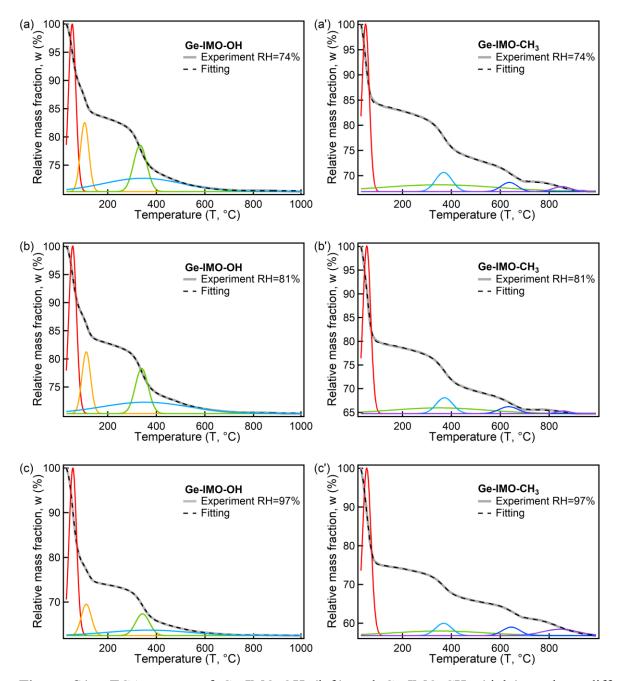
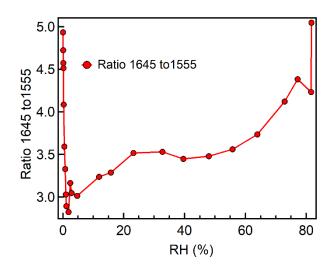
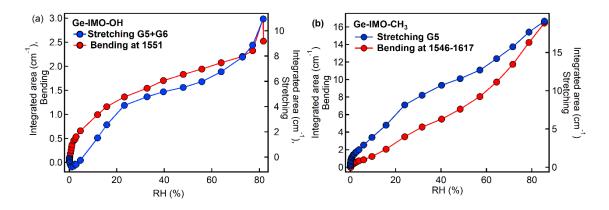
Supporting Information for


Water Adsorption in Single- and Double-Walled Inorganic Nanotubes

Yuan-Yuan Liao¹, Pierre Picot¹, Jean-Blaise Brubach², Pascale Roy², Antoine Thill^{1*} and Sophie Le Caër¹*


LIONS, NIMBE, UMR 3685, CEA, CNRS, Université Paris-Saclay, CEA Saclay Bât.
546, F-91191 Gif-sur-Yvette Cedex, France

 Synchrotron SOLEIL AILES Beamline, L'Orme des Merisier, Saint-Aubin, BP 48, F-91192, Gif-sur-Yvette Cedex, France


* Corresponding authors, email: <u>antoine.thill@cea.fr</u> and <u>sophie.le-caer@cea.fr</u>

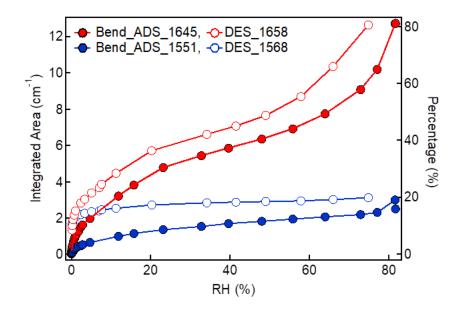

Figure S1. TGA curves of Ge-IMO-OH (left) and Ge-IMO-CH₃ (right) at three different relative humidities. The curves are displayed together with the corresponding fitting, and along with the various Gaussian components necessary for the fitting.

Figure S2. Evolution of the ratio of the 1645 cm⁻¹ component with the component around 1550 cm⁻¹ as a function of RH.

Figure S3. (a) Evolution of the G5 and G6 components obtained from the O-H stretching region (in blue) and of the low wavenumber component (around 1550 cm⁻¹) of the O-H bending band (in red) as a function of RH for Ge-IMO-OH. (b) Evolution of the G5 component obtained from the O-H stretching region (in blue) and of the low wavenumber component (around 1546-1617 cm⁻¹) of the O-H bending band (in red) as a function of RH for Ge-IMO-CH₃.

Figure S4. Evolution of the two bending components as a function of RH for adsorption (filled circles) and desorption (empty circles) in Ge-IMO-OH.