## Supporting Information

## Enantioselective Synthesis of Homoisoflavanones by Asymmetric Transfer Hydrogenation and Their Biological Evaluation for Antiangiogenic Activity

Myunghoe Heo, ${ }^{\dagger}$ Bit Lee, ${ }^{\dagger}$ Kamakshi Sishtla, ${ }^{\star, \$,}{ }^{8}$ Xiang Fei, ${ }^{\dagger}$ Sanha Lee, ${ }^{\dagger}$ Soojun Park, ${ }^{\mathbb{I}}$ Yue  and Seung-Yong Seo*, ${ }^{\dagger}$<br>$\dagger$ College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea \#Eugene and Marilyn Glick Eye Institute, §Department of Ophthalmology, \#Department of Biochemistry and Molecular Biology, ||Department of Pharmacology and Toxicology, and $\perp$ Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States<br>ITCollege of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea

## Table of contents

1. Purity and peak attributions of the homoisoflavonoid analogs S02
2. 2D NOESY NMR spectroscopy of cis-9a and trans-9a S03
3. Determination of absolute configuration of $(R, R)-\mathbf{9 a}$ and $(S, S)-\mathbf{9 a}$ using S05 ECD spectra
4. Matched/mismatched effects on homoisoflavanones $((R)-\mathbf{2}$ and (S)-2) in S07 asymmetric transfer hydrogenation using catalysts $(R, R)-\mathbf{4}$ and $(S, S)-\mathbf{4}$
5. Effect of homoisoflavonoids on tubulin polymerization S09
6. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S11
7. Copies of chiral HPLC S37

## 1. Purity of synthetic compounds

| compounds | retention time (min) | purity (area \%) |
| :---: | :---: | :---: |
| rac-1 | 2.5 | $>95$ |
| $(R)-\mathbf{1}$ | 2.5 | $>95$ |
| $(S)-\mathbf{1}$ | 2.5 | $>95$ |
| rac-2 | 2.7 | $>95$ |
| $(R)-\mathbf{2}$ | 2.6 | $>95$ |
| $(S)-\mathbf{2}$ | 2.6 | $>95$ |
| rac-3 | 11.2 | $>95$ |
| $(R, S)-\mathbf{3}$ | 11.3 | $>95$ |
| $(S, S)-\mathbf{3}$ | 11.2 | $>95$ |
| $(R, R)-\mathbf{3}$ | 11.3 | $>95$ |
| $(S, R)-\mathbf{3}$ | 11.2 | $>95$ |
| cis-9a | 2.5 | $>95$ |
| trans-9a | 2.5 | $>95$ |
| $(3 R, 4 R)-\mathbf{9 a}$ | 2.5 | $>95$ |
| $(3 S, 4 S)-\mathbf{9 a}$ | 2.5 | $>95$ |
| rac-10 | 4.1 | $>95$ |
| $(S)-\mathbf{1 0}$ | 4.1 | $>95$ |
| $(R)-\mathbf{1 0}$ | 4.1 | $>95$ |

## HPLC conditions:

System: Agilent 1290 infinity 2 binary LC
Detector: Agilent 1290 infinity 2 UV detector, 256 nm
Column: Peakman SP column C18, $5 \mu \mathrm{M} 1.5 \times 250 \mathrm{~mm}$
Sample diluent: $\mathbf{9 9 . 6 \%}$ methanol
Mobile phase: $60 \%$ MeCN/Water
Mode: Isocratic system
Flow rate: $0.2 \mathrm{~mL} / \mathrm{min}$
Injection volume: $2 \mu \mathrm{~L}$

## 2. 2D NOESY NMR spectroscopy of cis-9a and trans-9a

Figure S1. 2D NOESY NMR spectroscopy of cis-9a



| Annotation | $\mathrm{v}(\mathrm{F} 1)[\mathrm{ppm}]$ | $\mathrm{v}(\mathrm{F} 2)[\mathrm{ppm}]$ | Intensity [abs] |
| :---: | :---: | :---: | :---: |
| C4-C3 | 4.7132 | 2.193 | $3,456,915$ |
| C4-C9a | 4.7132 | 2.8779 | $1,662,996$ |
| C4-C4OH | 4.7132 | 2.1383 | $1,571,514$ |
| C4-C9b | 4.7132 | 2.6176 | 306,140 |

Figure S2. 2D NOESY NMR spectroscopy of trans-9a



| Annotation | $v(\mathrm{~F} 1)[\mathrm{ppm}]$ | $\mathrm{v}(\mathrm{F} 2)[\mathrm{ppm}]$ | Intensity $[\mathrm{abs}]$ |
| :---: | :---: | :---: | :---: |
| C4-C9a | 4.5768 | 2.5628 | $4,288,817$ |
| C4-C3 | 4.5768 | 2.193 | $2,495,161$ |
| C4-C4OH | 4.5768 | 2.5224 | $2,160,369$ |
| C4-C9b | 4.5768 | 2.467 | $1,260,030$ |

## 3. Determination of absolute configuration of $(R, R)$-9a and ( $S, S$ )-9a using ECD spectra

1) Geometry optimization and ECD calculation of ( $3 R, 4 R$ )-9a

The computational energy minimization of $(3 R, 4 R)-9$ a was performed using the DMol3 program in Material Studio 2016. In these calculations, we employed generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) form as well as a Doubl numerical plus d-functions (DND) basis set. The ECD calculations were performed with TD-DFT (time-dependent density functional theory) using the B3LYP functional and the $6-31+G(d)$ basis set via Gaussian 09. The number of excited states per molecule was 30 . Solvent effects were taken into account by using the polarizable continuum model (PCM, MeOH). The ECD spectra were generated by the program SpecDis using a Gaussian band shape with 0.16 eV exponential half-width from dipole-length dipolar and rotational strengths.

Table S1. Geometry optimization of ( $3 R, 4 R$ )-9a

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Atom | X | Y | Z | Atom | X | Y | Z |
| C | $-3.44172$ | 1.10762 | 0.084549 | C | $-6.32321$ | -0.77938 | 1.331584 |
| C | $-4.22144$ | 0.008976 | 0.53464 | H | $-4.26552$ | $-2.14247$ | 0.854097 |
| C | $-3.68106$ | -1.27726 | 0.548315 | H | 0.542259 | 0.153029 | -0.12795 |
| C | $-2.35528$ | -1.48841 | 0.142064 | H | 0.436402 | -1.94366 | 0.976948 |
| C | $-1.52979$ | -0.41664 | -0.22275 | H | -0.21959 | 3.541239 | -0.02238 |
| C | -2.1026 | 0.872533 | -0.25323 | H | $-0.22281$ | 2.162725 | 1.127201 |
| O | $-1.28765$ | 1.923135 | -0.66665 | H | $-1.68806$ | 3.194886 | 0.959095 |
| O | $-5.50437$ | 0.306866 | 0.898404 | H | $-2.97984$ | 3.351466 | $-1.44204$ |


| O | -4.02223 | 2.357794 | 0.105718 | H | -4.59608 | 3.984417 | -0.96623 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | -0.08376 | -0.61961 | -0.60712 | H | -4.46904 | 2.482479 | -1.93717 |
| C | 0.389304 | -1.99585 | -0.12451 | H | -0.84883 | -3.02838 | -1.57625 |
| O | 0.106602 | -0.55171 | -2.03965 | H | -0.36719 | -4.04411 | -0.17876 |
| O | -1.90934 | -2.78541 | 0.203041 | H | 1.745374 | -2.4515 | -1.75058 |
| C | -0.83466 | 2.751943 | 0.425268 | H | 2.031009 | -3.38199 | -0.27211 |
| C | -4.00091 | 3.080115 | -1.13949 | H | 2.844074 | -1.94514 | 1.847392 |
| C | -0.66463 | -3.03362 | -0.48796 | H | 4.574871 | -0.32056 | 2.507365 |
| C | 1.784104 | -2.37761 | -0.65494 | H | 3.138724 | -0.60667 | -2.2329 |
| C | 2.870865 | -1.40744 | -0.24673 | H | 4.674953 | 1.010607 | -2.6126 |
| C |  |  |  |  |  |  |  |

Total energy $=-1302.96222064 \mathrm{Ha}(1 \mathrm{Ha}=627.509391 \mathrm{kcal} / \mathrm{mol})$
2) Experimental and calculated ECD spectra of $(3 R, 4 R)-9 \mathbf{a}$ and $(3 S, 4 S)-9 \mathbf{a}$

To determine the absolute stereochemistry of $(\mathbf{3 R}, \mathbf{4 R}) \mathbf{- 9}$, we compared the experimental ECD spectrum with the calculated ECD spectrum as shown in Figure 3. The calculated ECD spectrum of $(\mathbf{3 R}, 4 \boldsymbol{R})-9$ a showed good agreement with the experimental spectrum of (3R,4R)-9a in methanol (1.0 $\mathrm{mg} / \mathrm{mL})$. And the calculated ECD spectrum of (3S,4S)-9a matched with the experimental spectrum of (3S,4S)-9a too.

$(3 R, 4 R)-9 \mathrm{a}$

$(3 S, 4 S)-9 a$

## 4. Matched/mismatched effects on homoisoflavanones $((R)-2$ and $(S)-2)$ in asymmetric

 transfer hydrogenation using catalysts $(R, R)-4$ and $(S, S)-4$To investigate the homoisoflavanone dynamic kinetic resolution (DKR) we prepared ( $S$ )-2 and ( $R$ )-2 via HPLC (Chiralpak AD-3 column; inject: $0.3 \mu \mathrm{~L}$; methanol : acetonitrile=50 : 50; flow rate: 1.0 $\mathrm{mL} / \mathrm{min} ; 35^{\circ} \mathrm{C}$ ). DBU/formic acid ( $3: 1(\mathrm{v} / \mathrm{v})$ ) were dissolved in acetonitrile. The solution was sparged with nitrogen for 15 min , then warmed to $40^{\circ} \mathrm{C}$. Separately, $(S)-\mathbf{2}$ or $(R)-\mathbf{2}(10 \mathrm{mg}, 0.027 \mathrm{mmol})$ and $\operatorname{RuCl}(p-$ cymene $)[(R, R)$-Ts-DPEN] or $\operatorname{RuCl}(p-c y m e n e)[(S, S)$-Ts-DPEN] ( $30 \mathrm{~mol} \%$ ) were dissolved in acetonitrile, then added to the DBU/formic acid mixture as shown in Figure 4 and Figures S3 and S4. The mixture was stirred at $50^{\circ} \mathrm{C}(3 \mathrm{~h}, 6 \mathrm{~h}, 12 \mathrm{~h}, 24 \mathrm{~h}$ and 48 h$)$. Match (the chiral centers of the compound and Ru catalyst are the same) and mismatch (the chiral center of the compound and Ru catalyst are not the same) mixtures were measured by chiral HPLC.

Table S2. Time-course data for asymmetric transfer hydrogenation of $(R) \mathbf{- 2}$ and (S)-2.



Figure S3. Time-course data for asymmetric transfer hydrogenation of $(R)-\mathbf{2}$ with $(R, R)-\mathbf{4}$.


Figure S4. Time-course data for asymmetric transfer hydrogenation of $(S)$-2 with $(R, R)-\mathbf{4}$.

## 5. Effect of homoisoflavonoids on tubulin polymerization

The trimethoxyphenyl group in our homoisoflavonoids bears some resemblance to the tubulin polymerization inhibitor combretastatin A4. To assess whether these compounds act by the same mechanism as combretastatin A4, we performed a tubulin polymerization assay.

Compounds were tested for effect on tubulin polymerization using a commercially available fluorometric kit (BK011P, Cytoskeleton, Inc., Denver, CO). Compounds were diluted in DMSO and then water so that final DMSO concentration in the assay was $0.001 \%$. A mix of GTP and tubulin was prepared in a glycerol containing buffer per kit protocol and added to the compounds to a final volume of $30 \mu \mathrm{~L}$ in a black 384 -well plate. Tubulin polymerization was observed by reading fluorescence (ex. 360 nm , em. 420 nm ) over 90 minutes in a Synergy H1 plate reader (Biotek, Winooski, VT). Combretastatin A4, a potent inhibitor of tubulin polymerization, was included in the assay as a positive control. For quantitative analysis, total tubulin polymerization was calculated by subtracting the fluorescence at $t=60 \mathrm{~min}$ from $t=0$ and normalized to this value for the control assay (DMSO alone). GraphPad Prism software (v.7.0) was used for data analysis.

None of our compounds had inhibition of tubulin polymerization comparable to combretastatin A4 (Figures S5, S6). Only compound (S)-2 showed very modest ( $25 \%$ ) inhibition at $1 \mu \mathrm{M}$, suggesting that tubulin polymerization inhibition is not the major mechanism of antiangiogenic action of these novel compounds.


Figure S5. Kinetic traces of tubulin polymerization assay. Assay fluorescence plotted as a function of time. Test compounds in black, DMSO vehicle control in green, known tubulin polymerization inhibitor combretastatin A4 (Comb. A4) in red. All compounds were tested at $1 \mu \mathrm{M}$. Mean of duplicate wells indicated.


Figure S6. Summary of tubulin polymerization effects of tested compounds. Change in assay fluorescence at $t=60$ minutes plotted, normalized to vehicle control (green) and compared to known tubulin polymerization inhibitor combretastatin A4 (Comb. A4; red). All compounds were tested at 1 $\mu \mathrm{M}$. Mean of duplicate wells indicated.

## 6. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra

7-Hydroxy-3-(3-hydroxy-4-methoxybenzyl)-5,6-dimethoxychroman-4-one (6)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## 3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one) (7)

${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(
( $\boldsymbol{E}$ )-3-(3-hydroxy-4-methoxybenzylidene)-5,6,7-trimethoxychroman-4-one ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


7-(Benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one (8)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

trans-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol (trans-9a)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

(3R,4R)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3R,4R)-9a) ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(3S,4S)-3-(3-hydroxy-4-methoxybenzyl)-5,6-dimethoxychromane-4,7-diol ((3S,4S)-9a) ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


(3R,4R)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3R,4R)-9c) ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(3S,4S)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-ol ((3S, 4S)-9c)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
(
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(3R,4R)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-ol ((3R,4R)9d)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

(3S,4S)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-ol ((3S,4S)9d)
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(R)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one (( $R$ )-7)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

( $\boldsymbol{R}$ )-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one ((R)-2)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(S)-3-(3-hydroxy-4-methoxybenzyl)-5,6,7-trimethoxychroman-4-one ((S)-2)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


2-Methoxy-5-(((R)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-Lphenylalaninate ( $(\boldsymbol{R}, S)-3)$
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


2-Methoxy-5-(((R)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-Dphenylalaninate ( $(\boldsymbol{R}, \boldsymbol{R})-3)$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


2-Methoxy-5-(((S)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-Lphenylalaninate ( $(S, S)$-3)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-Methoxy-5-(((S)-5,6,7-trimethoxy-4-oxochroman-3-yl)methyl)phenyl(tert-butoxycarbonyl)-Dphenylalaninate ( $(S, R)-3)$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(S)-2-methoxy-5-((5,6,7-trimethoxychroman-3-yl)methyl)phenol ((S)-10)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(R)-2-methoxy-5-((5,6,7-trimethoxychroman-3-yl)methyl)phenol ((R)-10)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(R)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one(( $R$ )-11) ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(S)-7-(benzyloxy)-3-(3-(benzyloxy)-4-methoxybenzyl)-5,6-dimethoxychroman-4-one ((S)-11) ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


7-Hydroxy-3-(3-hydroxy-4-methoxybenzyl)-5,6-dimethoxychroman-4-one ((R)-6) ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


7-Hydroxy-3-(3-hydroxy-4-methoxybenzyl)-5,6-dimethoxychroman-4-one ((S)-6) ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

( $R$ )-Cremastranone ( $(R)-1)$
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

(S)-Cremastranone ((S)-1)
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ )


## 7. Copies of chiral HPLC

1) Racemic 9 a



| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |
| Do not use | \& | ion Fac |

Signal 1: DAD1 C, Sig=210, 8 Ref=360,100

| Peak <br> \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 18.017 | BB | 0.4878 | 4.87470e4 | 1580.82031 | 57.2661 |
| 2 | 27.087 | BB | 0.7093 | $3.63767 e 4$ | 792.74335 | 42.7339 |
| Total | s : |  |  | 8.51237e4 | 2373.56366 |  |

## 2) ( $3 R, 4 R$ )-9a (Table 2, entry 7)

| Sample Name: BL-9-84 |  |
| :---: | :---: |
|  | == $=$ |
| Acq. Operator | Seq. Line : 5 |
| Acq. Instrument : | : Instrument 1 Location : Vial 61 |
| Injection Date | : 4/25/2018 9:00:14 PM Inj : 1 |
|  | Inj Volume : $5.0 \mu \mathrm{l}$ |
| Acq. Method : | : C: \CHEM32 \1\DATA\GACHEON\DEF_LC 2018-04-25 17-53-30\1.M |
| Last changed | : 4/25/2018 5:53:28 PM |
| Analysis Method : | : C:\CHEM32 \1\METHODS ${ }^{\text {dDEF_LC.M }}$ |
| Last changed : | : 7/3/2019 8:01:46 PM by SYSTEM |
|  | (modified after loading) |
| Sample Info | : CHIRALPAK AD-3, Hex/EtOH=60/40, Flow rate:1ml/min, |
|  | Sample conc.: $1.2 \mathrm{mg} / \mathrm{mL}$, Temp.:RT |
| Additional Info : Peak(s) manually integrated |  |
| ================ | $==========$ |




| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 $E$, $\operatorname{Sig}=280,16$ Ref $=360,100$

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s] }} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.499 | BB | 0.2191 | 41.94565 | 2.89343 | 1.2660 |
| 2 | 11.621 | BB | 0.3718 | 3271.36182 | 135.45758 | 98.7340 |
| Total |  |  |  | 3313.30746 | 138.35101 |  |

[^0]
## 3) (3R,4R)-9a (Table 2, entry 8)

```
Sample Name: BL-9-8S
=====================================================================12
Acq. Operator :
    Seq. Line : 9
Acq. Instrument : Instrument 1
Injection Date : 4/26/2018 12:05:45 AM
    Location : Vial 65
                                    Inj : 1
                                    Inj Volume : \(5.0 \mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA\GACHEON\DEF LC 2018-04-25 17-53-30\1.M
Last changed : 4/25/2018 5:53:28 PM
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/3/2019 8:01:02 PM by SYSTEM
    (modified after loading)
Sample Info : CHIRALPAK AD-3, Hex/EtOH=60/40, Flow rate: \(1 \mathrm{ml} / \mathrm{min}\),
    Sample conc.: \(1.2 \mathrm{mg} / \mathrm{mL}\), Temp.:RT
Additional Info : Peak(s) manually integrated
```






| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 E, Sig=280,16 Ref=360,100

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.506 | BB | 0.2131 | 57.09267 | 4.03495 | 1.5537 |
| 2 | 11.626 | BB | 0.3718 | 3617.57837 | 149.74373 | 98.4463 |
| Total | 5 : |  |  | 3674.67104 | 153.77868 |  |

## 4) (3R,4R)-9a (Table 2, entry 9)




| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |
| Do not use | \& | tion Fac |

Signal 1: MWD1 A, Sig=215,4 Ref=360,100

| Peak <br> \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.215 | BB | 0.2126 | 163.92651 | 11.47643 | 1.7662 |
| 2 | 11.136 | BV | 0.3694 | 9117.44238 | 377.95490 | 98.2338 |
| Total | s |  |  | 9281.36890 | 389.43132 |  |

*** End of Report ***

## 5) ( $3 R, 4 R$ )-9a (Table 2, entry 10)




| Area Percent Report |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Sorted By | : | Signal |  |  |
| Multiplier | : | 1.0000 |  |  |
| Dilution | : | 1.0000 |  |  |
| Do not use Multiplier \& Dilution Factor with ISTDs |  |  |  |  |
| Signal 1: DAD1 C, Sig=210, 8 Ref $=360,100$ |  |  |  |  |
| $\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$ | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| $1 \quad 18.107 \mathrm{BB}$ | 0.3876 | 628.83606 | 22.67378 | 1.5413 |
| 2 27.206 BB | 0.7115 | 4.01703e4 | 862.27692 | 98.4587 |
| Totals : |  | 4.07991e4 | 884.95070 |  |

## 6) (3S,4S)-9a (Table 2, entry 11)




| Area Percent Report |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Sorted By | : | Signal |  |  |
| Multiplier | : | 1.0000 |  |  |
| Dilution | : | 1.0000 |  |  |
| Do not use Multiplier \& Dilution Factor with ISTDs |  |  |  |  |
| Signal 1: DAD1 A, Sig=230,8 Ref=360,100 |  |  |  |  |
| ```Peak RetTime Type # [min]``` | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| $1 \quad 18.026$ BB | 0.4294 | 1.46251 e 4 | 524.37988 | 98.3925 |
| 2 27.210 BB | 0.5127 | 238.94234 | 5.58993 | 1.6075 |
| Totals : |  | 1.48640 e 4 | 529.96981 |  |

## 7) ( $\mathbf{3 R}, 4 R$ )-9c (Table 3, entry 3)

```
Sample Name: BL-9-11-2
=====================================================================12
Acq. Operator :
    Seq. Line : 10
Acq. Instrument : Instrument 1
Injection Date : 4/26/2018 12:52:07 AM
    Location : Vial 66
                                    Inj : 1
                                    Inj Volume : \(5.0 \mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA\GACHEON\DEF LC 2018-04-25 17-53-30\1.M
Last changed : 4/25/2018 5:53:28 PM
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/3/2019 8:25:23 PM by SYSTEM
                                    (modified after loading)
Sample Info : CHIRALPAK AD-3, Hex/EtOH=60/40, Flow rate: \(1 \mathrm{ml} / \mathrm{min}\),
    Sample conc.: \(1.2 \mathrm{mg} / \mathrm{mL}\), Temp.:RT
Additional Info : Peak(s) manually integrated
```





| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.570 | BV | 0.1755 | 652.27429 | 56.99644 | 4.8632 |
| 2 | 6.351 | VB | 0.2174 | 1.27602 e 4 | 900.17999 | 95.1368 |
| Totals | 5 : |  |  | 1.34124e4 | 957.17644 |  |

[^1]
## 8) $(3 R, 4 R)-9 \mathrm{c}$ (Table 3, entry 4)

| Sample Name: BL-9-89 |  |
| :---: | :---: |
|  | ==================== |
| Acq. Operator | : Seq. Line : 7 |
| Acq. Instrument | : Instrument 1 Location : Vial 63 |
| Injection Date | : 4/25/2018 10:32:58 PM Inj : 1 |
|  | Inj Volume : $5.0 \mu \mathrm{l}$ |
| Acq. Method | : C:\CHEM32 \1\DATA\GACHEON\DEF_LC 2018-04-25 17-53-30\1.M |
| Last changed | : 4/25/2018 5:53:28 PM |
| Analysis Method | : C:\CHEM32\1\METHODS\DEF_LC.M |
| Last changed | 7/3/2019 8:27:11 PM by SYSTEM (modified after loading) |
| Sample Info | CHIRALPAK AD-3, Hex/EtOH=60/40, Flow rate: $1 \mathrm{ml} / \mathrm{min}$, Sample conc.: $1.2 \mathrm{mg} / \mathrm{mL}$, Temp.:RT |
| Additional Info | : Peak(s) manually integrated |




| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref $=360,100$

| Peak <br> \# | $\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$ | Type | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.563 | BB | 0.1682 | 50.52208 | 4.67088 | 0.4951 |
| 2 | 6.349 | BB | 0.2159 | 1.01534 e 4 | 722.93781 | 99.5049 |
| Total | 1s : |  |  | 1.02039 e 4 | 727.60868 |  |

[^2]
## 9) $(3 R, 4 R)-9 \mathrm{c}($ Table 3 , entry 6)





| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref=360,100

|  | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.563 | BV | 0.1754 | 227.40402 | 19.88769 | 1.5827 |
| 2 | 6.342 | VB | 0.2191 | 1.41409 e 4 | 987.36163 | 98.4173 |
| Totals |  |  |  | 1.43683 e 4 | 1007.24932 |  |

[^3]
## 10) (3S,4S)-9c (Table 3, entry 7)





Signal 1: MWD1 D, Sig=230, 4 Ref $=360,100$

| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.153 | BV | 0.1709 | 1.71049 e 4 | 1547.80542 | 96.7041 |
| 2 | 5.994 | VB | 0.2117 | 582.96771 | 42.07258 | 3.2959 |
| Total |  |  |  | 1.76879 e 4 | 1589.87800 |  |

## 11) ( $\mathbf{3 R}, 4 R$ )-9d (Table 3 , entry 8 )




| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |

Signal 1: DAD1 A, Sig=230, 8 Ref $=360,100$

| Peak <br> \# | RetTime [min] |  | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.068 | BB | 0.3252 | 221.99231 | 8.48510 | 1.1935 |
| 2 | 15.584 | BB | 0.4727 | 1.83782 e 4 | 597.70709 | 98.8065 |
| Total | $s$ : |  |  | 1.86002 e 4 | 606.19219 |  |

*** End of Report ***

## 12) (3S,4S)-9d (Table 3, entry 9)




| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |

Signal 1: MWD1 D, Sig=230,4 Ref=360,100

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.089 | BB | 0.4355 | 1.28379 e 4 | 457.35287 | 98.2652 |
| 2 | 12.491 | BB | 0.4720 | 226.64784 | 6.29606 | 1.7348 |
| Total | $s$ : |  |  | 1.30646e4 | 463.64894 |  |

13) (rac)-7 obtained from 2



| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |

Signal 1: MWD1 D, Sig=230,4 Ref $=360,100$

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | Area <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4.273 | VV | 0.1248 | 1.72052 e 4 | 2117.92773 | 51.6316 |
| 2 | 4.707 | VB | 0.1198 | 1.61178 e 4 | 2094.03467 | 48.3684 |
| Total |  |  |  | 3.33230 e 4 | 4211.96240 |  |

14) (R)-7 obtained from ( $\mathbf{3 R}, 4 R$ )-9c (Scheme 3)




| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: MWD1 D, Sig=230,4 Ref $=360,100$

| Peak <br> \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4.280 | V | 0.1174 | 666.17273 | 83.21376 | 2.9571 |
| 2 | 4.688 | VB | 0.1350 | 2.18620 e 4 | 2576.28809 | 97.0429 |
| Totals |  |  |  | 2.25282 e 4 | 2659.50185 |  |

[^4]
## 15) (R)-2 obtained from (R)-7 (Scheme 3)




Signal 1: MWD1 D, Sig=230,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.040 | BB | 0.1234 | 1.54880e4 | 1977.34839 | 97.9477 |
| 2 | 10.783 | BB | 0.5320 | 324.52756 | 7.54251 | 2.0523 |
| Total | $s$ : |  |  | 1.58125 e 4 | 1984.89090 |  |

*** End of Report ***
16) (S)-2 obtained from (S)-7 (Scheme 3)



| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |
| Do not use | \& | tion Fac |

Signal 1: DAD1 D, Sig=230,16 Ref $=360,100$

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.023 | VB | 0.1247 | 11.79457 | 1.33968 | 0.0430 |
| 2 | 10.301 | BB | 0.6319 | 2.74382 e 4 | 672.62732 | 99.9570 |
| Totals |  |  |  | 2.74500 e 4 | 673.96700 |  |

[^5]
## 17) $\mathbf{4}$ stereoisomers of $\mathbf{3}$

```
Sample Name: (rac)-D,L-3
======================================================================
Acq. Operator : LCW
Acq. Instrument : Instrument 1
Injection Date : 7/2/2019 6:06:59 PM
Seq. Line : 1
Inj Volume : 20.0 \mul
Acq. Method : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
                    M
Last changed : 7/2/2019 6:05:24 PM by LCW
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/3/2019 8:50:27 PM by SYSTEM
    (modified after loading)
Additional Info : Peak(s) manually integrated
===========================================================================
```



```
=========================================================================
Area Percent Report
==========================================================================
\begin{tabular}{lll} 
Sorted By & \(:\) & Signal \\
Multiplier & \(:\) & 1.0000 \\
Dilution & \(:\) & 1.0000
\end{tabular}
Do not use Multiplier & Dilution Factor with ISTDs
```

Signal 1: DAD1 D, Sig=275,4 Ref=off

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 132.960 | BB | 2.0206 | 1.06450 e 4 | 61.95245 | 26.9653 |
| 2 | 141.079 | BB | 2.1438 | 5569.94873 | 30.48312 | 14.1095 |
| 3 | 166.007 | BB | 2.5011 | 1.15788 e 4 | 55.29359 | 29.3307 |
| 4 | 176.052 | BB | 2.6557 | 1.16829 e 4 | 52.30924 | 29.5945 |
| Totals : |  |  |  | 3.94766 e 4 | 200.03840 |  |

*** End of Report ***

## 18) A mixture of $(R, S)$ - and $(S, S)-3$

```
Sample Name: (rac)-L-3
=======================================================================
Acq. Operator : LCW
Acq. Instrument : Instrument 1
Injection Date : 7/3/2019 4:10:24 AM
    Seq. Line : 3
    Location : Vial 3
                                    Inj : 1
                                    Inj Volume : 20.0 \mul
Acq. Method : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
                    M
Last changed : 7/3/2019 8:15:57 AM by LCW
(modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/3/2019 8:53:22 PM by SYSTEM
    (modified after loading)
Additional Info : Peak(s) manually integrated
======================================================================
```



| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |

Signal 1: DAD1 D, Sig=275,4 Ref=off

| ```Peak RetTime Type # [min]``` | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1165.086 BB | 2.7931 | 3.67797 e 4 | 173.50591 | 49.9848 |
| 2175.414 BB | 2.9213 | 3.68021 e 4 | 157.77434 | 50.0152 |
| Totals : |  | 7.35818 e 4 | 331.28024 |  |

[^6]
## 19) A mixture of $(R, R)$ - and $(S, R)-3$

```
Sample Name: (rac)-D-3
=======================================================================
Acq. Operator : LCW
Acq. Instrument : Instrument 1
Injection Date : 7/2/2019 11:08:40 PM
Seq. Line : 2
    Location : Vial 2
                                    Inj : 1
                                    Inj Volume : 20.0 \mul
Acq. Method : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
                    M
Last changed : 7/2/2019 6:05:24 PM by LCW
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/3/2019 8:50:27 PM by SYSTEM
    (modified after loading)
Additional Info : Peak(s) manually integrated
```



Signal 1: DAD1 D, Sig=275,4 Ref=off

| Peak \# | $\begin{aligned} & \text { k RetTime } \\ & {[\mathrm{min}]} \end{aligned}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1131.593 | BB | 2.1933 | 1.08212 e 4 | 62.21381 | 49.8012 |
| 2 | 2139.708 | BB | 2.1929 | 1.09076 e 4 | 58.40443 | 50.1988 |
| Tota | als : |  |  | 2.17289 e 4 | 120.61823 |  |

## 20) ( $\boldsymbol{R}, \boldsymbol{S}$ )-3 obtained from ( $\boldsymbol{R}$ )-2 (Scheme 3)

```
Sample Name: (R,S)-3
======================================================================2
Acq. Operator : LCW
Acq. Instrument : Instrument 1
Injection Date : 7/3/2019 8:17:47 AM
    Seq. Line : 4
    Location : Vial 4
                                    Inj : 1
                                    Inj Volume : \(20.0 \mu \mathrm{l}\)
Acq. Method : C:\CHEM32 \1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
                    M
Last changed : 7/3/2019 12:02:43 PM by LCW
(modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/3/2019 8:56:12 PM by SYSTEM
(modified after loading)
Additional Info : Peak(s) manually integrated
\(====================================================================1\)
```




| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

1.0000
Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=275,4 Ref=off

| $\begin{aligned} & \text { Peak RetTime Type } \\ & \# \quad[\mathrm{~min}] \end{aligned}$ | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: |
| 1171.851 BB | 3.2670 | 1.13915 e 5 | 465.82147 | 100.0000 |
| Totals : |  | 1.13915 e 5 | 465.82147 |  |

## 21) ( $\boldsymbol{R}, \boldsymbol{R})$-3 obtained from ( $\boldsymbol{R}$ )-2 (Scheme 3)

```
Sample Name: ( \(\mathrm{R}, \mathrm{R}\) )-3
=======================================================================2
Acq. Operator : LCW
Acq. Instrument : Instrument 1
Injection Date : 7/3/2019 12:29:30 PM
Seq. Line : 5
    Location : Vial 5
                                    Inj : 1
                                    Inj Volume : \(20.0 \mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
                    M
Last changed : 7/3/2019 12:02:43 PM by LCW
(modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/3/2019 8:59:40 PM by SYSTEM
    (modified after loading)
Additional Info : Peak(s) manually integrated
\(====================================================================1\)
```




Signal 1: DAD1 D, Sig=275,4 Ref=off

| ```Peak RetTime Type # [min]``` | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1138.841 BB | 2.7745 | 5.55820 e 4 | 291.23993 | 99.2839 |
| 2174.816 MM | 3.9038 | 400.89243 | 1.71155 | 0.7161 |
| Totals : |  | 5.59828 e 4 | 292.95148 |  |

> *** End of Report ***

## 22) (S,S)-3 obtained from (S)-2 (Scheme 3)

```
Sample Name: ( \(\mathrm{S}, \mathrm{S}\) )-3
=========================================================================2
Acq. Operator : LCW
Acq. Instrument : Instrument 1
Injection Date : 7/3/2019 4:41:14 PM
    seq. Line : 6
    Location : Vial 6
                                    Inj : 1
                                    Inj Volume : \(20.0 \mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
    M
Last changed : 7/3/2019 12:02:43 PM by LCW
    (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/4/2019 1:58:48 PM by SYSTEM
    (modified after loading)
Additional Info : Peak(s) manually integrated
\(===================================================================1\)
```




Signal 1: DAD1 D, Sig=275,4 Ref=off

*** End of Report ***

## 23) ( $\mathbf{S}, \boldsymbol{R}$ )-3 obtained from ( $\boldsymbol{S}$ )-2 (Scheme 3)

```
Sample Name: (S,R)-3
=====================================================================
Acq. Operator : LCW
Acq. Instrument : Instrument 1
Injection Date : 7/3/2019 8:52:55 PM
    Seq. Line : 7
    Location : Vial 7
                                    Inj : 1
                                    Inj Volume : 20.0 \mul
Acq. Method : C:\CHEM32\1\DATA\Gachon_190702\SCREENING 2019-07-02 18-05-25\Gachon_190626.
                    M
Last changed : 7/3/2019 12:02:43 PM by LCW
(modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/4/2019 2:02:03 PM by SYSTEM
(modified after loading)
Additional Info : Peak(s) manually integrated
============================================================================
```



| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |
| Do not use |  | ion Fac |

Signal 1: DAD1 D, Sig=275,4 Ref=off


## 24) Racemic 10

```
Sample Name: 42,43
\(===================================================================\)
Acq. Operator :
Acq. Instrument : Instrument 1
Injection Date : 4/25/2018 7:27:27 PM
    Seq. Line : 3
    Location : Vial 53
                                    Inj : 1
                                    Inj Volume : \(5.0 \mu \mathrm{l}\)
Acq. Method : C:\CHEM32\1\DATA\GACHEON\DEF LC 2018-04-25 17-53-30\1.M
Last changed : 4/25/2018 5:53:28 PM
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/3/2019 9:01:44 PM by SYSTEM
(modified after loading)
Sample Info : CHIRALPAK AD-3, Hex/EtOH=60/40, Flow rate: \(1 \mathrm{ml} / \mathrm{min}\),
Sample conc.: \(1.2 \mathrm{mg} / \mathrm{mL}\), Temp.:RT
Additional Info : Peak(s) manually integrated
```





| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 D, Sig=230,16 Ref $=360,100$

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.678 | BV | 0.1562 | 7529.20313 | 730.85236 | 50.1190 |
| 2 | 7.862 | BB | 0.2732 | 7493.46094 | 426.08832 | 49.8810 |
| Total |  |  |  | 1.50227 e 4 | 1156.94067 |  |

*** End of Report ***

## 25) (S)-10 obtained from (3R,4R)-9a (Scheme 3)




| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |
| Do not use |  | tion Fac |

Signal 1: MWD1 C, Sig=210, 4 Ref $=360,100$

| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5.518 | VB | 0.1647 | 1.68238 e 4 | 1574.21606 | 99.7421 |
| 2 | 7.303 | BV | 0.1963 | 43.50672 | 2.98027 | 0.2579 |
| Total |  |  |  | 1.68673 e 4 | 1577.19633 |  |

## 26) (R)-10 obtained from (3S,4S)-9a (Scheme 3)





## 27) (R)-11 obtained from (3R,4R)-9d (Scheme 4)




Signal 1: MWD1 D, Sig=230,4 Ref=360,100

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.944 | BB | 0.4583 | 1883.71021 | 62.73454 | 13.5821 |
| 2 | 19.098 | VV | 0.8603 | 1.19854 e 4 | 215.68436 | 86.4179 |
| Total | $s$ : |  |  | 1.38691e4 | 278.41889 |  |

[^7]
## 28) (S)-11 obtained from (3S,4S)-9d (Scheme 4)

```
Sample Name: BL-9-117
=====================================================================12
Acq. Operator : DAICEL JHJIN Seq. Line : 2
Acq. Instrument : Instrument 1
Injection Date : 5/31/2018 6:42:10 AM
    Location : Vial 24
                                    Inj : 1
                                    Inj Volume : \(5.000 \mu 1\)
Acq. Method : C:\HPCHEM \(1 \backslash M E T H O D S \backslash 1 . M\)
Last changed : 5/31/2018 6:09:11 AM by DAICEL JHJIN
Analysis Method : C:\CHEM32\1\METHODS\DEF_LC.M
Last changed : 7/3/2019 8:44:27 PM by SYSTEM
    (modified after loading)
Sample Info : CHIRALPAK AD-3, ACN \(/ \mathrm{MeOH}=50 / 50\)
    Flow rate: \(0.5 \mathrm{ml} / \mathrm{min}\)
Additional Info : Peak(s) manually integrated
```





| Sorted By | $:$ | Signal |
| :--- | :--- | :--- |
| Multiplier | $:$ | 1.0000 |
| Dilution | $:$ | 1.0000 |

Do not use Multiplier \& Dilution Factor with ISTDs

Signal 1: MWD1 D, Sig=230,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s] }} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.757 | BB | 0.3862 | 7159.33008 | 285.88214 | 96.9479 |
| 2 | 19.417 | VV | 0.6311 | 225.39233 | 4.26092 | 3.0521 |
| Total | $s$ : |  |  | 7384.72241 | 290.14306 |  |

[^8]
## 29) $(\boldsymbol{R})$-1 obtained from $(\boldsymbol{R})$-11 (Scheme 4)




Signal 1: MWD1 D, Sig=230,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.424 | BV | 0.2230 | 1128.36243 | 77.89248 | 3.3472 |
| 2 | 11.761 | VV | 0.3555 | 3.25827 e 4 | 1420.93640 | 96.6528 |
| Totals : |  |  |  | 3.37111 e 4 | 1498.82888 |  |

> *** End of Report ***

## 30) (S)-1 obtained from (S)-11 (Scheme 4)




| Area Percent Report |  |  |
| :---: | :---: | :---: |
| Sorted By | : | Signal |
| Multiplier | : | 1.0000 |
| Dilution | : | 1.0000 |

Signal 1: MWD1 D, Sig=230,4 Ref=360,100

| Peak <br> \# | RetTime [min] | Type | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$ | Height <br> [mAU] | $\begin{gathered} \text { Area } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.370 | BB | 0.2271 | 1.30802 e 4 | 891.95026 | 89.9499 |
| 2 | 11.861 | VB | 0.3372 | 1461.44934 | 67.34049 | 10.0501 |
| Totals | 5 : |  |  | 1.45416 e 4 | 959.29075 |  |

> *** End of Report ***


[^0]:    *** End of Report ***

[^1]:    *** End of Report ***

[^2]:    *** End of Report ***

[^3]:    *** End of Report ***

[^4]:    *** End of Report ***

[^5]:    *** End of Report ***

[^6]:    *** End of Report ***

[^7]:    *** End of Report ***

[^8]:    *** End of Report ***

