-150, TiCl,-

100 and TiCl4-50 °C for 10 different sample for each species. The average spectra and respective
standard deviation has been calculated for the valence band spectra and is visible in (b).
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Figure S10. Normalized SIMS spectra of (a) '2C and (b) '“N for all a-TiO, samples. The first 30
sputter cycles are measuring the a-TiO, while the remaining cycles are measuring the underlying
p*-Si substrate. When comparing the SIMS spectra with the respective conductivity, no trend is
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