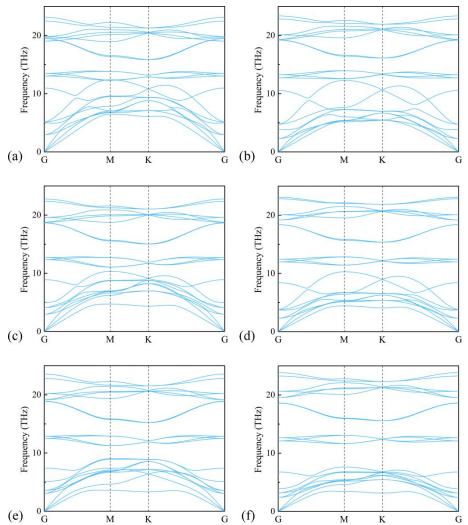
Designing Flexible Quantum Spin Hall Insulators through 2D Ordered Hybrid Transition Metal Carbides

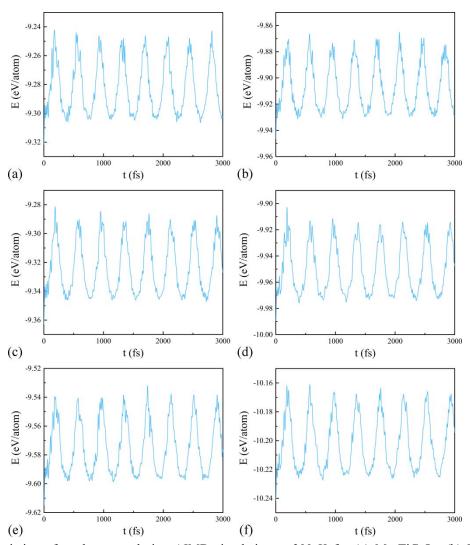
Zhongheng Fu,^{1,2} Zhaorui Liu,^{1,2} Dominik Legut,³ Timothy C. Germann,⁴ Chen Si,^{1,2} Shiyu Du,⁵ Joseph S. Francisco,⁶ and Ruifeng Zhang^{1,2,*}

¹School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China ²Center for Integrated Computational Materials Engineering (International Research Institute for Multidisciplinary Science) and Key Laboratory of High-Temperature Structural Materials & Coatings Technology (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, P. R. China

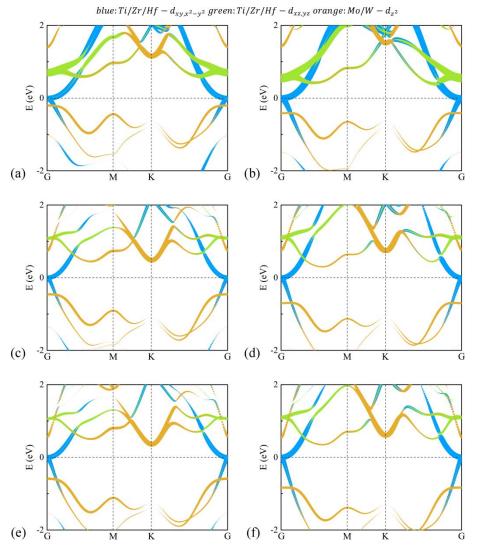
³IT4Innovations, VSB-Technical University of Ostrava, CZ-70800 Ostrava, Czech Republic ⁴Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States

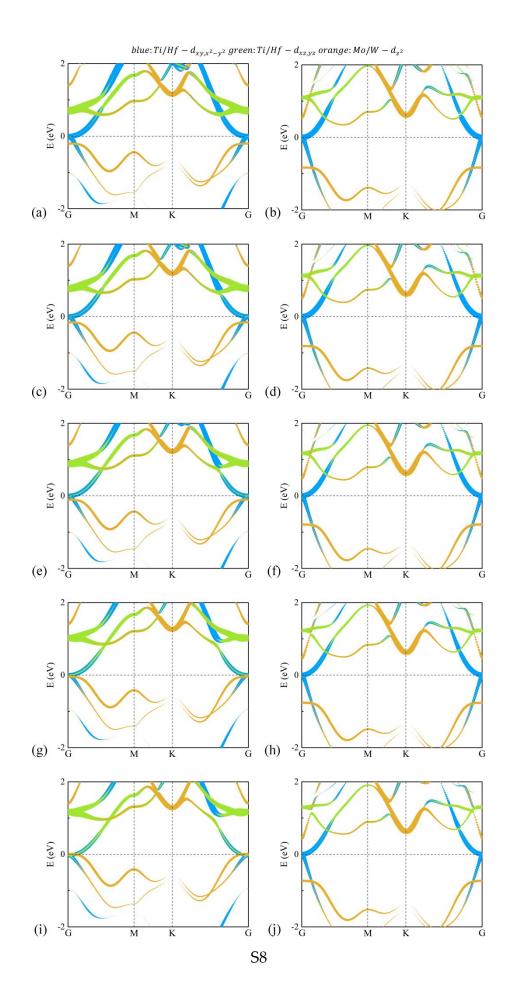

⁵Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China ⁶Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, United States

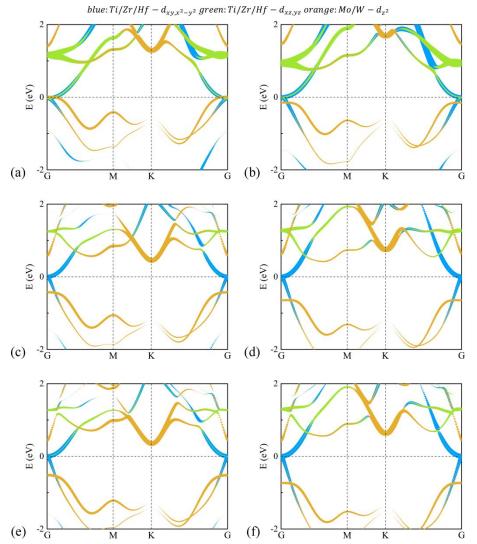
	configuration I	configuration II	configuration III
Mo ₂ TiC ₂ O ₂	0.17	0.00	0.09
W ₂ TiC ₂ O ₂	0.18	0.00	0.10
$Mo_2ZrC_2O_2$	0.14	0.00	0.07
$W_2ZrC_2O_2$	0.14	0.00	0.08
Mo ₂ HfC ₂ O ₂	0.15	0.00	0.08
W ₂ HfC ₂ O ₂	0.16	0.00	0.09

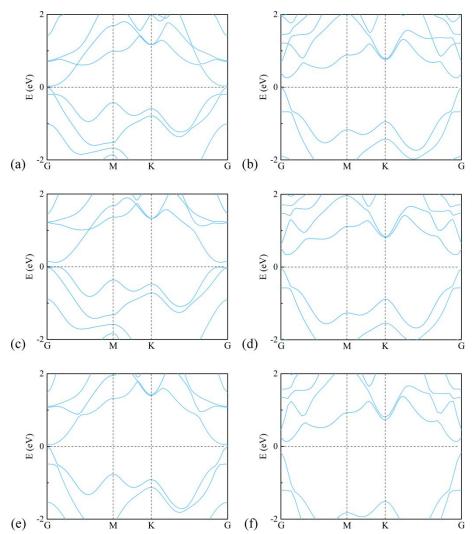

Table S1. Total energies in eV/atom of $M''_2M'C_2O_2$ in different configurations. The total energies of the most stable configurations are set as zero energy.

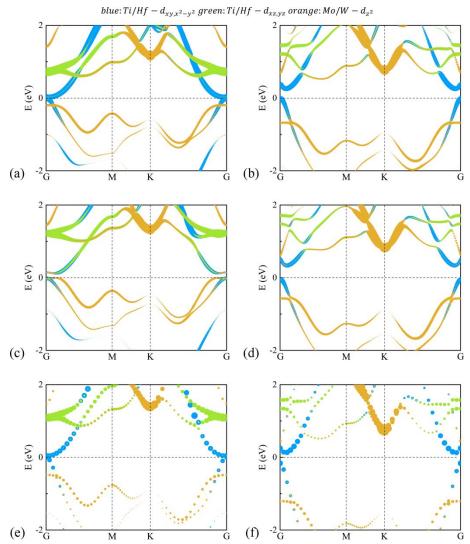
U(eV)	Mo ₂ TiC ₂ O ₂	W ₂ HfC ₂ O ₂
0	0.04	0.28
1	0.05	0.29
2	0.06	0.31
3	0.08	0.34
4	0.11	0.38
5	0.15	0.45

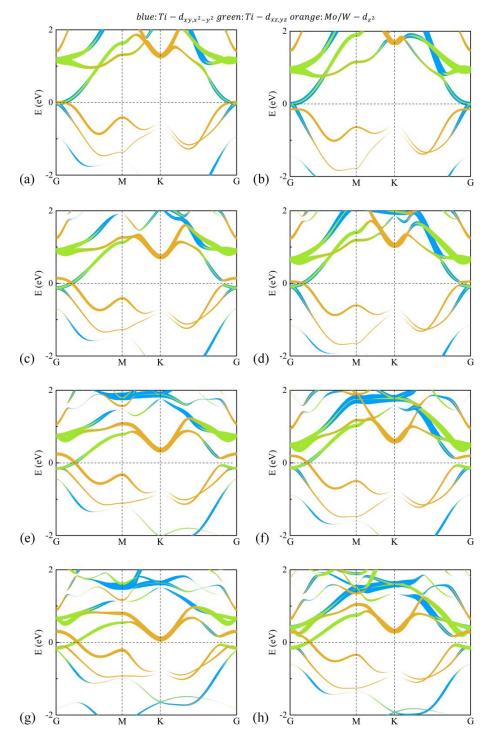

Table S2. Band gaps in eV of selected $M''_2M'C_2O_2$ for the test of U values of GGA + U. Note that the SOC interaction is considered in the related calculations.

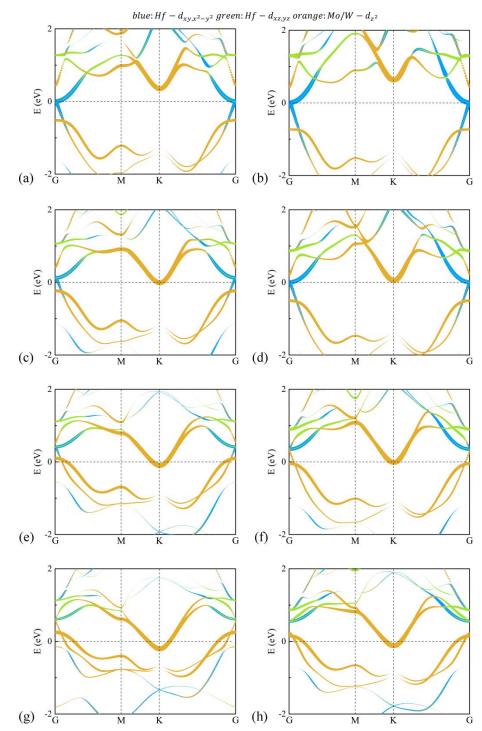

(e) ${}^{0}_{G}$ ${}^{M}_{M}$ ${}^{K}_{K}$ ${}^{G}_{G}$ (f) ${}^{0}_{G}$ ${}^{M}_{M}$ ${}^{K}_{K}$ ${}^{G}_{G}$ **Figure S1.** Phonon dispersions of (a) Mo₂TiC₂O₂, (b) W₂TiC₂O₂, (c) Mo₂ZrC₂O₂, (d) W₂ZrC₂O₂, (e) Mo₂HfC₂O₂, and (f) W₂HfC₂O₂.

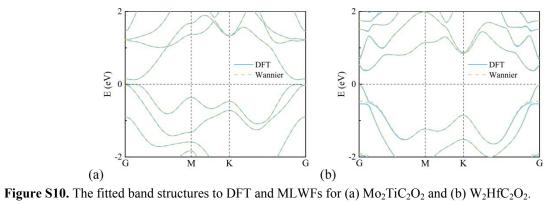

Figure S2. Variation of total energy during AIMD simulation at 300 K for (a) $Mo_2TiC_2O_2$, (b) $W_2TiC_2O_2$, (c) $Mo_2ZrC_2O_2$, (d) $W_2ZrC_2O_2$, (e) $Mo_2HfC_2O_2$, and (f) $W_2HfC_2O_2$.


Figure S3. Projected band structures of (a) $Mo_2TiC_2O_2$, (b) $W_2TiC_2O_2$, (c) $Mo_2ZrC_2O_2$, (d) $W_2ZrC_2O_2$, (e) $Mo_2HfC_2O_2$, and (f) $W_2HfC_2O_2$ in GGA. The Fermi level is set to zero energy.


Figure S4. Projected band structures of Mo₂TiC₂O₂ in GGA + U, where (a) U = 0 eV, (c) U = 1 eV, (e) U = 2 eV, (g) U = 3 eV, and (i) U = 4 eV. Projected band structures of W₂HfC₂O₂ in GGA + U, where (b) U = 0 eV, (d) U = 1 eV, (f) U = 2 eV, (h) U = 3 eV, and (j) U = 4 eV. The Fermi level is set to zero energy.


Figure S5. Projected band structures of (a) $Mo_2TiC_2O_2$, (b) $W_2TiC_2O_2$, (c) $Mo_2ZrC_2O_2$, (d) $W_2ZrC_2O_2$, (e) $Mo_2HfC_2O_2$, and (f) $W_2HfC_2O_2$ in GGA + U(U = 4 eV). The Fermi level is set to zero energy.


Figure S6. Electronic band structures of $Mo_2TiC_2O_2$ in (a) GGA, (c) GGA+ U (U = 4 eV), and (e) HSE. Electronic band structures of $W_2HfC_2O_2$ in (b) GGA, (d) GGA+ U (U = 4 eV), and (f) HSE. The SOC interaction is considered in the calculation of the band structures. The Fermi level is set to zero energy.


Figure S7. Projected band structures of $Mo_2TiC_2O_2$ in (a) GGA, (c) GGA+ U (U = 4 eV), and (e) HSE. Projected band structures of $W_2HfC_2O_2$ in (b) GGA, (d) GGA+ U (U = 4 eV), and (f) HSE. The SOC interaction is considered in the calculation of the band structures. The Fermi level is set to zero energy.

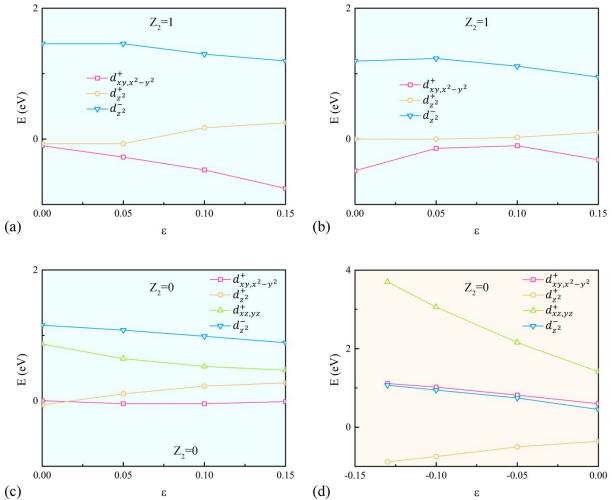


Figure S8. Projected band structures of Mo₂TiC₂O₂ (a) in equilibrium, (c) at strain $\varepsilon = 5\%$, (e) at strain $\varepsilon = 10\%$, and (g) at strain $\varepsilon = 15\%$. Projected band structures of W₂TiC₂O₂ (b) in equilibrium, (d) at strain $\varepsilon = 5\%$, (f) at strain $\varepsilon = 10\%$, and (h) at strain $\varepsilon = 15\%$. The Fermi level is set to zero energy.

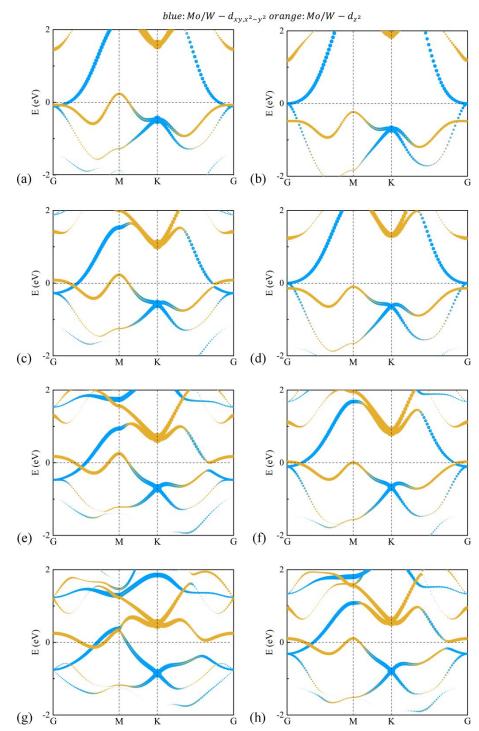
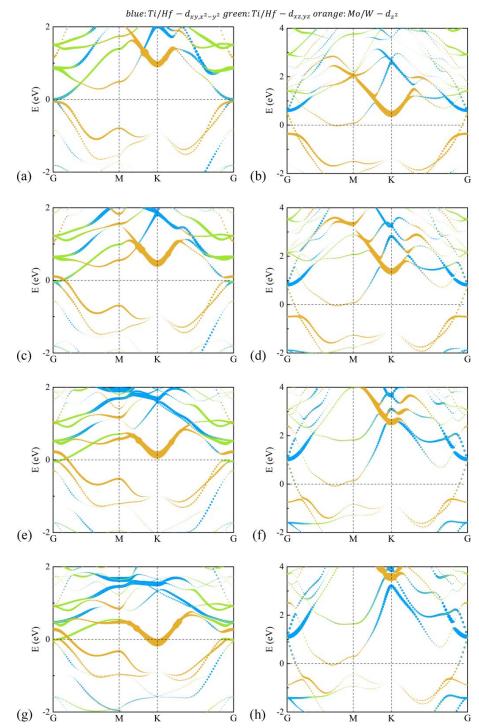
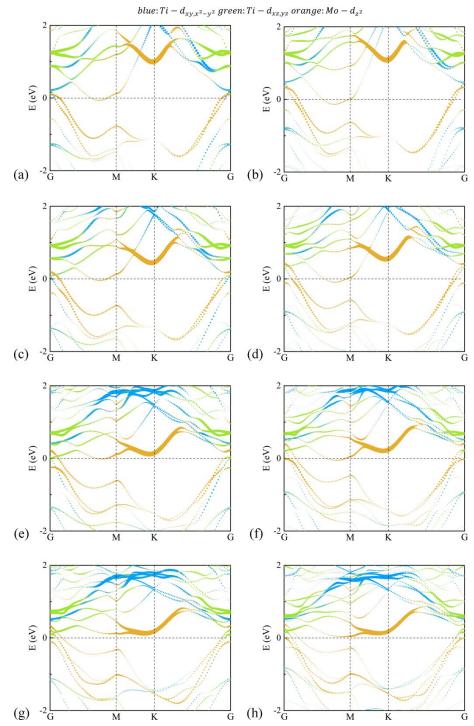
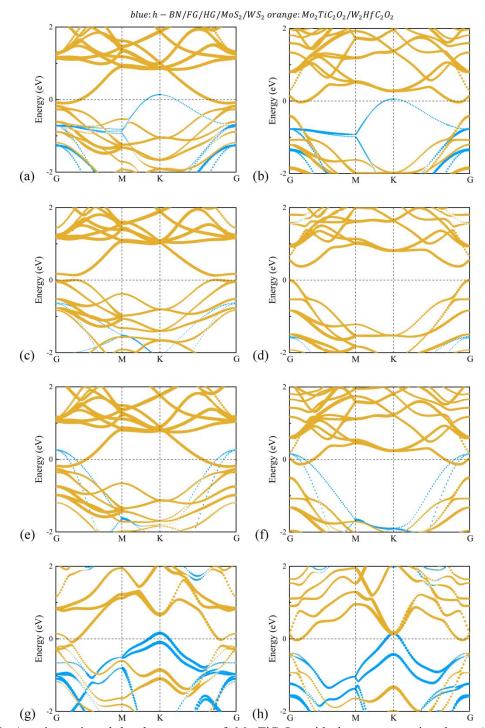
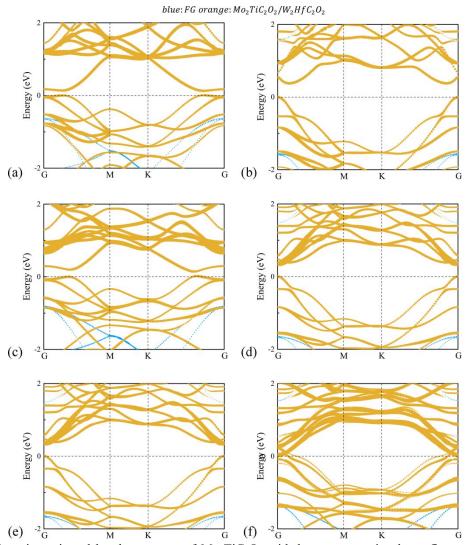


Figure S9. Projected band structures of Mo₂HfC₂O₂ (a) in equilibrium, (c) at strain $\varepsilon = 5\%$, (e) at strain $\varepsilon = 10\%$, and (g) at strain $\varepsilon = 15\%$. Projected band structures of W₂HfC₂O₂ (b) in equilibrium, (d) at strain $\varepsilon = 5\%$, (f) at strain $\varepsilon = 10\%$, and (h) at strain $\varepsilon = 15\%$. The Fermi level is set to zero energy.




Figure S11. Energy levels of $|M'' - d_{z^{\frac{1}{2}}}\rangle$, $|M'' - d_{xy,x^2 - y^2}\rangle$, and $|M'' - d_{z^{\frac{1}{2}}}\rangle$ states at Γ point vs strain ε curves of (a) Mo₂CO₂ and (b) W₂CO₂. Energy levels of $|M'' - d_{z^{\frac{1}{2}}}\rangle$, $|M' - d_{xy,x^2 - y^2}\rangle$, $|M' - d_{xz,yz}\rangle$ and $|M'' - d_{z^{\frac{1}{2}}}\rangle$ states at Γ point vs strain ε curves of (c) Mo₂Ti₂C₃O₂ and (d) W₂Hf₂C₃O₂. Note that a compression strain is adopted in W₂Hf₂C₃O₂, different from the tensile strain in the others.


Figure S12. Projected band structures of Mo₂CO₂ (a) in equilibrium, (c) at strain $\varepsilon = 5\%$, (e) at strain $\varepsilon = 10\%$, and (g) at strain $\varepsilon = 15\%$. Projected band structures of W₂CO₂ (b) in equilibrium, (d) at strain $\varepsilon = 5\%$, (f) at strain $\varepsilon = 10\%$, and (h) at strain $\varepsilon = 15\%$. The Fermi level is set to zero energy.


Figure S13. Projected band structures of Mo₂Ti₂C₃O₂ (a) in equilibrium, (c) at strain $\varepsilon = 5\%$, (e) at strain $\varepsilon = 10\%$, and (g) at strain $\varepsilon = 15\%$. Projected band structures of W₂Hf₂C₃O₂ (b) in equilibrium, (d) at strain $\varepsilon = -5\%$, (f) at strain $\varepsilon = -10\%$, and (h) at strain $\varepsilon = -15\%$ (the symbol "-" represents the compression strain). The Fermi level is set to zero energy.

(g) ${}^{-2}_{G} \xrightarrow{} M \xrightarrow{} K \xrightarrow{} G$ (h) ${}^{-2}_{G} \xrightarrow{} M \xrightarrow{} K \xrightarrow{} G$ **Figure S14.** Projected band structures of Mo₂Ti₃C₄O₂ (a) in equilibrium, (c) at strain $\varepsilon = 5\%$, (e) at strain $\varepsilon = 10\%$, and (g) at strain $\varepsilon = 15\%$. Projected band structures of Mo₂Ti₄C₅O₂ (b) in equilibrium, (d) at strain $\varepsilon = 5\%$, (f) at strain $\varepsilon = 10\%$, and (h) at strain $\varepsilon = 15\%$. The Fermi level is set to zero energy.

Figure S15. Atomic projected band structures of $Mo_2TiC_2O_2$ with large-gap coating layer (a) h-BN, (c) fluorographene, (e) graphane, (g) MoS_2 . Atomic projected band structures of $W_2HfC_2O_2$ with large-gap coating layer (b) h-BN, (d) fluorographene, (f) graphane, (h) WS_2 . The Fermi level is set to zero energy.

Figure S16. Atomic projected band structures of Mo₂TiC₂O₂ with large-gap coating layer fluorographene (a) in equilibrium, (c) at strain $\varepsilon = 5\%$, and (e) at strain $\varepsilon = 10\%$. Atomic projected band structures of W₂HfC₂O₂ with large-gap coating layer fluorographene (b) in equilibrium, (d) at strain $\varepsilon = 5\%$, and (f) at strain $\varepsilon = 10\%$. The Fermi level is set to zero energy.