Supporting Information

Enantioselective Synthesis of Homoisoflavanones by Asymmetric Transfer Hydrogenation and Their Biological Evaluation for Antiangiogenic Activity

Myunghoe Heo,[†] Bit Lee,[†] Kamakshi Sishtla,^{‡,§} Xiang Fei,[†] Sanha Lee,[†] Soojun Park,[¶] Yue Yuan,[†] Seul Lee,[†] Sangil Kwon,[†] Jungeun Lee,[†] Sanghee Kim,[¶] Timothy W. Corson,^{*,‡,§,∥,⊥,#} and Seung-Yong Seo^{*,†}

†College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
‡Eugene and Marilyn Glick Eye Institute, §Department of Ophthalmology, #Department of Biochemistry and Molecular Biology, ||Department of Pharmacology and Toxicology, and ⊥
Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
¶College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea

Table of contents

1. Purity and peak attributions of the homoisoflavonoid analogs	S02
2. 2D NOESY NMR spectroscopy of <i>cis</i> -9a and <i>trans</i> -9a	S03
3. Determination of absolute configuration of (R,R) -9a and (S,S) -9a using	S05
ECD spectra	
4. Matched/mismatched effects on homoisoflavanones ((R)-2 and (S)-2) in	S07
asymmetric transfer hydrogenation using catalysts (R,R) -4 and (S,S) -4	
5. Effect of homoisoflavonoids on tubulin polymerization	S09
6. Copies of ¹ H and ¹³ C NMR spectra	S 11
7. Copies of chiral HPLC	S37

compounds	retention time (min)	purity (area %)
rac-1	2.5	>95
(<i>R</i>)-1	2.5	>95
(<i>S</i>)-1	2.5	>95
rac-2	2.7	>95
(R)- 2	2.6	>95
(<i>S</i>)-2	2.6	>95
rac-3	11.2	>95
(<i>R</i> , <i>S</i>)- 3	11.3	>95
(<i>S</i> , <i>S</i>)- 3	11.2	>95
(<i>R</i> , <i>R</i>)- 3	11.3	>95
(<i>S</i> , <i>R</i>)- 3	11.2	>95
cis-9a	2.5	>95
trans-9a	2.5	>95
(3 <i>R</i> ,4 <i>R</i>)- 9a	2.5	>95
(3 <i>S</i> ,4 <i>S</i>)- 9 a	2.5	>95
rac-10	4.1	>95
(<i>S</i>)-10	4.1	>95
(<i>R</i>)-10	4.1	>95

1. Purity of synthetic compounds

HPLC conditions:

System: Agilent 1290 infinity2 binary LC

Detector: Agilent 1290 infinity2 UV detector, 256 nm

Column: Peakman SP column C18, 5 μM 1.5 \times 250 mm

Sample diluent: 99.6% methanol

Mobile phase: 60% MeCN/Water

Mode: Isocratic system

Flow rate: 0.2 mL/min

Injection volume: 2 μL

2. 2D NOESY NMR spectroscopy of *cis*-9a and *trans*-9a

Figure S1. 2D NOESY NMR spectroscopy of cis-9a

Annotation	v(F1) [ppm]	ν(F2) [ppm]	Intensity [abs]
C4-C3	4.7132	2.193	3,456,915
C4-C9a	4.7132	2.8779	1,662,996
C4-C4OH	4.7132	2.1383	1,571,514
C4-C9b	4.7132	2.6176	306,140

Figure S2. 2D NOESY NMR spectroscopy of trans-9a

3. Determination of absolute configuration of (R,R)-9a and (S,S)-9a using ECD spectra

1) Geometry optimization and ECD calculation of (3R,4R)-9a

The computational energy minimization of (3R,4R)-**9a** was performed using the DMol3 program in Material Studio 2016. In these calculations, we employed generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) form as well as a Doubl numerical plus d-functions (DND) basis set. The ECD calculations were performed with TD-DFT (time-dependent density functional theory) using the B3LYP functional and the 6-31+G(d) basis set via Gaussian 09. The number of excited states per molecule was 30. Solvent effects were taken into account by using the polarizable continuum model (PCM, MeOH). The ECD spectra were generated by the program SpecDis using a Gaussian band shape with 0.16 eV exponential half-width from dipole-length dipolar and rotational strengths.

Table S1. Geometry optimization of (3R,4R)-9a

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-3.44172	1.10762	0.084549	С	-6.32321	-0.77938	1.331584
С	-4.22144	0.008976	0.53464	Н	-4.26552	-2.14247	0.854097
С	-3.68106	-1.27726	0.548315	Н	0.542259	0.153029	-0.12795
С	-2.35528	-1.48841	0.142064	Н	0.436402	-1.94366	0.976948
С	-1.52979	-0.41664	-0.22275	Н	-0.21959	3.541239	-0.02238
C	-2.1026	0.872533	-0.25323	Н	-0.22281	2.162725	1.127201
0	-1.28765	1.923135	-0.66665	Н	-1.68806	3.194886	0.959095
0	-5.50437	0.306866	0.898404	Н	-2.97984	3.351466	-1.44204

0	-4.02223	2.357794	0.105718	Н	-4.59608	3.984417	-0.96623
С	-0.08376	-0.61961	-0.60712	Н	-4.46904	2.482479	-1.93717
С	0.389304	-1.99585	-0.12451	Н	-0.84883	-3.02838	-1.57625
0	0.106602	-0.55171	-2.03965	Н	-0.36719	-4.04411	-0.17876
0	-1.90934	-2.78541	0.203041	Н	1.745374	-2.4515	-1.75058
С	-0.83466	2.751943	0.425268	Н	2.031009	-3.38199	-0.27211
С	-4.00091	3.080115	-1.13949	Н	2.844074	-1.94514	1.847392
С	-0.66463	-3.03362	-0.48796	Н	4.574871	-0.32056	2.507365
С	1.784104	-2.37761	-0.65494	Н	3.138724	-0.60667	-2.2329
С	2.870865	-1.40744	-0.24673	Н	4.674953	1.010607	-2.6126
С	3.28052	-1.29587	1.085933	Н	5.39217	1.836698	2.774409
С	4.268188	-0.37663	1.463728	Н	6.993796	2.332958	2.136685
С	4.863532	0.460081	0.516725	Н	6.686172	0.611284	2.533656
С	4.451456	0.360973	-0.83284	Н	-7.28948	-0.33508	1.59353
С	3.467287	-0.55851	-1.19137	Н	-5.89659	-1.27604	2.217632

Total energy = -1302.96222064 Ha (1 Ha = 627.509391 kcal/mol)

2) Experimental and calculated ECD spectra of (3R,4R)-9a and (3S,4S)-9a

To determine the absolute stereochemistry of (3R,4R)-9a, we compared the experimental ECD spectrum with the calculated ECD spectrum as shown in Figure 3. The calculated ECD spectrum of (3R,4R)-9a showed good agreement with the experimental spectrum of (3R,4R)-9a in methanol (1.0 mg/mL). And the calculated ECD spectrum of (3S,4S)-9a matched with the experimental spectrum of (3S,4S)-9a too.

4. Matched/mismatched effects on homoisoflavanones ((R)-2 and (S)-2) in asymmetric transfer hydrogenation using catalysts (R,R)-4 and (S,S)-4

To investigate the homoisoflavanone dynamic kinetic resolution (DKR) we prepared (*S*)-2 and (*R*)-2 via HPLC (Chiralpak AD-3 column; inject: 0.3 μ L; methanol : acetonitrile=50 : 50; flow rate: 1.0 mL/min; 35°C). DBU/formic acid (3:1 (v/v)) were dissolved in acetonitrile. The solution was sparged with nitrogen for 15 min, then warmed to 40 °C. Separately, (*S*)-2 or (*R*)-2 (10 mg, 0.027 mmol) and RuCl(*p*-cymene)[(*R*,*R*)-Ts-DPEN] or RuCl(*p*-cymene)[(*S*,*S*)-Ts-DPEN] (30 mol%) were dissolved in acetonitrile, then added to the DBU/formic acid mixture as shown in Figure 4 and Figures S3 and S4. The mixture was stirred at 50 °C (3 h, 6 h, 12 h, 24 h and 48 h). Match (the chiral centers of the compound and Ru catalyst are the same) and mismatch (the chiral center of the compound and Ru catalyst are not the same) mixtures were measured by chiral HPLC.

	catalyst	time(h)	R (R)-8					R rac-trans		
			Ratio(%)				Ratio(%)	-	%ee	cis:trans
	DE JS	0	100	0		0	0	0		
	Ru		7	0.1		72	2	19	97.3	3.9:1
	Ph ^W Ru, H ₂ (R,R)-Ru	12	8	4		77	7	4	92	21:1
0		24	6	1		83	8	2	91.2	46:1
	\		1							
R (R)-8		0	100	0		0	0	0		
(R)-8		3 6	71	12		1	15	1	93.8	16:1
(11)-0	(S.S)-Ru	6	46	18		1	32	3	97	11:1
	(-/-)	12	16	11		2	64.5	6.5	97	10:1
		24	4	6		2	80	8	98	10:1
	n		1		1					
	catalyst	time(h)	RU(R)-8			$\stackrel{OH}{\underset{l}{\overset{(I)}{\underset{(R,R)}{\overset{(R)}{\underset{(R,R)}{\underset{(R,R)}{\overset{(R)}{\underset{(R,R)}{\overset{(R)}{\underset{(R,R)}{\overset{(R)}{\underset{(R,R)}{\overset{(R)}{\underset{(R,R)}{\underset{(R,R)}{\overset{(R)}{\underset{(R,R)}{\underset{(R,R)}{\overset{(R)}{\underset{(R,R)}{(R,R)$	RU (S,S)	R I rac-trans		
			Ratio(%)				Ratio(%)	-	%ee	cis:trans
	Ph., N. Ph. N. Ph. N. H ₂ (S,S)-Ru	0	0	100		0	0	0		
		6	11	12		0.1	74	3	99.9	25:1
	(S,S)-Ru	12	8	11		0.1	76	5	99.9	15:1
0		24	2	2		0.1	89	7	99.9	13:1
	、 、									
R	ph Js	0	0	100		0	0	0		
(S)-8		3 6	10	74		6	4	6	60	1.7:1
	Ph ^{w ~} N CI / H ₂ (R,R)-Ru		20	51		20	4	5	83	4.8:1
	(rs,rs)-Ru	12	17	13		56	6	8	90	7.8:1
		24	14	11		59	6	10	91	6.5:1

Table S2. Time-course data for asymmetric transfer hydrogenation of (*R*)-2 and (*S*)-2.

Figure S3. Time-course data for asymmetric transfer hydrogenation of (R)-2 with (R,R)-4.

Figure S4. Time-course data for asymmetric transfer hydrogenation of (S)-2 with (R,R)-4.

5. Effect of homoisoflavonoids on tubulin polymerization

The trimethoxyphenyl group in our homoisoflavonoids bears some resemblance to the tubulin polymerization inhibitor combretastatin A4. To assess whether these compounds act by the same mechanism as combretastatin A4, we performed a tubulin polymerization assay.

Compounds were tested for effect on tubulin polymerization using a commercially available fluorometric kit (BK011P, Cytoskeleton, Inc., Denver, CO). Compounds were diluted in DMSO and then water so that final DMSO concentration in the assay was 0.001%. A mix of GTP and tubulin was prepared in a glycerol containing buffer per kit protocol and added to the compounds to a final volume of 30 μ L in a black 384-well plate. Tubulin polymerization was observed by reading fluorescence (ex. 360 nm, em. 420 nm) over 90 minutes in a Synergy H1 plate reader (Biotek, Winooski, VT). Combretastatin A4, a potent inhibitor of tubulin polymerization, was included in the assay as a positive control. For quantitative analysis, total tubulin polymerization was calculated by subtracting the fluorescence at *t*=60 min from *t*=0 and normalized to this value for the control assay (DMSO alone). GraphPad Prism software (v.7.0) was used for data analysis.

None of our compounds had inhibition of tubulin polymerization comparable to combretastatin A4 (Figures S5, S6). Only compound (*S*)-**2** showed very modest (25%) inhibition at 1 μ M, suggesting that tubulin polymerization inhibition is not the major mechanism of antiangiogenic action of these novel compounds.

Figure S5. Kinetic traces of tubulin polymerization assay. Assay fluorescence plotted as a function of time. Test compounds in black, DMSO vehicle control in green, known tubulin polymerization inhibitor combretastatin A4 (Comb. A4) in red. All compounds were tested at 1 μ M. Mean of duplicate wells indicated.

Figure S6. Summary of tubulin polymerization effects of tested compounds. Change in assay fluorescence at t=60 minutes plotted, normalized to vehicle control (green) and compared to known tubulin polymerization inhibitor combretastatin A4 (Comb. A4; red). All compounds were tested at 1 μ M. Mean of duplicate wells indicated.

6. Copies of ¹H and ¹³C{¹H} NMR spectra

7-Hydroxy-3-(3-hydroxy-4-methoxybenzyl)-5,6-dimethoxychroman-4-one (6) ¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

S11

3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one) (7)

¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

(*E*)-3-(3-hydroxy-4-methoxybenzylidene)-5,6,7-trimethoxychroman-4-one ¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

7-(Benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one (8)

¹³C{¹H} NMR (150 MHz, CDCl₃)

trans-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol (trans-9a)

¹³C{¹H} NMR (150 MHz, CD₃OD)

(3R,4R)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3R,4R)-9a) ¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

(3*S*,4*S*)-3-(3-hydroxy-4-methoxybenzyl)-5,6-dimethoxychromane-4,7-diol ((3*S*,4*S*)-9a) ¹H NMR (600 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR (150 MHz, CDCl₃)

(3R,4R)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3R,4R)-9c) ¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

 $(3S,4S) \mbox{-}3 \mbox{-} (3-(benzy loxy) \mbox{-}4-methoxy benzy l) \mbox{-}5,6,7-trimethoxy chroman-4-ol} \ ((3S,4S) \mbox{-}9c)$

¹³C{¹H} NMR (150 MHz, CDCl₃)

(3*R*,4*R*)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-ol ((3*R*,4*R*)-9d)

¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

(3*S*,4*S*)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-ol ((3*S*,4*S*)-9d)

¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

S21

(*R*)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one ((*R*)-7) 1 H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

(S)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one ((S)-2) ¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

 $\label{eq:2-Methoxy-5-(((R)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-L-phenylalaninate~((R,S)-3)$

¹³C{¹H} NMR (150 MHz, CDCl₃)

 $\label{eq:2-Methoxy-5-(((R)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl) phenyl(tert-butoxycarbonyl)-D-phenylalaninate ((R,R)-3)$

¹³C{¹H} NMR (150 MHz, CDCl₃)

2-Methoxy-5-(((S)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-L-phenylalaninate ((S,S)-3)

¹³C{¹H} NMR (150 MHz, CDCl₃)

2-Methoxy-5-(((S)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-D-phenylalaninate ((S,R)-3)

¹³C{¹H} NMR (150 MHz, CDCl₃)

 $(S) \mbox{-}2\mbox{-}methoxy \mbox{-}5\mbox{-}((5,6,7\mbox{-}trimethoxy \mbox{-}hroman\mbox{-}3\mbox{-}yl) \mbox{-}methyl) \mbox{phenol} \ ((S)\mbox{-}10)$

¹³C{¹H} NMR (150 MHz, CDCl₃)

(R)-2-methoxy-5-((5,6,7-trimethoxychroman-3-yl)methyl)phenol ((R)-10)

¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

(*R*)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one((*R*)-11) ¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

(S)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one ((S)-11) ¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

7-Hydroxy-3-(3-hydroxy-4-methoxybenzyl)-5,6-dimethoxychroman-4-one ((*R***)-6)** ¹H NMR (600 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

¹³C{¹H} NMR (150 MHz, CDCl₃)

(*R*)-Cremastranone ((*R*)-1)

¹³C{¹H} NMR (150 MHz, CD₃OD)

(S)-Cremastranone ((S)-1)

¹³C{¹H} NMR (150 MHz, CD₃OD)

7. Copies of chiral HPLC

1) Racemic 9a

Sample Name: mhy 4-74-RS

Acq. Operator	:	JHJIN	Seq. Line : 3
Acq. Instrument	:	Instrument 1	Location : Vial 3
Injection Date	:	12/4/2018 5:59:42 PM	Inj: 1
			Inj Volume : 5.0 μl
Acq. Method	:	C:\CHEM32\1\DATA\DEF_LC	2018-12-04 15-43-49\1.M
Last changed	:	12/4/2018 3:43:47 PM by	JHJIN
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_	LC.M
Last changed	:	7/3/2019 7:53:02 PM by S	YSTEM
		(modified after loading)	
Sample Info	:	CHIRALPAK AD-3	
		Hex/EtOH=60/40	
		Flow rate:0.5ml/min	

Additional Info : Peak(s) manually integrated

1260 HPLC 7/3/2019 7:53:39 PM SYSTEM

2) (3R,4R)-9a (Table 2, entry 7)

Sample Name: BL-9-84

================	===	
Acq. Operator	:	Seq. Line : 5
Acq. Instrument	:	Instrument 1 Location : Vial 61
Injection Date	:	4/25/2018 9:00:14 PM Inj: 1
		Inj Volume : 5.0 μl
Acq. Method	:	C:\CHEM32\1\DATA\GACHEON\DEF_LC 2018-04-25 17-53-30\1.M
Last changed	:	4/25/2018 5:53:28 PM
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M
Last changed	:	7/3/2019 8:01:46 PM by SYSTEM
		(modified after loading)
Sample Info	:	CHIRALPAK AD-3, Hex/EtOH=60/40, Flow rate:1ml/min,
		Sample conc.: 1.2mg/mL, Temp.:RT

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Do not use Multiplier& Dilution Factor with ISTDs

Signal 1: DAD1 E, Sig=280,16 Ref=360,100

	RetTime			Area	Height	Area
				[mAU*s]	[mAU]	
1	7.499	BB	0.2191	41.94565	2.89343	1.2660
2	11.621	BB	0.3718	3271.36182	135.45758	98.7340

Totals : 3313.30746 138.35101

*** End of Report ***

1260 HPLC 7/3/2019 8:02:38 PM SYSTEM

3) (3R,4R)-9a (Table 2, entry 8)

Sample Name: BL-9-8S

==		.===========	==	======	====
:		Seq. Line	:	9	
:	Instrument 1	Location	:	Vial	65
:	4/26/2018 12:05:45 AM	Inj	:	1	
		Inj Volume	:	5.0 J	1
:	C:\CHEM32\1\DATA\GACHEON\DEF_I	C 2018-04-	25	17-53	8-30\1.M
:	4/25/2018 5:53:28 PM				
:	C:\CHEM32\1\METHODS\DEF_LC.M				
:	7/3/2019 8:01:02 PM by SYSTEM				
	(modified after loading)				
:	CHIRALPAK AD-3, Hex/EtOH=60/40), Flow rat	e:	1ml/mi	.n,
	Sample conc.: 1.2mg/mL, Temp.:	RT			
	: : : : :	 : 4/25/2018 5:53:28 PM : C:\CHEM32\1\METHODS\DEF_LC.M : 7/3/2019 8:01:02 PM by SYSTEM (modified after loading) : CHIRALPAK AD-3, Hex/EtOH=60/46 	<pre>: Instrument 1 Location : 4/26/2018 12:05:45 AM Inj Inj Volume : C:\CHEM32\1\DATA\GACHEON\DEF_LC 2018-04- : 4/25/2018 5:53:28 PM : C:\CHEM32\1\METHODS\DEF_LC.M : 7/3/2019 8:01:02 PM by SYSTEM (modified after loading)</pre>	<pre>: Instrument 1 Location : : 4/26/2018 12:05:45 AM Inj :</pre>	<pre>: 4/26/2018 12:05:45 AM Inj: 1</pre>

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Do not use Multiplier& Dilution Factor with ISTDs

Signal 1: DAD1 E, Sig=280,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]	[mAU]	
1	7.506	BB	0.2131	57.09267	4.03495	1.5537
2	11.626	BB	0.3718	3617.57837	149.74373	98.4463

Totals : 3674.67104 153.77868

*** End of Report ***

1260 HPLC 7/3/2019 8:01:46 PM SYSTEM

4) (3*R*,4*R*)-9a (Table 2, entry 9)

Sample Name: BL-120-2

=		.===:	===		==:		===
:	DAICEL JHJIN	See	q.	Line	:	4	
:	Instrument 1	Le	oca	ation	:	Vial	94
:	6/8/2018 6:03:53 AM			Inj	:	1	
		Inj	Vo	olume	:	5.000	μl
:	C:\HPCHEM\1\METHODS\1.M						
:	6/8/2018 4:57:47 AM by DAICEL	JHJ:	IN				
:	C:\CHEM32\1\METHODS\DEF_LC.M						
:	7/3/2019 8:00:12 PM by SYSTEM						
	(modified after loading)						
:	Peak(s) manually integrated						
	:::::::::::::::::::::::::::::::::::::::	: C:\CHEM32\1\METHODS\DEF_LC.M : 7/3/2019 8:00:12 PM by SYSTEM	: Instrument 1 La : 6/8/2018 6:03:53 AM Inj : C:\HPCHEM\1\METHODS\1.M : 6/8/2018 4:57:47 AM by DAICEL JHJ : C:\CHEM32\1\METHODS\DEF_LC.M : 7/3/2019 8:00:12 PM by SYSTEM (modified after loading)	: Instrument 1 Loca : 6/8/2018 6:03:53 AM Inj Va : C:\HPCHEM\1\METHODS\1.M : 6/8/2018 4:57:47 AM by DAICEL JHJIN : C:\CHEM32\1\METHODS\DEF_LC.M : 7/3/2019 8:00:12 PM by SYSTEM (modified after loading)	<pre>: Instrument 1 Location : 6/8/2018 6:03:53 AM Inj Inj Volume : C:\HPCHEM\1\METHODS\1.M : 6/8/2018 4:57:47 AM by DAICEL JHJIN : C:\CHEM32\1\METHODS\DEF_LC.M : 7/3/2019 8:00:12 PM by SYSTEM (modified after loading)</pre>	: Instrument 1 Location : : 6/8/2018 6:03:53 AM Inj : Inj Volume : : C:\HPCHEM\1\METHODS\1.M : 6/8/2018 4:57:47 AM by DAICEL JHJIN : C:\CHEM32\1\METHODS\DEF_LC.M : 7/3/2019 8:00:12 PM by SYSTEM (modified after loading)	<pre>: Instrument 1 Location : Vial : 6/8/2018 6:03:53 AM Inj : 1</pre>

Area Percent Report

	==:	
Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Do not use Multiplier	&	Dilution Factor with ISTDs

Signal 1: MWD1 A, Sig=215,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	7.215	BB	0.2126	163.92651	11.47643	1.7662
2	11.136	BV	0.3694	9117.44238	377.95490	98.2338

Totals : 9281.36890 389.43132

*** End of Report ***

1260 HPLC 7/3/2019 8:01:02 PM SYSTEM

5) (3R,4R)-9a (Table 2, entry 10)

Sample Name: mhy 4-74-R

	==		
Acq. Operator	:	JHJIN	Seq. Line : 1
Acq. Instrument	:	Instrument 1	Location : Vial 1
Injection Date	:	12/4/2018 4:15:43 PM	Inj: 1
			Inj Volume : 5.0 μl
Acq. Method	:	C:\CHEM32\1\DATA\DEF_LC	C 2018-12-04 15-43-49\1.M
Last changed	:	12/4/2018 3:43:47 PM by	y JHJIN
Analysis Method	:	C:\CHEM32\1\METHODS\DEF	F_LC.M
Last changed	:	7/3/2019 8:11:32 PM by	SYSTEM
		(modified after loading	g)
Sample Info	:	CHIRALPAK AD-3	
		Hex/EtOH=60/40	
		Flow rate:0.5ml/min	

Additional Info : Peak(s) manually integrated

6) (3S,4S)-9a (Table 2, entry 11)

Sample Name: mhy 4-74-5

==		
:	JHJIN	Seq. Line : 2
:	Instrument 1	Location : Vial 2
:	12/4/2018 5:07:46 PM	Inj: 1
		Inj Volume : 5.0 μl
:	C:\CHEM32\1\DATA\DEF_LC	2018-12-04 15-43-49\1.M
:	12/4/2018 3:43:47 PM by	JHJIN
:	C:\CHEM32\1\METHODS\DEF_	LC.M
:	7/3/2019 8:15:28 PM by S	YSTEM
	(modified after loading)	
:	CHIRALPAK AD-3	
	Hex/EtOH=60/40	
	Flow rate:0.5ml/min	
	:::::::::::::::::::::::::::::::::::::::	<pre>: Instrument 1 : 12/4/2018 5:07:46 PM : C:\CHEM32\1\DATA\DEF_LC : 12/4/2018 3:43:47 PM by : C:\CHEM32\1\METHODS\DEF_ : 7/3/2019 8:15:28 PM by S (modified after loading) : CHIRALPAK AD-3 Hex/EtOH=60/40</pre>

Additional Info : Peak(s) manually integrated

7) (3*R*,4*R*)-9c (Table 3, entry 3)

Sample Name: BL-9-11-2

=================	==	
Acq. Operator	:	Seq. Line : 10
Acq. Instrument	:	Instrument 1 Location : Vial 66
Injection Date	:	4/26/2018 12:52:07 AM Inj: 1
		Inj Volume : 5.0 μl
Acq. Method	:	C:\CHEM32\1\DATA\GACHEON\DEF_LC 2018-04-25 17-53-30\1.M
Last changed	:	4/25/2018 5:53:28 PM
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M
Last changed	:	7/3/2019 8:25:23 PM by SYSTEM
		(modified after loading)
Sample Info	:	CHIRALPAK AD-3, Hex/EtOH=60/40, Flow rate:1ml/min,
		Sample conc.: 1.2mg/mL, Temp.:RT

Additional Info : Peak(s) manually integrated

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.570	BV	0.1755	652.27429	56.99644	4.8632
2	6.351	VB	0.2174	1.27602e4	900.17999	95.1368

Totals : 1.34124e4 957.17644

*** End of Report ***

1260 HPLC 7/3/2019 8:27:11 PM SYSTEM

8) (3R,4R)-9c (Table 3, entry 4)

Sample Name: BL-9-89

==================	==:		.=======	==:	=====	====
Acq. Operator	:	Se	eq. Line	:	7	
Acq. Instrument	:	Instrument 1 L	ocation	:	Vial	63
Injection Date	:	4/25/2018 10:32:58 PM	Inj	:	1	
		Inj	Volume	:	5.0 J	l
Acq. Method	:	C:\CHEM32\1\DATA\GACHEON\DEF_LC 2	018-04-2	25	17-53	3-30\1.M
Last changed	:	4/25/2018 5:53:28 PM				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	7/3/2019 8:27:11 PM by SYSTEM				
		(modified after loading)				
Sample Info	:	CHIRALPAK AD-3, Hex/EtOH=60/40, F	low rate	e::	1ml/mi	in,
		Sample conc.: 1.2mg/mL, Temp.:RT				

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Do not use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.563	BB	0.1682	50.52208	4.67088	0.4951
2	6.349	BB	0.2159	1.01534e4	722.93781	99.5049

Totals : 1.02039e4 727.60868

*** End of Report ***

1260 HPLC 7/3/2019 8:28:22 PM SYSTEM

9) (3R,4R)-9c (Table 3, entry 6)

Sample Name: BL-9-90

==================	==:	
Acq. Operator	:	Seq. Line : 8
Acq. Instrument	:	Instrument 1 Location : Vial 64
Injection Date	:	4/25/2018 11:19:22 PM Inj: 1
		Inj Volume : 5.0 μl
Acq. Method	:	C:\CHEM32\1\DATA\GACHEON\DEF_LC 2018-04-25 17-53-30\1.
Last changed	:	4/25/2018 5:53:28 PM
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M
Last changed	:	7/3/2019 8:28:22 PM by SYSTEM
		(modified after loading)
Sample Info	:	CHIRALPAK AD-3, Hex/EtOH=60/40, Flow rate:1ml/min,
		Sample conc.: 1.2mg/mL, Temp.:RT

Additional Info : Peak(s) manually integrated

1260 HPLC 7/3/2019 8:32:06 PM SYSTEM

10) (3*S*,4*S*)-9c (Table 3, entry 7)

Sample Name: BL-9-101

==================	==			===	=====	==:	=========
Acq. Operator	:	DAICEL JHJIN	S	eq.	Line	:	10
Acq. Instrument	:	Instrument 1		Loc	ation	:	Vial 20
Injection Date	:	5/28/2018 5:59:15 PM			Inj	:	2
			In	j V	olume	:	5.000 µl
Acq. Method	:	C:\HPCHEM\1\METHODS\1.M					
Last changed	:	5/28/2018 11:02:19 AM by	DAICEL	JHJ	IN		
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_	LC.M				
Last changed	:	7/4/2019 6:16:18 PM by S	YSTEM				
		(modified after loading)					
Sample Info	:	CHIRALPAK AD-3, (4.6*150	mm)				
		MP: Hex/EtOH=60/40					
		Flow rate:1ml/min					

Additional Info : Peak(s) manually integrated

Area	Percent	Report
------	---------	--------

- -

_____ -

Sorted By	:	Sign	na⊥			
Multiplier	:	1.00	900			
Dilution	:	1.00	900			
Do not use Multiplier	&	Dilution	Factor	with	ISTDs	

Signal 1: MWD1 D, Sig=230,4 Ref=360,100

. . . .

Peak	RetTime	Туре	Width	Area	Height	Area
	[min]			[mAU*s]	[mAU]	
1	5.153	BV	0.1709	1.71049e4	1547.80542	96.7041
2	5.994	VB	0.2117	582.96771	42.07258	3.2959

Totals : 1.76879e4 1589.87800

*** End of Report ***

1260 HPLC 7/4/2019 6:18:45 PM SYSTEM

11) (3R,4R)-9d (Table 3, entry 8)

Sample Name: MH 4-58

	==		
Acq. Operator	:	NICHC	Seq. Line : 1
Acq. Instrument	:	Instrument 1	Location : Vial 1
Injection Date	:	10/11/2018 3:57:57 PM	Inj: 1
			Inj Volume : 5.0 µl
Acq. Method	:	C:\CHEM32\1\DATA\DAICEL 2018-	10-11 15-51-49\1.M
Last changed	:	10/11/2018 3:19:41 PM by JHJI	N
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M	
Last changed	:	7/3/2019 8:28:22 PM by SYSTEM	í l
		(modified after loading)	
Sample Info	:	CHIRALPAK AD-3	
		Hex/EtOH=60/40	
		Flow rate:1 ml/min	

Additional Info : Peak(s) manually integrated

12) (3S,4S)-9d (Table 3, entry 9)

Sample Name: BL-9-110

DAICEL JHJIN	Seq. Line	:	12
Fusturest 1			12
Instrument I	Location	:	Vial 22
5/28/2018 7:24:45 PM	Inj	:	2
	Inj Volume	:	5.000 µl
C:\HPCHEM\1\METHODS\1.M			
5/28/2018 11:02:19 AM by DAI	CEL JHJIN		
C:\CHEM32\1\METHODS\DEF_LC.M			
7/4/2019 6:25:58 PM by SYSTE	Μ		
(modified after loading)			
CHIRALPAK AD-3,(4.6*150 mm)			
MP: Hex/EtOH=60/40			
-low rate:1ml/min			
	:\HPCHEM\1\METHODS\1.M /28/2018 11:02:19 AM by DAI :\CHEM32\1\METHODS\DEF_LC.M /4/2019 6:25:58 PM by SYSTE modified after loading) HIRALPAK AD-3,(4.6*150 mm) P: Hex/EtOH=60/40	/28/2018 7:24:45 PM Inj Inj Volume ::\HPCHEM\1\METHODS\1.M /28/2018 11:02:19 AM by DAICEL JHJIN ::\CHEM32\1\METHODS\DEF_LC.M /4/2019 6:25:58 PM by SYSTEM modified after loading) HIRALPAK AD-3, (4.6*150 mm) IP: Hex/EtOH=60/40	/28/2018 7:24:45 PM Inj : Inj Volume : :\HPCHEM\1\METHODS\1.M /28/2018 11:02:19 AM by DAICEL JHJIN :\CHEM32\1\METHODS\DEF_LC.M /4/2019 6:25:58 PM by SYSTEM modified after loading) HIRALPAK AD-3,(4.6*150 mm) IP: Hex/EtOH=60/40

Additional Info : Peak(s) manually integrated

13) (rac)-7 obtained from 2

Sample Name: SH18053

	==			=====	==	
Acq. Operator	:	DAICEL JHJIN	Seq.	Line	:	2
Acq. Instrument	:	Instrument 1	Loca	tion	:	Vial 41
Injection Date	:	5/31/2018 3:15:41 AM		Inj	:	1
			Inj Vo	lume	:	5.000 µl
Acq. Method	:	C:\HPCHEM\1\METHODS\1.M				
Last changed	:	5/31/2018 3:03:21 AM by DAICE	JHJIN	Î.		
		(modified after loading)				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	7/4/2019 6:16:18 PM by SYSTEM				
		(modified after loading)				
Sample Info	;	CHIRALPAK AD-3, ACN/MeOH=50/56	9			
		Flow rate:0.5ml/min				

Additional Info : Peak(s) manually integrated

1260 HPLC 7/4/2019 6:16:29 PM SYSTEM

14) (*R*)-7 obtained from (3*R*,4*R*)-9c (Scheme 3)

Sample Name: SH18053

	==		.===:	===	=====	===	======	==
Acq. Operator	:	DAICEL JHJIN	Sec	q.	Line	:	2	
Acq. Instrument	:	Instrument 1	Lo	oca	ation	:	Vial 1	1
Injection Date	:	5/29/2018 9:47:34 AM			Inj	:	2	
			Inj	Vc	lume	:	5.000	μl
Acq. Method	:	C:\HPCHEM\1\METHODS\1.M						
Last changed	:	5/29/2018 7:50:02 AM by DAICEL	. JH3	JIN	J			
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M						
Last changed	:	7/4/2019 2:03:54 PM by SYSTEM						
		(modified after loading)						
Sample Info	:	CHIRALPAK AD-3, ACN/MeOH=50/50	9					
		Flow rate:0.5ml/min						

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By	:	Signal
Multiplier	:	1.0000
Dilution	:	1.0000
Do not use Multiplier	&	Dilution Factor with ISTDs

Signal 1: MwD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
	[min]			[mAU*s]		
1	4.280	vv	0.1174	666.17273	83.21376	2.9571
2	4.688	VB	0.1350	2.18620e4	2576.28809	97.0429

Totals : 2.25282e4 2659.50185

*** End of Report ***

1260 HPLC 7/4/2019 2:04:21 PM SYSTEM

15) (*R*)-2 obtained from (*R*)-7 (Scheme 3)

Sample Name: SH18060

	=				
Acq. Operator	:	DAICEL JHJIN	Seq. Line	:	6
Acq. Instrument	:	Instrument 1	Location	:	Vial 16
Injection Date	:	5/29/2018 2:00:01 PM	Inj	:	2
			Inj Volume	:	5.000 µl
Acq. Method	:	C:\HPCHEM\1\METHODS\1.M			
Last changed	:	5/29/2018 7:50:02 AM by DAICE	JHJIN		
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M			
Last changed	:	7/4/2019 2:05:23 PM by SYSTEM			
		(modified after loading)			
Sample Info	:	CHIRALPAK AD-3, ACN/MeOH=50/50	9		
		Flow rate:0.5ml/min			

Additional Info : Peak(s) manually integrated

16) (*S*)-**2** obtained from (*S*)-**7** (Scheme 3)

Sample Name: SH18022

=================	==	
Acq. Operator	:	Seq. Line : 1
Acq. Instrument	:	Instrument 1 Location : Vial 21
Injection Date	:	4/27/2018 1:25:14 PM Inj: 1
		Inj Volume : 5.0 μl
Acq. Method	:	C:\CHEM32\1\DATA\GACHEON\DEF_LC 2018-04-27 13-23-59\1.M
Last changed	:	4/27/2018 1:23:56 PM
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M
Last changed		7/4/2019 6:29:07 PM by SYSTEM
		(modified after loading)
Sample Info	:	CHIRALPAK AD-3, ACN/MeOH=50/50, Flow rate:1ml/min,
		Sample conc.: 1.2mg/mL, Temp.:RT

Additional Info : Peak(s) manually integrated

17) 4 stereoisomers of 3

```
Sample Name: (rac)-D,L-3
```

```
_____
Acq. Operator : LCW
                                     Seq. Line : 1
                                     Location : Vial 1
Acq. Instrument : Instrument 1
Injection Date : 7/2/2019 6:06:59 PM
                                        Inj: 1
                                    Inj Volume : 20.0 μl
Acq. Method
            : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
            Μ
Last changed
          : 7/2/2019 6:05:24 PM by LCW
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
          : 7/3/2019 8:50:27 PM by SYSTEM
Last changed
             (modified after loading)
Additional Info : Peak(s) manually integrated
------
```


Area Percent Report

Sorted By	:	Sign	nal		
Multiplier	:	1.00	990		
Dilution	:	1.00	990		
Do not use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 D, Sig=275,4 Ref=off

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 132.960 BB	2.0206	1.06450e4	61.95245	26.9653
2 141.079 BB	2.1438	5569.94873	30.48312	14.1095
3 166.007 BB	2.5011	1.15788e4	55.29359	29.3307
4 176.052 BB	2.6557	1.16829e4	52.30924	29.5945
Totals :		3.94766e4	200.03840	

*** End of Report ***

1260 HPLC 7/3/2019 8:51:03 PM SYSTEM

18) A mixture of (R,S)- and (S,S)-3

Sample Name: (rac)-L-3

=================		
Acq. Operator	W Seq. Line : 3	
Acq. Instrument	strument 1 Location : Vial 3	
Injection Date	3/2019 4:10:24 AM Inj: 1	
	Inj Volume : 20.0 μl	
Acq. Method	\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gac	hon_190626.
Last changed	3/2019 8:15:57 AM by LCW	
	odified after loading)	
Analysis Method	\CHEM32\1\METHODS\DEF_LC.M	
Last changed	3/2019 8:53:22 PM by SYSTEM	
	odified after loading)	
Additional Info	ak(s) manually integrated	

Area Percent Report

Sorted By:SignalMultiplier:1.0000Dilution:1.0000Do not use Multiplier& Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=275,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area	
#	L		[min]	[mAU*s]	[mAU]	%	
1	165.086	BB	2.7931	3.67797e4	173.50591	49.9848	
2	175.414	BB	2.9213	3.68021e4	157.77434	50.0152	

Totals : 7.35818e4 331.28024

*** End of Report ***

1260 HPLC 7/3/2019 8:53:31 PM SYSTEM

19) A mixture of (*R*,*R*)- and (*S*,*R*)-3

Sample Name: (rac)-D-3

```
Acq. Operator : LCW
                                    Seq. Line : 2
Acq. Instrument : Instrument 1
                                     Location : Vial 2
Injection Date : 7/2/2019 11:08:40 PM
                                        Inj: 1
                                   Inj Volume : 20.0 µl
Acq. Method
           : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
             Μ
Last changed : 7/2/2019 6:05:24 PM by LCW
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
          : 7/3/2019 8:50:27 PM by SYSTEM
Last changed
             (modified after loading)
Additional Info : Peak(s) manually integrated
_____
```


1260 HPLC 7/3/2019 8:52:27 PM SYSTEM

20) (*R*,*S*)-3 obtained from (*R*)-2 (Scheme 3)

```
Sample Name: (R,S)-3
```

```
Acq. Operator : LCW
                                     Seq. Line : 4
Acq. Instrument : Instrument 1
                                     Location : Vial 4
Injection Date : 7/3/2019 8:17:47 AM
                                         Inj: 1
                                    Inj Volume : 20.0 μl
Acq. Method
            : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
             Μ
            : 7/3/2019 12:02:43 PM by LCW
Last changed
             (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed
          : 7/3/2019 8:56:12 PM by SYSTEM
             (modified after loading)
Additional Info : Peak(s) manually integrated
```


1260 HPLC 7/3/2019 8:56:43 PM SYSTEM

21) (*R*,*R*)-3 obtained from (*R*)-2 (Scheme 3)

```
Sample Name: (R,R)-3
```

```
Acq. Operator : LCW
                                     Seq. Line : 5
Acq. Instrument : Instrument 1
                                     Location : Vial 5
Injection Date : 7/3/2019 12:29:30 PM
                                         Inj: 1
                                    Inj Volume : 20.0 µl
Acq. Method
            : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
             Μ
Last changed
            : 7/3/2019 12:02:43 PM by LCW
             (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed
          : 7/3/2019 8:59:40 PM by SYSTEM
             (modified after loading)
Additional Info : Peak(s) manually integrated
```


22) (*S*,*S*)-3 obtained from (*S*)-2 (Scheme 3)

```
Sample Name: (S,S)-3
```

```
Acq. Operator : LCW
                                     Seq. Line : 6
Acq. Instrument : Instrument 1
                                     Location : Vial 6
Injection Date : 7/3/2019 4:41:14 PM
                                         Inj: 1
                                    Inj Volume : 20.0 µl
Acq. Method
            : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
             Μ
            : 7/3/2019 12:02:43 PM by LCW
Last changed
             (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
          : 7/4/2019 1:58:48 PM by SYSTEM
Last changed
             (modified after loading)
Additional Info : Peak(s) manually integrated
```


Area	Percent	Report	
Arcu	rereene	Report	

Sorted By	:	Sign	nal		
Multiplier	:	1.00	000		
Dilution	:	1.00	000		
Do not use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 D, Sig=275,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	130.904	MM	2.8268	2312.83423	13.63641	1.9614
2	161.108	BB	2.9841	1.14223e5	497.97366	96.8692
3	173.475	MM	3.6686	1378.80200	6.26395	1.1693

Totals :

1.17915e5 517.87402

*** End of Report ***

1260 HPLC 7/4/2019 1:58:50 PM SYSTEM

23) (*S*,*R*)-3 obtained from (*S*)-2 (Scheme 3)

```
Sample Name: (S,R)-3
```

```
Seq. Line : 7
Acq. Operator : LCW
Acq. Instrument : Instrument 1
                                      Location : Vial 7
Injection Date : 7/3/2019 8:52:55 PM
                                          Inj: 1
                                    Inj Volume : 20.0 µl
Acq. Method
            : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
             Μ
            : 7/3/2019 12:02:43 PM by LCW
Last changed
             (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
           : 7/4/2019 2:02:03 PM by SYSTEM
Last changed
              (modified after loading)
Additional Info : Peak(s) manually integrated
_____
```


Percent Report

Cignal

Soliced by	•	Sigi	IaT		
Multiplier	:	1.00	900		
Dilution	:	1.00	900		
Do not use Multiplier	&	Dilution	Factor	with	ISTDs

.

Signal 1: DAD1 D, Sig=275,4 Ref=off

Sontod By

Peak RetTime Type	Width	Area	Height	Area
	[min]	[mAU*s]	[mAU]	%
1 129.973 BB	2.4961	1.05976e5	562.98181	99.1107
2 164.641 MM	3.3504	950.84723	4.73006	0.8893

Totals : 1.06926e5 567.71188

*** End of Report ***

1260 HPLC 7/4/2019 2:02:06 PM SYSTEM

24) Racemic 10

Sample Name: 42,43

================	===			======	====
Acq. Operator	:		Seq. Line	: 3	
Acq. Instrument	:	Instrument 1	Location	: Vial	53
Injection Date	:	4/25/2018 7:27:27 PM	Inj	: 1	
			Inj Volume	: 5.0	ul
Acq. Method	:	C:\CHEM32\1\DATA\GACHEON\DEF_I	C 2018-04-2	5 17-53	3-30\1.M
Last changed	:	4/25/2018 5:53:28 PM			
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M			
Last changed	:	7/3/2019 9:01:44 PM by SYSTEM			
		(modified after loading)			
Sample Info	:	CHIRALPAK AD-3, Hex/EtOH=60/40), Flow rate	:1ml/mi	in,
		Sample conc.: 1.2mg/mL, Temp.	:RT		

Additional Info : Peak(s) manually integrated

				[mAU ⁺ S]			
1	5.678	BV	0.1562	7529.20313	730.85236	50.1190	
2	7.862	BB	0.2732	7493.46094	426.08832	49.8810	

Totals : 1.50227e4 1156.94067

*** End of Report ***

1260 HPLC 7/3/2019 9:02:05 PM SYSTEM

25) (S)-10 obtained from (3R,4R)-9a (Scheme 3)

Sample Name: SH18062

==================	==		=====	====	===	==:	======	===
Acq. Operator	:	DAICEL JHJIN	Seq	. Li	ne	:	8	
Acq. Instrument	:	Instrument 1	Lo	cati	on	:	Vial	18
Injection Date	:	5/28/2018 4:33:48 PM		I	nj	:	2	
			Inj	Volu	ne	:	5.000	μl
Acq. Method	:	C:\HPCHEM\1\METHODS\1.M						
Last changed	:	5/28/2018 11:02:19 AM by DAIG	CEL JH	JIN				
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M						
Last changed	:	7/3/2019 9:01:44 PM by SYSTEM	1					
		(modified after loading)						
Sample Info	:	CHIRALPAK AD-3,(4.6*150 mm)						
		MP: Hex/EtOH=60/40						
		Flow rate:1ml/min						

Additional Info : Peak(s) manually integrated

26) (*R*)-10 obtained from (3*S*,4*S*)-9a (Scheme 3)

Sample Name: BL-9-60

Acq. Operator	:	DAICEL JHJIN	S	eq.	Line	:	7	
Acq. Instrument	:	Instrument 1		Loc	ation	:	Vial	17
Injection Date	:	5/28/2018 3:51:02 PM			Inj	:	2	
			In	jν	olume	:	5.000	μl
Acq. Method	:	C:\HPCHEM\1\METHODS\1.M						
Last changed	:	5/28/2018 11:02:19 AM by DA	ICEL	ЭНЭ	IN			
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.	м					
Last changed	:	7/3/2019 9:01:44 PM by SYST	EM					
		(modified after loading)						
Sample Info	:	CHIRALPAK AD-3, (4.6*150 mm)						
		MP: Hex/EtOH=60/40						
		Flow rate:1ml/min						

Additional Info : Peak(s) manually integrated

27) (*R*)-11 obtained from (3*R*,4*R*)-9d (Scheme 4)

Sample Name: BL-9-116

================	==		====	======	==:	=======
Acq. Operator	:	DAICEL JHJIN	Seq	. Line	:	1
Acq. Instrument	:	Instrument 1	Lo	cation	:	Vial 23
Injection Date	:	5/31/2018 6:10:36 AM		Inj	:	1
			Inj	/olume	:	5.000 µl
Acq. Method	:	C:\HPCHEM\1\METHODS\1.M				
Last changed	:	5/31/2018 6:09:11 AM by DAICEL	JHJ	IN		
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M				
Last changed	:	7/3/2019 8:44:27 PM by SYSTEM				
		(modified after loading)				
Sample Info	:	CHIRALPAK AD-3, Hex/EtOH=60/40)			
		Flow rate:1 ml/min				

Additional Info : Peak(s) manually integrated

1260 HPLC 7/3/2019 8:44:29 PM SYSTEM

28) (*S*)-**11** obtained from (**3***S*,**4***S*)-**9d** (**Scheme 4**)

```
Sample Name: BL-9-117
```

=================		==	
Acq. Operator	DAICEL JHJIN Seq. Line	:	2
Acq. Instrument	Instrument 1 Location	:	Vial 24
Injection Date	5/31/2018 6:42:10 AM Inj	:	1
	Inj Volume	:	5.000 µl
Acq. Method	C:\HPCHEM\1\METHODS\1.M		
Last changed	5/31/2018 6:09:11 AM by DAICEL JHJIN		
Analysis Method	C:\CHEM32\1\METHODS\DEF_LC.M		
Last changed	7/3/2019 8:44:27 PM by SYSTEM		
	(modified after loading)		
Sample Info	CHIRALPAK AD-3, ACN/MeOH=50/50		
	Flow rate:0.5ml/min		

Additional Info : Peak(s) manually integrated

Multiplier	:	1.00	900		
Dilution	:	1.00	900		
Do not use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: MWD1 D, Sig=230,4 Ref=360,100

#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	10.757	BB	0.3862	7159.33008	285.88214	96.9479
2	19.417	VV	0.6311	225.39233	4.26092	3.0521

Totals : 7384.72241 290.14306

_____ *** End of Report ***

1260 HPLC 7/3/2019 8:45:45 PM SYSTEM

29) (*R*)-1 obtained from (*R*)-11 (Scheme 4)

Sample Name: SH18055

4
Vial 13
2
5.000 µl
<u> </u>

Additional Info : Peak(s) manually integrated

Реак	Retlime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	8.424	BV	0.2230	1128.36243	77.89248	3.3472	
2	11.761	VV	0.3555	3.25827e4	1420.93640	96.6528	

Totals : 3.37111e4 1498.82888

*** End of Report ***

1260 HPLC 7/3/2019 9:09:37 PM SYSTEM

30) (*S*)-1 obtained from (*S*)-11 (Scheme 4)

Sample Name: SH18054

	=		====:	===			========
Acq. Operator	:	DAICEL JHJIN	Sec	٩.	Line	:	3
Acq. Instrument	:	Instrument 1	Lo	oca	ation	:	Vial 12
Injection Date	:	5/29/2018 10:50:09 AM			Inj	:	2
			Inj	Vo	olume	:	5.000 µl
Acq. Method	:	C:\HPCHEM\1\METHODS\1.M					
Last changed	:	5/29/2018 7:50:02 AM by DAICE	JH:	JIN	V		
Analysis Method	:	C:\CHEM32\1\METHODS\DEF_LC.M					
Last changed	:	7/3/2019 9:09:21 PM by SYSTEM					
		(modified after loading)					
Sample Info	:	CHIRALPAK AD-3, ACN/MeOH=50/56	3				
		Flow rate:0.5ml/min					

Additional Info : Peak(s) manually integrated

*** End of Report ***

1260 HPLC 7/3/2019 9:10:11 PM SYSTEM