## Supporting Information for:

Systematic Investigations of Ligand Steric Effects on $\alpha$-Diimine Nickel Catalyzed Olefin Polymerization and Copolymerization<br>Yanfeng Gong, ${ }^{\text {a,b }}$ Shuaikang Li ${ }^{\text {b }}$ Qi Gong ${ }^{\text {b }}$ Shaojie Zhang ${ }^{\text {b, } *, ~ B i n y u a n ~ L i u ~}{ }^{\mathrm{a}, *}$, Shengyu Dai ${ }^{\mathrm{b}, *}$<br>${ }^{a}$ National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, No 8 Guangrong Road, 300130 Tianjin, China.<br>${ }^{b}$ Institutes of Physical Science and Information Technology, School of Computer Science and Technology, Anhui University, Hefei, Anhui, 230601, China

## Table of Contents

1. Figures, Tables.
2. Experimental Sections
2.1 General Considerations.
2.2 Procedure for the Synthesis of Benzhyldrol.
2.3 Procedure for the Synthesis of Anilines.
2.4 Procedure for the Synthesis of Ligands L1-L5.
2.5 Procedure for the Synthesis of Complexes 1-5.
2.6 General in-Situ-Activated Polymerization Procedure.
2.7 Copolymerization of Ethylene and UA.
3. Spectra Data
$3.1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of the Synthetic Compounds.
3.2 ESI-MS of Ligand L1-L4.
3.3 MALDI-TOF of Complexes 1-4.
$3.4{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of polymer and copolymer.
3.5 DSC, GPC of polymer and copolymer.
4. References.
5. X-ray Crystallography.

## 1. Figures, Tables.



Figure S1. Plots of hysteresis experiments of ten cycles at a strain of $300 \%$ for samples generated by 2 at $20^{\circ} \mathrm{C}$ (a), $40^{\circ} \mathrm{C}$ (b), $60^{\circ} \mathrm{C}$ (c), $80^{\circ} \mathrm{C}$ (d); 3 at $20^{\circ} \mathrm{C}$ (e), $40^{\circ} \mathrm{C}$ (f), $60^{\circ} \mathrm{C}$ (g), $80^{\circ} \mathrm{C}$ (h).

Table S1. Mechanical properties. ${ }^{a}$

| Ent. | Precat. | $T /{ }^{\circ} \mathrm{C}$ | Strain at break (\%) | Stress at break (MPa) | SR $(\%)^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{2}$ | 20 | 325 | 4.9 | 45 |
| 2 | $\mathbf{2}$ | 40 | 529 | 6.0 | 63 |
| 3 | $\mathbf{2}$ | 60 | 826 | 5.5 | 77 |
| 4 | $\mathbf{2}$ | 80 | 1558 | 0.3 | 45 |
| 5 | $\mathbf{3}$ | 20 | 443 | 7.6 | 60 |
| 6 | $\mathbf{3}$ | 40 | 567 | 9.6 | 77 |
| 7 | $\mathbf{3}$ | 60 | 526 | 2.1 | 80 |
| 8 | $\mathbf{3}$ | 80 | 1078 | 0.5 | 49 |
| 9 | $\mathbf{4}$ | 20 | 329 | 20.3 | -c |
| 10 | $\mathbf{4}$ | 40 | 439 | 13.6 | - |
| 11 | $\mathbf{4}$ | 60 | 408 | 8.3 | 46 |
| 12 | $\mathbf{4}$ | 80 | 613 | 13.6 | - |
| 13 | $\mathbf{5}$ | 20 | 208 | 7.8 | - |
| 14 | $\mathbf{5}$ | 40 | 361 | 12.3 | - |
| 15 | $\mathbf{5}$ | 60 | 484 | 20.0 | 22 |
| 16 | $\mathbf{5}$ | 80 | 628 | 22.1 | - |

${ }^{a}$ Conditions: Performed at $10 \mathrm{~mm} / \mathrm{min}$ by means of a Universal Test Machine (UTM2502) at room temperature. ${ }^{b}$ The strain recovery values $(\mathrm{SR})$ can be calculated by $\mathrm{SR}=100\left(\varepsilon_{\mathrm{a}}-\varepsilon_{\mathrm{r}}\right) / \varepsilon_{\mathrm{a}}$, where $\varepsilon_{\mathrm{a}}$ is the applied strain and $\varepsilon_{\mathrm{r}}$ is the strain in the cycle at zero load after 10 th cycle. ${ }^{c}$ Not determined.

Table S2. Effect of Catalyst on Ethylene Polymerization in Short Time. ${ }^{a}$

| Ent. | Precat. | $T /{ }^{\circ} \mathrm{C}$ | Yield $/ \mathrm{g}$ |
| :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1}$ | 20 | 3.03 |
| 2 | $\mathbf{2}$ | 20 | 2.01 |
| 3 | $\mathbf{3}$ | 20 | 1.51 |
| 4 | $\mathbf{4}$ | 20 | 1.32 |
| 5 | $\mathbf{5}$ | 20 | 0.38 |

${ }^{a}$ General conditions: $\mathrm{Ni}=1.0 \mu \mathrm{~mol}, \mathrm{Al} / \mathrm{Ni}=600, \mathrm{CH}_{2} \mathrm{Cl}_{2}=2 \mathrm{ml}$, toluene $=40 \mathrm{ml}$, ethylene $=$ 8 atm, time $=10 \mathrm{~min}$.
a)

b)

c)

d)

e)

1

2

$\% V_{\text {bur }}=\mathbf{8 2 . 3} \%$

$\% V_{\text {bur }}=\mathbf{8 3 . 7} \%$

$\% V_{\text {bur }}=\mathbf{8 6 . 4} \%$

$\% V_{\text {bur }}=87.6 \%$

Figure S2. Steric maps for the complexes 1-5: a) 1; b) 2; c) 3; d) 4; e) 5 .


Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of the polymer from table 1 , entry $7\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 110^{\circ} \mathrm{C}\right)$.

## 2. Experimental sections

### 2.1 General Considerations

All experiments were carried out under a dry Nitrogen atmosphere using standard Schlenk techniques or in a glove-box. Deuterated solvents used for NMR were dried and distilled prior to use. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were recorded by a Bruker Ascend Tm 500 spectrometer at ambient temperature unless otherwise stated. The chemical shifts of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced to the residual solvent; Coupling constants are in Hz. Elemental analysis was performed by the Analytical Center of the University of Science and Technology of China. X-ray Diffraction data were collected at 298(2) K on a Bruker Smart CCD area detector with graphite-monochromated Mo $\mathrm{K}^{\alpha}$ radiation ( $\lambda=0.71073 \AA$ ). Molecular weight and molecular weight distribution of the polymers were determined by gel permeation chromatography (GPC) with a PL 210 equipped with one Shodex AT-803S and two Shodex AT-806MS columns at $150{ }^{\circ} \mathrm{C}$ using trichlorobenzene as a solvent and calibrated with polystyrene standards.

Stress/strain experiments were performed at $10 \mathrm{~mm} / \mathrm{min}$ by means of a Universal Test Machine (UTM2502) at room temperature. At least three specimens of each polymer were tested. Polymers were melt-pressed at 30 to $35^{\circ} \mathrm{C}$ above their melting point to obtain the test specimens. The test specimens had $14-\mathrm{mm}$ gauge length, $2-\mathrm{mm}$ width, and thickness of 0.5 mm .

### 2.2 Procedure for the Synthesis of Benzhyldrol.



Bis(3-methylphenyl)methanol. 4-methylbromobenzene ( $12.6 \mathrm{~g}, 73.8 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry THF ( 75 mL ) and cooled to $-78^{\circ} \mathrm{C}$ under $\mathrm{N}_{2} . n$-Butyl lithium ( $46.2 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, $73.9 \mathrm{mmol}, 1.0$ equiv.) was added dropwise and the resulting suspension was stirred at- $78{ }^{\circ} \mathrm{C}$ for 1 h . Methyl formate ( $2.22 \mathrm{~g}, 36.9 \mathrm{mmol}, 0.5$ equiv.) in THF ( 15 mL ) was then added dropwise over a period of 10 min , and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then at room temperature for 1 h . Saturated ammonium chloride (aqueous, 100 mL ) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layers were
washed with brine ( $2 \times 30 \mathrm{~mL}$ ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by recrystallization to give a colorless solid ( $6.67 \mathrm{~g}, 85.2 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$, aryl- $H$ ), $7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$, aryl$H$ ), $5.72\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{PhMe})_{2}\right), 2.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}^{2} \mathrm{CH}_{3}\right) 2.28$ (broad peak, $\left.1 \mathrm{H}, \mathrm{OH}\right) .{ }^{13} \mathrm{C}$ NMR ( 126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.21,136.85,129.02,126.49,75.69\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right), 21.09\left(\mathrm{Ar}^{2} \mathrm{CH}_{3}\right)$.

### 2.3 Procedure for the Synthesis of Aniline.



2,6-Bis(di-p-tolylmethyl)-4-methylaniline. A mixture of $p$-toluidine ( $1.44 \mathrm{~g}, 13.5 \mathrm{mmol}, 1.0$ equiv.) and bis(p-methylphenyl)methanol ( $5.71 \mathrm{~g}, 27.0 \mathrm{mmol}, 2.0$ equiv.) was heated to $120^{\circ} \mathrm{C}$. A solution of anhydrous zinc chloride ( $0.92 \mathrm{~g}, 6.8 \mathrm{mmol}, 0.5$ equiv.) in concentrated hydrochloric acid ( $1.13 \mathrm{~mL}, 37 \%$ in $\mathrm{H}_{2} \mathrm{O}, 1.0$ equiv.) was added to the mixture (exothermic + intense bubbling), and the temperature was raised to $160^{\circ} \mathrm{C}$. After 30 min at $160^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 200 mL ). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was washed with water ( $3 \times 100 \mathrm{~mL}$ ) and dried over anhydrous magnesium sulfate. The solution was concentrated to 20 mL . The product was crashed out with 200 ml methanol and washed with methanol $(3 \times 100 \mathrm{~mL})$. The desired aniline was obtained as a white crystalline solid at $74.0 \%(4.94 \mathrm{~g})$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 8 H , aryl- $H$ ), $6.96\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}\right.$, aryl- $H$ ), $6.38\left(\mathrm{~s}, 2 \mathrm{H}\right.$, aryl- $H$ ), $5.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{PhMe})_{2}\right)$, $2.31\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.12$, $139.73,136.06,129.59,129.48,129.38,128.94,126.62,51.76\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right), 21.20$ $\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 21.16\left(\mathrm{Ar}-\mathrm{CH}_{3}\right)$. This compound is knwon. ${ }^{1}$
2,6-bis-(sec-phenethyl)-4-methylaniline were synthesized according to the literature. ${ }^{2}$

### 2.4 Procedure for the Synthesis Ligands L1-L5.


 r.t. 48 h


Yield: $2.75 \mathrm{~g}, 69.5 \%$

2-((2,6-bis(di-p-tolylmethyl)-4-methylphenyl)imino)acenaphthylen-1-one. A mixture of 2,6-bis(di-p-tolylmethyl)-4-methylaniline ( $2.97 \mathrm{~g}, 6 \mathrm{mmol}, 1.0$ equiv.) and acenaphthylen-1,2dione ( $1.09 \mathrm{~g}, 6 \mathrm{mmol}, 1.0$ equiv.) were dissolved in 5 mL ethanol and 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing a catalytic amount of $p$-toluenesulfonic acid and stirred for 48 h at room temperature.

The solvent was evaporated at reduced pressure to give the crude product, which was chromatographed on silica gel with petroleum ether-ethyl acetate ( $\mathrm{v} / \mathrm{v}=30: 1$ ). A 2.75 g amount of the product was obtained as red powder in $69.5 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02$ (dd, $J=10.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}$, aryl- $H$ ), $7.76-7.66(\mathrm{~m}, 2 \mathrm{H}$, aryl $-H$ ), $7.06-6.99(\mathrm{~m}, 5 \mathrm{H}$, aryl $-H), 6.96$ (t, $J=9.4 \mathrm{~Hz}, 4 \mathrm{H}$, aryl- $H$ ), $6.77(\mathrm{~s}, 2 \mathrm{H}$, aryl- $H$ ), $6.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}$, aryl- $H), 6.32(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 4 \mathrm{H}$, aryl- $H$ ), 6.03 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, aryl $-H$ ), 5.33 (s, 2H, CH(PhMe) 2 ), $2.29(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.67\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $190.09(C=O), 162.56(C=\mathrm{N}), 146.08,142.38,140.19,139.12,135.60,134.86,133.14,132.77$, 131.98, 131.67, 130.24, 129.97, 129.76, 129.47, 129.42, 129.31, 128.93, 128.64, 128.60, $128.43,127.58,127.56,127.33,126.86,124.29,122.22,121.50,51.53,21.65\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 21.19$ $\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 20.48\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right)$. This compound is kwon. ${ }^{1}$


Acenaphthylene-1-[2,6-bis(di-p-tolylmethyl)-4-methylphenylimino]-2-phenylimine
(L1). A solution of 2-((2,6-bis(di-p-tolylmethyl)-4-methylphenyl)imino)acenaphthylen-1-one ( $0.66 \mathrm{~g}, 1 \mathrm{mmol}, 1.0$ equiv.), aniline ( $0.19 \mathrm{~g}, 2 \mathrm{mmol}, 2.0$ equiv.) and $p$-toluenesulfonic acid $(10 \mathrm{mg})$ in toluene ( 30 mL ) was stirred at $80^{\circ} \mathrm{C}$ for 36 h , until there was one main point on the TLC plate. The desired compound was isolated using column chromatography on silica gel with petroleum ether-ethyl acetate $(\mathrm{v} / \mathrm{v}=40: 1)$. The pure compound was obtained as a yellow solid ( $31.2 \%, 0.23 \mathrm{~g}$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl- $H$ ), 7.61 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl- $H$ ), $7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, aryl $-H), 7.24(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, aryl- $H$ ), 7.11$6.92(\mathrm{~m}, 12 \mathrm{H}$, aryl $-H), 6.82-6.75(\mathrm{~m}, 6 \mathrm{H}$, aryl- $H), 6.71(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, aryl-H), $6.36(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{aryl}-H), 6.04\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aryl- $H$ ), $5.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{PhMe})_{2}\right), 2.29(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 1.68\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.50(\mathrm{~N}=C), 160.99(\mathrm{~N}=C), 152.16,146.75,140.56,140.45,139.29,135.42,134.70,132.48$, 132.44, 130.16, 129.88, 129.75, 129.51, 129.48, 129.41, 129.30, 129.25, 128.92, 128.86, 128.70, 128.63, 128.49, 128.35, 128.20, 127.30, 127.04, 126.86, 124.25, 124.22, 123.00, 118.25, $51.57\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right), 21.67\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 21.15\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 20.47\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right)$. ESIMS (m/z): calcd for $\mathrm{C}_{55} \mathrm{H}_{47} \mathrm{~N}_{2}:[\mathrm{M}+\mathrm{H}]^{+} 735.3739$, found: 735.3751.




Yield: 0.32 g, 41.3\%

## Acenaphthylene-1-[2,6-bis(di-p-tolylmethyl)-4-methylphenylimino]-2-(2,6dimethylphenyl)imine (L2) .

A solution of 2-((2,6-bis(di-p-tolylmethyl)-4-methylphenyl)imino)acenaphthylen-1-one (0.66 $\mathrm{g}, 1 \mathrm{mmol}, 1.0$ equiv.), 2,6-dimethylaniline ( $0.24 \mathrm{~g}, 2 \mathrm{mmol}, 2.0$ equiv.) and $p$-toluenesulfonic acid ( 10 mg ) in toluene ( 30 mL ) was refluxed for 10 h , until there was one main point on the TLC plate. The desired compound was isolated using column chromatography on silica gel with petroleum ether-ethyl acetate ( $\mathrm{v} / \mathrm{v}=40: 1$ ). The pure compound was obtained as a yellow solid ( $41.3 \%, 0.32 \mathrm{~g}$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl- $H$ ), 7.57 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aryl- $-H), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, aryl- $H$ ), $7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, aryl- $H$ ), $7.09-$ $6.99(\mathrm{~m}, 9 \mathrm{H}$, aryl-H), 6.93-6.88 (m, 1H, aryl-H), $6.79(\mathrm{dd}, J=9.8,7.6 \mathrm{~Hz}, 6 \mathrm{H}$, aryl-H), 6.53 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, aryl- $H$ ), 6.30 (d, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}$, aryl- $H$ ), 5.92 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, aryl- $H$ ), 5.51 (s, 2H, $\left.\mathrm{CH}(\mathrm{PhMe})_{2}\right), 2.29$ ( $\left.\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 2.27$ (s, 3H, Ar- $\mathrm{CH}_{3}$ ), 2.23 (s, 6 H , aryl$\left.\mathrm{CH}_{3}\right), 1.63\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 163.72(\mathrm{~N}=C), 161.66(\mathrm{~N}=C)$, 149.53, 146.89, 140.60, 139.87, 139.14, 135.50, 134.71, 132.54, 129.94, 129.87, 129.55, 129.03, 128.90, 128.57, 128.51, 128.47, 128.42, 128.40, 127.01, 126.99, 125.01, 124.59, 123.74, 121.68, $51.65\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right), 29.84\left(\mathrm{Ar}^{2} \mathrm{CH}_{3}\right), 21.67\left(\mathrm{Aryl}^{2} \mathrm{CH}_{3}\right), 21.13\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right)$, $20.42\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 18.29\left(\right.$ aryl- $\left.\mathrm{CH}_{3}\right)$. ESI-MS $(\mathrm{m} / \mathrm{z})$ : calcd for $\mathrm{C}_{57} \mathrm{H}_{51} \mathrm{~N}_{2}:[\mathrm{M}+\mathrm{H}]^{+} 763.4052$, found: 763.4066 .


## Acenaphthylene-1-[2,6-bis(di-p-tolylmethyl)-4-methylphenylimino]-2-(2,6diisopropylphenyl)imine (L3).

A solution of 2-((2,6-bis(di-p-tolylmethyl)-4-methylphenyl)imino)acenaphthylen-1-one ( 0.66 $\mathrm{g}, 1 \mathrm{mmol}, 1.0$ equiv.), 2,6-diisopropylaniline ( $0.35 \mathrm{~g}, 2 \mathrm{mmol}, 2.0$ equiv.) and $p$ toluenesulfonic acid ( 10 mg ) in toluene ( 30 mL ) was refluxed for 10 h , until there was one main point on the TLC plate. The solution was evaporated at reduced pressure, and the remaining solution was diluted in methanol ( 100 mL ). The yellow solid was isolated by filtration, followed by recrystallization from dichloromethane and $n$-hexane $(53.3 \%, 0.44 \mathrm{~g})$. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}$, 3 H ), 7.23-7.19 (m, 1H), 7.03 (dd, $J=19.8,8.1 \mathrm{~Hz}, 8 \mathrm{H}), 6.79$ (dd, $J=14.5,8.4 \mathrm{~Hz}, 7 \mathrm{H}$ ), 6.44 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 5.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{PhMe})_{2}\right)$, 3.24-3.13 (m, 2H, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.30$ (s, $\left.6 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 2.28$ (s, 3H, Ar-CH3), 1.62 (s, 6H, $\left.\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 1.28\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.02\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 163.92(\mathrm{~N}=C), 162.32(\mathrm{~N}=C), 147.28,146.96,140.94,140.11$, 139.88, 138.94, 135.88, 135.54, 135.47, 134.69, 132.59, 132.53, 129.85, 129.68, 129.57, $129.46,129.26,129.00$, 128.93 , 128.81, 128.62, 128.56, 128.38, 128.11, 127.99, 126.96,
126.83, 126.58, 124.65, 124.51, 124.42, 123.64, 123.59, 123.47, 122.83, $51.51\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right)$, $29.84\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.62\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.37\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.84\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.55$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.27\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $21.66\left(\mathrm{Ar}-\mathrm{CH}_{3}\right)$, $21.12\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 20.43\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right)$. ESI-MS (m/z): calcd for $\mathrm{C}_{61} \mathrm{H}_{59} \mathrm{~N}_{2}$ : $[\mathrm{M}+\mathrm{H}]^{+}$819.4678, found: 819.4694.


Yield: $0.47 \mathrm{~g}, 49.6 \%$
Acenaphthylene-1-[2,6-bis(di-p-tolylmethyl)-4-methylphenylimino]-2-(2,6-bis-(sec-phenethyl)-4-methylphenyl)imine (L4). Using the same procedure as for the synthesis of L3, $\mathbf{L 4}$ was obtained as a yellow powder at $49.6 \%$ yield $(0.47 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.70-7.53 (m, 2H), $7.18-6.65(\mathrm{~m}, 28 \mathrm{H}), 6.55-6.16(\mathrm{~m}, 5 \mathrm{H}), 6.12-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.68-5.46$ (m, 2H, CH(PhMe) $)_{2}$, $4.34-4.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHPhMe}), 2.43-2.19\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}+\mathrm{Ar}-\right.$ $\left.\mathrm{CH}_{3}\right), 1.88-1.54\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}+\mathrm{CHPh} M e\right) .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 163.77$ $(C=\mathrm{N}), 162.79(C=\mathrm{N}), 162.13(C=\mathrm{N}), 161.60(C=\mathrm{N}), 146.79,145.71,145.44,145.07,141.11$, 140.64, 140.61, 140.08, 139.98, 139.82, 139.24, 135.97, 135.32, 135.26, 134.59, 133.73, 132.49, 132.13, 129.77, 129.47, 129.37, 129.17, 128.91, 128.70, 128.65, 128.50, 128.19, $128.10,127.98,127.84,127.75,127.67,127.43,126.51,125.52,125.01,124.88,123.60,51.64$ $\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right), 51.43\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right), 51.34\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right), 51.28\left(\mathrm{CH}(\mathrm{PhMe})_{2}\right), 51.13$ $\left(C H(\mathrm{PhMe})_{2}\right), 40.59$ ( $C \mathrm{HPhMe}$ ), 40.40 ( $\mathrm{CHPhMe)}$,40.32 ( $\mathrm{CHPhMe)}$,40.06 ( $\mathrm{CHPhMe)}$, 39.73 (CHPhMe), $22.30\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 22.27\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 21.86\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 21.73\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right)$, $21.66\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 21.56\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 21.19(\mathrm{CHPh} M e), 21.09(\mathrm{CHPh} M e), 21.02$ ( $\mathrm{CHPh} M e$ ), $20.94(\mathrm{CHPh} M e), 20.37(\mathrm{CHPh} M e), 20.34(\mathrm{CHPh} M e)$. ESI-MS (m/z): calcd for $\mathrm{C}_{72} \mathrm{H}_{65} \mathrm{~N}_{2}:[\mathrm{M}+\mathrm{H}]^{+} 957.5148$, found: 957.5170.


Acenaphthylene-bis[2,6-bis(di-p-tolylmethyl)-4-methylphenyl]-1,2-diimine (L4). $\mathrm{ZnCl}_{2}$ $(0.24 \mathrm{~g}, 1.79 \mathrm{mmol})$ and acenaphthenequinone $(0.29 \mathrm{~g}, 1.57 \mathrm{mmol})$ were suspended in glacial acetic acid ( 6 mL ). 2,6-Bis(diphenylmethyl)-4-methylaniline ( $1.77 \mathrm{~g}, 3.57 \mathrm{mmol}$ ) was added, and the reaction mixture was refluxed under stirring for 30 min . The solution was allowed to cool to room temperature, and a bright orange-red solid precipitated. The solid was separated by filtration and washed with acetic acid $(3 \times 5 \mathrm{~mL})$ and diethyl ether $(5 \times 5 \mathrm{~mL})$, to remove remaining acetic acid. Drying under vacuum gave bright orange-red, poorly soluble solid (1.36 $\mathrm{g}, 68.7 \%$ ). Then the zinc was removed from the zinc diimine complex. The product of the previous step was suspended in methylene chloride ( 24 mL ), and a solution of potassium oxalate $(0.22 \mathrm{~g}, 1.2 \mathrm{mmol})$ in water $(2 \mathrm{~mL})$ was added. The reaction mixture was stirred vigorously for 20 min . The two phases were separated, and the organic layer was washed with water ( $3 \times 10 \mathrm{~mL}$ ) and dried with $\mathrm{MgSO}_{4}$. After filtration the solvent was removed under vacuum to afford the product as an orange powder ( $0.85 \mathrm{~g}, 70.1 \%$ ), followed by recrystallization from dichloromethane and $n$-hexane. The total yield of two steps is $48.2 \% .{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-6.83(\mathrm{~m}, 22 \mathrm{H}), 6.72(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $8 \mathrm{H}), 6.39$ (d, $J=5.6 \mathrm{~Hz}, 8 \mathrm{H}$ ), 6.12 (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}(\mathrm{PhMe}) 2), 2.27$ (s, 6H, $\left.\mathrm{Ar}-\mathrm{CH}_{3}\right), 2.25\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 1.88\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}(\mathrm{Ph} M e)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 163.53(C=\mathrm{N}), 146.70,141.17,140.07,139.82,135.25,134.80,132.52,131.84,129.91$, 129.49, 129.21, 128.78, 128.60, 128.55, 127.09, 126.57, 124.49, 50.73 ( $\left.\mathrm{CH}(\mathrm{PhMe})_{2}\right), 21.64$ $\left(\mathrm{Ar}-\mathrm{CH}_{3}\right), 21.09\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right), 20.69\left(\mathrm{CH}(\mathrm{Ph} M e)_{2}\right)$. This compound is known. ${ }^{1}$

### 2.5 Procedure for the Synthesis of Nickel Complexes 1-5.



Complexes $1-5$ were synthesized by the reaction of 1 equiv. of ( DME ) $\mathrm{NiBr}_{2}$ with the corresponding ligands in methylene chloride. The corresponding ligand ( 0.3 mmol ) was added in 10 mL of methylene chloride in a Schlenk tube under a nitrogen atmosphere. A suspension of (DME) $\mathrm{NiBr}_{2}(0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to the above solution. The resulting mixture was stirred at room temperature for 24 hours. The solvent was evaporated under reduced pressure to afford a solid. The product was washed with $4 \times 5 \mathrm{~mL}$ diethyl ether and dried under vacuum. The single crystal can be obtained by diffusion from layering hexane on to the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at room temperature.


Complex 1. Brown solid. Yield: $0.25 \mathrm{~g}, 86 \%$. Elem. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{Ni}$ : C, 69.28; H, 4.86; N, 2.94. Found: C, 69.02; H, 4.83; N, 2.99. MALDI-TOF-MS(m/z): calcd for $\mathrm{C}_{55} \mathrm{H}_{47} \mathrm{BrN}_{2} \mathrm{Ni}$ : $[\mathrm{M}-\mathrm{Br}+\mathrm{H}]^{+} 872.2276$, found: 872.8820 .


Complex 2. Brown solid. Yield: 0.26 g, $89.0 \%$. Elem. Anal. Calcd for $\mathrm{C}_{57} \mathrm{H}_{50} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{Ni}$ : C, 69.75; H, 5.13 ; N, 2.85. Found: C, 69.53; H, 4.99; N, 2.68. MALDI-TOF-MS(m/z): calcd for $\mathrm{C}_{57} \mathrm{H}_{50} \mathrm{BrN}_{2} \mathrm{Ni}:[\mathrm{M}-\mathrm{Br}]^{+} 901.2490$, found: 901.2432.


Complex 3. Brown solid. Yield: 0.28 g, $91 \%$. Elem. Anal. Calcd for $\mathrm{C}_{61} \mathrm{H}_{58} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{Ni}$ : C, 70.61; H, 5.63; N, 2.70. Found: C, 70.75; H, 5.73; N, 2.47. MALDI-TOF-MS(m/z): calcd for $\mathrm{C}_{61} \mathrm{H}_{58} \mathrm{BrN}_{2} \mathrm{Ni}:[\mathrm{M}-\mathrm{Br}]^{+} 957.3116$, found: 957.3694.


Complex 4. Brown solid. Yield $0.31 \mathrm{~g}, 87 \%$. Elem. Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{64} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{Ni}$ : C, 73.55; H, 5.49; N, 2.38. Found: C, 73.40; H, 5.51; N, 2.46. MALDI-TOF-MS(m/z): calcd for $\mathrm{C}_{72} \mathrm{H}_{65} \mathrm{BrN}_{2} \mathrm{Ni}:[\mathrm{M}-\mathrm{Br}+\mathrm{H}]^{+}$1094.3685, found: 1094.8672.


Complex 5. Brown solid. Yield: $0.38 \mathrm{~g}, 93 \%$. This compound is known. ${ }^{3}$

### 2.6 General in-Situ Activated Polymerization Procedure.

Under an inert atmosphere, a 350 mL glass thick-walled pressure vessel was charged with MAO, 40 mL toluene, and a magnetic stir bar. The vessel was pressurized with 1 atm of ethylene and allowed to equilibrate under constant pressure for 10 minutes with stirring. The nickel complex in $1 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ was injected and the ethylene pressure was increased to 8 atm to initiate polymerization and stirred continuously for the desired time. The polymerization was quenched via the addition of $\mathrm{MeOH}(5 \mathrm{~mL})$ and the polymer was precipitated using excess acidic $\mathrm{MeOH}(5 \% \mathrm{HCl}$ in MeOH$)$ and dried in a vacuum oven to constant weight. Polymer branching density was determined by ${ }^{1} \mathrm{H}$ NMR. $\mathrm{B}=1000 \times 2\left(\mathrm{I}_{\mathrm{CH} 3}\right) / 3\left(\mathrm{I}_{\mathrm{CH} 2+\mathrm{CH}}+\mathrm{I}_{\mathrm{CH} 3}\right) . \mathrm{CH}_{3}(\mathrm{~m}$, $0.77-0.95 \mathrm{ppm}) ; \mathrm{CH}_{2}$ and $\mathrm{CH}(\mathrm{m}, \mathrm{ca} .1 .0-1.45 \mathrm{ppm})$.

### 2.7 Copolymerization of Ethylene and UA

In a typical experiment, a 300 mL stainless pressure reactor connected with a high pressure gas line was firstly dried at $90^{\circ} \mathrm{C}$ under vacuum for at least 1 h . The reactor was then adjusted to the desired polymerization temperature. 20 mL of toluene with the desired amount $\mathrm{Et}_{2} \mathrm{AlCl}$ was added to the reactor under $\mathrm{N}_{2}$ atmosphere, then the desired polar monomer and the desired amount of Ni catalyst in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was injected into the polymerization system via syringe subsequently. With a rapid stirring, the reactor was pressurized and maintained at the desired pressure of ethylene. After 1 h , the pressure reactor was vented and the copolymer was dried under vacuum overnight.

## 3. Spectra Data

## $3.1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of the Synthetic Compounds.



Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{b i s}(3-m e t h y l p h e n y l) m e t h a n o l$ in $\mathrm{CDCl}_{3}$


Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum of bis(3-methylphenyl)methanol in $\mathrm{CDCl}_{3}$.


Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of 2,6-Bis(di-p-tolylmethyl)-4-methylaniline in $\mathrm{CDCl}_{3}$.


Figure S7. ${ }^{13} \mathrm{C}$ NMR spectrum of 2,6-Bis(di-p-tolylmethyl)-4-methylaniline in $\mathrm{CDCl}_{3}$.


Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of 2-((2,6-bis(di-p-tolylmethyl)-4-methylphenyl)imino)acenaphthylen-1one in $\mathrm{CDCl}_{3}$. *hexanes


Figure S9. ${ }^{13} \mathrm{C}$ NMR spectrum of 2-((2,6-bis(di-p-tolylmethyl)-4-methylphenyl)imino)acenaphthylen-1one in $\mathrm{CDCl}_{3}$. *hexanes

 สิสั ٌㅜㄴ




Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} 1$ in $\mathrm{CDCl}_{3 .} *$ DCM, water.


Figure S11. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L} 1$ in $\mathrm{CDCl}_{3 .} * \mathrm{DCM}$.


Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} \mathbf{2}$ in $\mathrm{CDCl}_{3}$. *hexanes, water.


Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L} \mathbf{2}$ in $\mathrm{CDCl}_{3}$. *hexanes


Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} \mathbf{3}$ in $\mathrm{CDCl}_{3}$. *hexanes



$\begin{array}{llllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80\end{array}$

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L} \mathbf{3}$ in $\mathrm{CDCl}_{3}$. *hexanes



Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} 4$ in $\mathrm{CDCl}_{3}$.


Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L} 4$ in $\mathrm{CDCl}_{3}$.


Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 5}$ in $\mathrm{CDCl}_{3 .} * \mathrm{DCM}$, greese.


Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 5}$ in $\mathrm{CDCl}_{3}$. *hexanes.

### 3.2 ESI-MS of Ligand L1-L4.



Figure S20. ESI-MS of L1.


Figure S21. ESI-MS of L2.


Figure S22. ESI-MS of L3.


Figure S23. ESI-MS of L4.

### 3.3 MALDI-TOF of Complexes 1-4.



Figure S24. MALDI-TOF-MS of complex 1.


Figure S25. MALDI-TOF-MS of complex 2.


Figure S26. MALDI-TOF-MS of complex 3.


Figure S27. MALDI-TOF-MS of complex 4.

## $3.4{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of polymer and copolymer.



Figure S28. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $1\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1 , entry $2\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $3\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $6\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $7\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $9\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S34. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $10\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1 , entry $11\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $13\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1 , entry $14\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S38. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $16\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $17\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S40. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 1, entry $18\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 3, entry $11\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.


Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 3, entry $12\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.
(105L17_DSY_Ni_Me_0.32UA/1

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer from table 3, entry $14\left(\mathrm{CDCl}_{2} \mathrm{CDCl}_{2}, 120{ }^{\circ} \mathrm{C}\right)$.

### 3.5 DSC, GPC of polymer and copolymer.



Figure S44. DSC of the polymer from table 1, entry 1.

Sample: DSY-NI-H-40
Size: 5.5000 mg
Method: Heat/Cool/Heat

File: D:IDSC DATAIDSY\DSY-NI-H-40.001
Run Date: 30-Dec-2016 13:23 Instrument: DSC Q20 V24.11 Build 124


Figure S45. DSC of the polymer from table 1, entry 2.


Figure S46. DSC of the polymer from table 1, entry 3.


Figure S47. DSC of the polymer from table 1, entry 4.


Figure S48. DSC of the polymer from table 1, entry 5.


Figure S49. DSC of the polymer from table 1, entry 6.


Figure S50. DSC of the polymer from table 1, entry 7.


Figure S51. DSC of the polymer from table 1, entry 9.


Figure S52. DSC of the polymer from table 1, entry 10.


Figure S53. DSC of the polymer from table 1, entry 11.


Figure S54. DSC of the polymer from table 1, entry 12.


Figure S55. DSC of the polymer from table 1, entry 15.


Figure S56. DSC of the polymer from table 1, entry 16.

Sample: KB-Ph-20
Size: 5.2000 mg
Method: Cell constant calibration


Figure S57. DSC of the polymer from table 1, entry 17.


Figure S58. DSC of the polymer from table 1, entry 18.


Figure S59. DSC of the polymer from table 1, entry 19.


Figure S60. DSC of the polymer from table 1, entry 20.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 10:07 AM
Workbook: E:Cirrus Workbooks 20161130120161130 .phw

## Sample Details

Sample Name: DSY-Ni-H-40
Acquired: 4/14/2017 5:11:23 AM By Analyst HTGPC Batch Name: DSY
Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ãnalysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000

Calibration Curve: $y=13.063857-0.622521 x^{*} 1$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000

FRM Name:



| MW Averages |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Nw | Mz |  | Mz+1 | Mv | PD |  |  |
| 1 | 16356 | 8642 | 21544 | 467 |  | 84447 | 18988 | 2.49294 |  |  |
| Processed Peaks |  |  |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) |  |  |  |  | Pk Height (mV) | \% Height | $\begin{gathered} \text { Area } \\ \text { (mV.secs) } \end{gathered}$ | \% Area |
| 1 |  | 12.23 |  | 22 |  | 6.38 | 35.0676 | 0 | 3453.7 | 100 |

Figure S61. GPC of the polymer from table 1, entry 2.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Workbook: E:ICirrus Workbooks|20161130120161130.plv

## Sample Details

Sample Name: DSY-Ni-H-60
Acquired: 4/14/2017 5:44:15 AM By Analyst HTGPC Batch Name: DSY

Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Âninalysis Using Method: PS2016113001 0.7000

Calibration Used: 4/13/2017 8:58:56 AM



```
MW Averages
Peak No Mp Mn Mr Mz Mz+1 Mv PD
            1
Processed Peaks
Peak No Name }\begin{array}{c}{\mathrm{ Start RT (mins)}}
            1 crcclll
```

Figure S62. GPC of the polymer from table 1, entry 3.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 10:08 AM
Workbook: E:Cirrus Workbooks $20161130120161130 . p h w$

## Sample Details

Sample Name: DSY-Ni-H-80
Acquired: 4/14/2017 0:17:05 AM By Analyst HTGPC Batch Name: DSY
Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ânalysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins $\quad$ FRCF: 1.0000 FRM Name:


## MW Averages

Peak No Mp Mn Mw Mz Mz+1 Mv PD

| 1 | 5716 | 3728 | 7174 | 12389 | 18527 | 6546 | 1.92539 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Peak No Name \begin{tabular}{cccccc}

| Start RT |
| :---: |
| (mins) | \& | Max RT |
| :---: |
| (mins) | \& | End RT |
| :---: |
| (mins) | \& | Pk Height |
| :---: |
| $(\mathrm{mV})$ | \& \% Height \& | Area |
| :---: |
| (mV.secs) |

\end{tabular} \%Area

Figure S63. GPC of the polymer from table 1, entry 4.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Workbook: E:Cirrus Workbooks 20181130120161130 .plv

## Sample Details

Sample Name: DSY-Ni-Me-20
Acquired: 4/13/2017 9:57:44 PM By Analyst HTGPC Batch Name: DSY Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample: Ânalysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Namrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\circ} 1$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 18.52 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000 FRM Name:



| MW Averages |  |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Mw | Mz | $M z+1$ | Mv | PD |
| 1 | 1069956 | 512407 | 1121673 | 1856639 | 2563002 | 1023360 | 2.18903 |


| Processed Peaks |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Name | Start RT (mins) | Max RT (mins) | End RT (mins) | Pk Height (mV) | \% Height | $\begin{aligned} & \text { Area } \\ & (\mathrm{mV} . \operatorname{secs}) \end{aligned}$ | \% Area |
| 1 |  | 10.05 | 11.30 | 13.58 | 10.3185 | 100 | 946.854 | 100 |

Figure S64. GPC of the polymer from table 1, entry 5.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 10:00 AM
Workbook: E:Cirrus Workbooks 120161130120161130. phv
Sample Details
Sample Name: DSY-Ni-Me-40
Aoquired: 4/13:2017 10:30
Name: DSY
Concentration: $0.10 \quad$ Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ânalysis Using Method: PS2016113001 0.7000

Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000

Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000 FRM Name:


## MW Averages

| Peak No | Mp | Mn | Mw | Mz | $\mathrm{Mz}+1$ | Mv | PD |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 696000 | 312754 | 740033 | 1256830 | 1759568 | 671693 | 2.36618 |  |
| Processed Peaks |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT <br> (mins) | Max RT <br> (mins) | End RT <br> (mins) | Pk Height <br> (mV) | \% Height | Area <br> (mV.secs) | \%Area |
| 1 |  | 10.25 | 11.60 | 14.28 | 27.0128 | 100 | 2553.31 | 100 |

Figure S65. GPC of the polymer from table 1, entry 6.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 10:01 AM
Workbook: E:Cirrus Workbooks L20161130120161130.phv

## Sample Details

Sample Name: DSY-Ni-Me-60
Acquired: 4/13/2017 11:05:40 PM By Analyst HTGPC Batch Name: DSY
Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ânalysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\prime \prime} 1$
High Limit MW RT: 10.23 mins

Low Limit MWW RT: 16.52 mins FRM Name:



| MW Averages |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Nw | Mz | $\mathrm{Mz}+1$ | Mv | PD |  |
| 1 | 522522 | 217753 | 586910 | 1058362 | 1586417 | 527521 | 2.6853 |  |
| Processed Peaks |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) | $\begin{gathered} \text { Max RT } \\ (\text { mins }) \end{gathered}$ | End RT (mins) | Pk Height (mV) | \% Height | $\begin{aligned} & \text { Area } \\ & \text { (mV.secs) } \end{aligned}$ | \% Area |
| 1 |  | 10.20 | 11.80 | 14.87 | 33.0107 | 0 | 3221.46 | 100 |

Figure S66. GPC of the polymer from table 1, entry 7.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 10:01 AM
Workbook: E:Cirrus WorkbooksL20161130120161130.phw

## Sample Details

Sample Name: DSY-Ni-Me-80


Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: $1.0000 \quad$ FRM Name:

Distribution Pots


| MW Averages |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Nw | Mz | $\mathrm{Mz}+1$ | Mv | PD |  |
| 1 | 274138 | 120220 | 320759 | 591893 | 876210 | 2870592 | 881 |  |
| Processed Peaks |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) | $\underset{(\text { mins })}{\underset{\text { Max RT }}{ }}$ | End RT (mins) | Pk Height ( mV ) | \% Height | Area (mV.secs) | \% Area |
| 1 |  | 10.70 | 12.25 | 15.08 | 28.9733 | 0 | 2930.76 | 100 |

Figure S67. GPC of the polymer from table 1, entry 8.


MW Averages

| Peak No | Mp | Mn | Mw | $M z$ | $M z+1$ | $M v$ | PD |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1357361 | 715464 | 1280788 | 1930878 | 3100315 | 1198739 | 1.79015 |

## Processed Peaks

| Peak No | Name | Start RT <br> $(\mathrm{mins})$ | Max RT <br> $(\mathrm{mins})$ | End RT <br> $(\mathrm{mins})$ | Pk Height <br> $(\mathrm{mV})$ | \% Height | Area <br> $(\mathrm{mV} . \mathrm{secs})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | \% Area

Figure S68. GPC of the polymer from table 1, entry 9.

Sample Name: DSY-Ni-iPr-40
Acquired: 4/14/2017 12:44:10 AM
By Analyst: HTGPC
Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Analysis Using Method: PS2016113001
0.7000

## Calibration Used: 4/13/2017 8:58:56 AM

Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$

| High Limit MW RT: 10.23 mins | Low Limit MW RT: 16.52 mins |  |
| :--- | :--- | :--- |
| Flow Marker RT: 0.00 mins | FRCF: 1.0000 | FRM Name: |




MW Averages

| Peak No | Mp | Mn | $M w$ | $M z$ | $M z+1$ | $M v$ | PD |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1358687 | 685301 | 1425028 | 2287835 | 3148161 | 1309307 | 2.07942 |


| Peak No | Name | Start RT (mins) | Max RT (mins) | End RT (mins) | Pk Height (mV) | \% Height | $\begin{gathered} \text { Area } \\ \text { (mV.secs) } \end{gathered}$ | \% Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 9.80 | 11.13 | 13.52 | 22.7238 | 0 | 1953.43 | 100 |

Figure S69. GPC of the polymer from table 1, entry 10.

## Sample Details

Sample Name: DSY-Ni-iPr-60
Acquired: 4/14/2017 1:17:02 AM
By Analyst: HTGPC
Batch Name: DSY
Concentration: $0.10 \quad$ Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Analysis Using Method: PS2016113001

## Calibration Used: 4/13/2017 8:58:56 AM

Calibration Type: Narrow Standard Curve Fit Used: 1
K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins
Flow Marker RT: $0.00 \mathrm{mins} \quad$ FRCF: 1.0000
Low Limit MW RT: 16.52 mins FRM Name:


Figure S70. GPC of the polymer from table 1, entry 11.

## Sample Details

Sample Name: DSY-Ni-iPr-80
Acquired: 4/14/2017 1:52:05 AM By Analyst: HTGPC Batch Name: DSY Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: $\mathbf{1 4 . 1 0 0 0}$ Alpha of Sample:
Analysis Using Method: PS2016113001

## Calibration Used: 4/13/2017 8:58:56 AM

Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins
Flow Marker RT: $0.00 \mathrm{mins} \quad$ FRCF: 1.0000

Low Limit MW RT: 16.52 mins FRM Name:



| MW Averages |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Mw | Mz | $\mathrm{Mz}+1$ | Mv | PD |  |
| 1 | 842582 | 384406 | 883077 | 1467951 | 2035900 | 804905 | 2.29725 |  |
| Processed Peaks |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) | Max RT (mins) | End RT <br> (mins) | Pk Height (mV) | \% Height | $\begin{gathered} \text { Area } \\ \text { (mV.secs) } \end{gathered}$ | \% Area |
| 1 |  | 10.17 | 11.48 | 14.18 | 24.3397 | 0 | 2228.15 | 10 |

Figure S71. GPC of the polymer from table 1, entry 12.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Workbook: E:ICirrus Workbooks|20161130120161130.plw

## Sample Details

Sample Name: DSY-Ni-MePh-60-1
Acquired: 4/14/2017 4:03:28 AM
By Analyst HTGPC
Batch Name: DSY
Concentration: $0.10 \quad$ Injection Volume: 200.0 ul K of Sample: 14.1000
Ânalys sis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: 1
Calibration Curve: $y=13.063857-0.622521 x^{\wedge \prime}$
High Limit MW RT: 10.23 mins
Flow Marker RT: 0.00 mins $\quad$ FRCF: 1.0000


Distritution Pota


MW Averages

| Peak No | Mp | Mn | Mw | Mz | Mz+1 | Mv | PD |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1767048 | 1002455 | 1975681 | 3199327 | 4452538 | 1816062 | 1.97082 |

## Processed Peaks

| Peak No | Name | Start RT <br> $($ mins $)$ | Max RT <br> $(\operatorname{mins})$ | End RT <br> $(\operatorname{mins})$ | Pk Height <br> $(\mathrm{mV})$ | \% Height | Area <br> $(\mathrm{mV} . \operatorname{secs})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \% Area

Figure S72. GPC of the polymer from table 1, entry 13 .

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Workbook: E:Cirrus Workbooks 20161130120161130 .phw
Sample Details
Sample Name: DSY-Ni-MePh-40-1

Acquired: 4/14/2017 2:57:48 AM
By Analyst HTGPC
Batch Name: DSY
Concentration: $0.10 \quad$ Injection Volume: 200.0 ul K of Sample: 14.1000
Ânalysis Using Method: PS2016113001

Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000 FRM Name:




Figure S73. GPC of the polymer from table 1, entry 14.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 10:06 AM
Workbook: E:ICirrus Workbooks!20161130120161130.phw

## Sample Details

Sample Name: DSY-Ni-MePh-60

Analysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: 1 Calibration Curve: $\mathrm{y}=13.063857-0.622521 \mathrm{x}^{\mathrm{A} 1}$ High Limit MW RT: 10.23 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000 FRM Name:


| MW Averages |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Mw | Mz | Mz+1 | Mv | PD |
| 1 | 1234861 | 675475 | 1387605 | 2344878 | 3399596 | 1267490 | 2.05427 |

## Processed Peaks

| Peak No | Name | Start RT (mins) | Max RT (mins) | End RT (mins) | Pk Height ( mV ) | \% Height | Area (mV.secs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 9.75 | 1120 | 13.37 | 24.9227 |  | 2187.08 |

Figure S74. GPC of the polymer from table 1, entry 15.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 10:07 AM
Workbook: E:Cirrus Workbooks 120181130120161130 .phw

## Sample Details

Sample Name: DSY-Ni-MePh-80
Acquired 41142017 4:38:33
By Analyst HTGPC
Concentration: $0.10 \quad$ Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ânalysis Using Method: PS2016113001 0.7000

Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge 1}$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: $1.0000 \quad$ FRM Name:


| MW Averages |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Mw | Mz |  | Mz+1 | Mv | PD |  |
| 1 | 1177246 | 545617 | 1284471 | 22586 |  | 3347101 | 1162810 | 2.35416 |  |
| Processed Peaks |  |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) | Max RT (mins) | End RT (mins) |  | Height ( mV ) | \% Height | $\begin{aligned} & \text { Area } \\ & \text { (mV.secs) } \end{aligned}$ | \% Area |
| 1 |  | 9.68 | 11.27 | 13.90 |  | 26.8033 | 0 | 2494.6 | 100 |

Figure S75. GPC of the polymer from table 1, entry 16.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 9:35 AM
Workbook: E:Cirrus Workbooks|20161130120161130.plv
Sample Details
Sample Name: DSY-Ni-PhPh-20
Acquired: 4/13/2017 8:19:13 PM
By Analyst HTGPC
Batch Name: DSY
Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Analysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used:
Calibration Curve: $y=13.063857-0.622521 x^{n 1}$
High Limit MW RT: 10.23 mins
Flow Marker RT: 0.00 mins $\quad$ FRCF: 1.0000
K: 14.1000
Alpha: 0.7000

Low Limit MW RT: 16.52 mins




## Processed Peaks



Figure S76. GPC of the polymer from table 1, entry 17.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Workbook: E:Cirrus Workbooks 120161130120161130 .phw

## Sample Details

Sample Name: DSY-Ni-PhPh-40
Acquired: 4/13/2017 $8.52: 04$
Batch Name: DSY
Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ânalysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: 1
Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 11$
High Limit MW RT: 10.23 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000
K. 14.1000 Alpha: 0.7000

Low Limit MW RT: 16.52 mins FRM Name:



| MW Averages <br> Peak No |  | Mp | Mn | Mw | Mz | Mz+1 | Mv | PD |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1898342 | 1048375 | 1652196 | 2165677 | 2588254 | 1572598 | 1.57596 |  |


| Processed Peaks <br> Peak No | Name | Start RT <br> $($ mins $)$ | Max RT <br> $($ mins $)$ | End RT <br> $(\mathrm{mins})$ | Pk Height <br> $(\mathrm{mV})$ | \% Height | Area <br> $(\mathrm{mV} . \operatorname{secs})$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \%Area

Figure S77. GPC of the polymer from table 1, entry 18.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Workbook: E:Cirrus Workbooks L20161130120161130.phv

## Sample Details

Sample Name: DSY-Ni-PhPh-80
. $4 / 13 / 2017$ 0-24:54 PM Analyst HTGPC
Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ânalysis Using Method: PS2016113001


Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge 1}$
High Limit MW RT: 10.23 mins Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: $1.0000 \quad$ FRM Name:


MW Averages

| Peak No | Mp | Mn | Mw | Mz | $M z+1$ | Mv | PD |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2039391 | 863420 | 1685450 | 2392648 | 2939645 | 1575735 | 1.95206 |

## rocessed Peaks

Peak No Name Start RT MaxRT EndRT PkHeight \% Height Area \%Area
$\begin{array}{llllllll}1 & 10.05 & 10.85 & 13.25 & 12.9397 & 0 & 948.181 & 100\end{array}$

Figure S78. GPC of the polymer from table 1, entry 20.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 10:09 AM
Workbook: E:Cirrus Workbooks 120161130120161130. phw

## Sample Details

Sample Name: DSY-Ni-PhPh-80-5min
Acquired: 4/14/2017 3:38:36 PM By Analyst HTGPC Batch Name: DSY
Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ânalysis Using Method: PS2016113001

### 0.7000

Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: 1
Calibration Curve: $y=13.063857-0.622521 x^{\circ} 1$
High Limit MW RT: 10.23 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000



| MW Averages |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Nw | Mz | Mz+1 | Mv | PD |  |
| 1 | 617636 | 351527 | 565684 | 797939 | 1057795 | 533752 | 1.60922 |  |
| Processed Peaks |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) | $\begin{gathered} \operatorname{Max} R T \\ (\text { mins }) \end{gathered}$ | End RT (mins) | Pk Height (mV) | \% Height | $\begin{aligned} & \text { Area } \\ & \text { (mV/secs) } \end{aligned}$ | \% Area |
| 1 |  | 10.58 | 11.70 | 13.57 | 28.1191 | 0 | 1812.39 | 10 |

Figure S79. GPC of the polymer from table 2, entry 1.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC Saturday, April 15, 2017 10:10 AM
Workbook: E:Cirrus Workbooks\20181130120161130.plw
Sample Details
Sample Name: DSY-Ni-PhPh-80-10min

| Acquired: $4 / 14 / 2017$ | 4:11:26 PM | By Analyst HTGPC |
| :--- | ---: | :--- |$\quad$ Batch Name: DSY

Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge 1}$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000 FRM Name:


Figure S80. GPC of the polymer from table 2, entry 2.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15, 2017 10:10 AM
Workbook: E:Cirrus Workbooks!20161130120161130.phv
Sample Details
Sample Name: DSY-Ni-PhPh-80-15min
Acquired: 4/14/2017 4:44:16 PM By Analyst HTGPC
Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ânnalysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K. 14.1000 Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\circ} 11$
High Limit MW RT: 10.23 mins Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: $1.0000 \quad$ FRM Name:



| MW Averages |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Mw | Mz | Mz+1 | Mv | PD |  |
| 1 | 1264717 | 603268 | 1134484 | 165974 | 2094108 | 1056916 | 1.88056 |  |
| Processed Peaks |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) | Max RT (mins) | End RT (mins) | Pk Height (mV) | \% Height | $\underset{(\mathrm{mV} \cdot \mathrm{secs})}{\text { Area }}$ | \%Area |
| 1 |  | 10.25 | 11.18 | 13.37 | 13.549 | 0 | 1082.06 | 100 |

Page 1
4/15/2017 10:10 AM

Figure S81. GPC of the polymer from table 2, entry 3.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15. 2017 10:11 AM
Workbook: E:Cirrus Workbooks|20181130120161130.phw

## Sample Details

Sample Name: DSY-Ni-PhPh-80-60min

| Acquired: $4 / 14 / 2017$ | 5:18:09 PM | Py Analyst HTGPC | Batch Name: DSY |
| :--- | :--- | :--- | :--- |
| Concentration: 0.10 | Injection Volume: 200.0 ul K of Sample: 14.1000 | Alpha of Sample: |  |
| Anlonly |  |  |  |
| Analysis Using Method: | PS2016113001 |  | 0.7000 |

Ânalysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K. $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000 FRM Name:



MW Averages

| Peak No | Mp | Mn | Mw | Mz | $M z+1$ | Mv | PD |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1898342 | 1209401 | 1843157 | 2506177 | 3085816 | 1746591 | 1.52402 |


| Processed Peaks <br> Peak No | Name | Start RT <br> (mins) | Max RT <br> (mins) | End RT <br> (mins) | Pk Height <br> $(\mathrm{mV})$ | \% Height | Area <br> $(\mathrm{mV}$ Vecs) |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \% Area

Figure S82. GPC of the polymer from table 2, entry 5 .

## Cirrus GPC Sample Injection Report

Generated by: HTGPC Saturday. April 15. 2017 10:11 AM
Workbook: E:Cirrus Workbooks L20181130120161130.phv

## Sample Details

Sample Name: DSY-Ni-PhPh-100-5min
Acquired: 4/14/2017 5:53:14 PM
Batch Name: DSY
Concentration: $0.10 \quad$ Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ãnalysis Using Method: PS2016113001
0.7000

Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $y=13.063857-0.822521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000 FRM Name:



| MW Averages |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Nw | Mz | Mz+1 | Mv | PD |
| 1 | 927072 | 521547 | 802183 | 1033500 | 1221075 | 785783 | 1.53808 |
| Processed Peaks |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) | Max RT (mins) | End RT (mins) | $\begin{aligned} & \text { Pk Height } \\ & (\mathrm{mV}) \end{aligned}$ | \% Height | $\begin{gathered} \text { Area } \\ (\mathrm{mV} \cdot \operatorname{secs}) \end{gathered}$ |
| 1 |  | 10.63 | 11.40 | 13.42 | 14.3886 | 0 | 820.017 |

Figure S83. GPC of the polymer from table 2, entry 6.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, April 15. 2017 10:12 AM
Workbook: E:CCirrus Workbooks $120161130120161130 . p h v$
Sample Details
Sample Name: DSY-Ni-PhPh-100-10min

Acquired: 4/14/2017 6-26:04 PM By Analyst HTGPC
Batch Name: DSY
Concentration: 0.10 Injection Volume
Annalysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM

Calibration Type: Narrow Standard $\quad$| Curve Fit Used: 1 | K: $14.1000 \quad$ Alpha: 0.7000 |
| :--- | :--- |
| Calibration Curve: $y=13.063857-0.622521 x^{\wedge 1}$ |  |
| High Limit MW RT: 10.23 mins | Low Limit MW RT: 16.52 mins |
| Flow Marker RT: 0.00 mins $\quad$ FRCF: 1.0000 | FRM Name: |



w
MW Averages

| Peak No | Mp | Mn | Mw | Mz | Mz+1 | Mv | PD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| Processed Peaks <br> Peak No | Name | Start RT <br> (mins) | Max RT <br> (mins) | End RT <br> (mins) | Pk Height <br> $(\mathrm{mV})$ | \% Height | Area <br> (mV.secs) | \% Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 1 |  | 10.47 | 11.27 | 13.63 | 17.3733 | 0 | 1274.14 | 100 |

Figure S84. GPC of the polymer from table 2, entry 7.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Workbook: E:Cirrus Workbooks L20161130120161130.phw

## Sample Details

Sample Name: DSY-Ni-PhPh-100-15min
Acquired: 4/14/2017 6:58:54 PM By Analyst HTGPC Batch Name: DSY

Concentration: 0.10 Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Analysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000

Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000

K: $14.1000 \quad$ Alpha: 0.7000
Low Limit MW RT: 16.52 mins FRM Name:



| MW Averages |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Mw | Mz |  | Mz+1 | Mv | PD |  |
| 1 | 1177246 | 573046 | 1069047 | 16090 |  | 2093908 | 8982610 | 1.86555 |  |
| Processed Peaks |  |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) | Max RT <br> (mins) | End RT (mins) |  | Height $(\mathrm{mV})$ | \% Height | $\begin{aligned} & \text { Area } \\ & \text { (mV.secs) } \end{aligned}$ | \% Area |
| 1 |  | 10.20 | 11.25 | 13.25 |  | 9.79539 | 0 | 796.426 | 100 |

Figure S85. GPC of the polymer from table 2, entry 8.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC Saturday, April 15. 2017 10:13 AM

Workbook: E:ICirrus Workbooks|20161130120161130.phw

## Sample Details

Sample Name: DSY-Ni-PhPh-100-60min


Analy Using PS2016113001

Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K. $14.1000 \quad$ Alpha: 0.7000
Calibration Used: 4/13/2017 8:58:56 A

Calibration Curve: $y=13.063857-0.622521 x^{\wedge} 1$
High Limit MW RT: 10.23 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000
Low Limit MW RT: 16.52 mins FRM Name:


Datribution Fids


| MW Averages <br> Peak No | Mp | Mn | Mw | Mz | $\mathrm{Mz}+1$ | Mv | PD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  |  |  |  |  |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1149455 | 302847 | 1063686 | 1892053 | 2633659 | 949438 | 3.51229 |  |  |
| Processed Peaks |  |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT <br> (mins) | Max RT <br> (mins) | End RT <br> (mins) | Pk Height <br> (mV) | \% Height | Area | \% Area |  |
|  |  | 9.90 | 11.25 | 14.57 | 15.6703 |  | 0 | 1586.46 | 100 |

Figure S86. GPC of the polymer from table 2, entry 10.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, June 03, 2017 10:47 AM
Workbook: E:ICirrus Workbooks|20161130120161130.plw
Sample Details
Sample Name: DSY-Me-Ni-0.16UA
Acquired: 6/1/2017 4:09:58 PM
By Analyst: HTGPC
Batch Name: DSY
Concentration: 0.10
Injection Volume: 200.0 ul K of Sample: 14.1000
Ãnalysis Using Method: PS2016113001 0.7000

Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: 1
K: 14.1000 Alpha: 0.7000
Calibration Curve: $\mathrm{y}=13.063857-0.622521 \mathrm{x}^{\wedge 1}$
High Limit MW RT: 10.23 mins
Low Limit MW RT: 16.52 mins
Flow Marker RT: $0.00 \mathrm{mins} \quad$ FRCF: 1.0000 FRM Name:


Figure S87. GPC of the polymer from table 3, entry 11.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, June 03, 2017 10:47 AM
Workbook: E:ICirrus WorkbooksI20161130120161130.plw

## Sample Details

Sample Name: DSY-Me-Ni-0.32UA
Acquired: 6/1/2017 4:42:49 PM By Analyst: HTGPC Batch Name: DSY
Concentration: $0.10 \quad$ Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ãnalysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: 1
Calibration Curve: $y=13.063857-0.622521 x^{\wedge 1}$
High Limit MW RT: 10.23 mins
K: 14.1000
Alpha: 0.7000
Low Limit MW RT: 16.52 mins
Flow Marker RT: 0.00 mins $\quad$ FRCF: 1.0000 FRM Name:


Figure S88. GPC of the polymer from table 3, entry 14.

## Cirrus GPC Sample Injection Report

Generated by: HTGPC
Saturday, June 03, 2017 10:48 AM
Workbook: E:ICirrus WorkbooksL20161130120161130.plw

## Sample Details

Sample Name: DSY-PhMe-Ni-0.32UA

Acquired: 6/1/2017 5:50:44 PM
By Analyst: HTGPC
Batch Name: DSY
Concentration: $0.10 \quad$ Injection Volume: 200.0 ul K of Sample: 14.1000 Alpha of Sample:
Ãnâlysis Using Method: PS2016113001
Calibration Used: 4/13/2017 8:58:56 AM
Calibration Type: Narrow Standard Curve Fit Used: $1 \quad$ K: $14.1000 \quad$ Alpha: 0.7000
Calibration Curve: $\mathrm{y}=13.063857-0.622521 \mathrm{x}^{\wedge 1}$
High Limit MW RT: 10.23 mins
Flow Marker RT: 0.00 mins FRCF: 1.0000



| MW Averages |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak No | Mp | Mn | Mw | Mz | Mz+1 | Mv | PD |  |  |
| 1 | 38702 | 17684 | 58582 | 146951 | 265872 | 49694 | 3.312 |  |  |
| Processed Peaks |  |  |  |  |  |  |  |  |  |
| Peak No | Name | Start RT (mins) | $\underset{(\mathrm{mins})}{\operatorname{Max} \mathrm{RT}}$ | $\begin{aligned} & \text { RT } \\ & \text { (mins) } \end{aligned}$ |  |  | \% Height | $\begin{gathered} \text { Area } \\ (\mathrm{mV} . \operatorname{secs}) \end{gathered}$ | \% Area |
| 1 |  | 11.92 | 14.02 | $2 \quad 16.60$ | 011.0 | 171 | 0 | 1224.68 | 100 |

Figure S89. GPC of the polymer from table 3, entry 16.

## 4. References

1, Guo, L. H.; Kong, W. Y.; Xu, Y. J.; Yang, Y. L.; Ma, R.; Cong, L.; Dai, S. Y.; Liu, Z. Large-scale synthesis of novel sterically hindered acenaphthene-based $\alpha$-diimine ligands and their application in coordination chemistry. J. Organomet. Chem. 2018, 859, 58-67.
2, Cherian, A. E.; Domski, G. J.; Rose, J. M.; Lobkovsky, E. B.; Coates, G. W. Acid-catalyzed orthoalkylation of anilines with styrenes: An improved route to chiral anilines with bulky substituents. Org. Lett. 2005, 7, 5135-5137.
3, Guo, L. H.; Lian, K.; Kong, W.; Xu, S.; Jiang, G.; Dai, S. Y. Synthesis of Various Branched Ultra-High-Molecular-Weight Polyethylenes Using Sterically Hindered Acenaphthene-Based $\alpha$-Diimine Ni (II) Catalysts. Organometallics 2018, 37, 2442-2449.

## 5. X-ray Crystallography

CCDC numbers of $\mathbf{1 , 2}$ and $\mathbf{3}$ are $\mathbf{1 8 8 6 6 8 5}, 1886683$ and 1886684 respectively. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.


Table S3 Crystal data and structure refinement for 1.

| Identification code | $\mathbf{1}$ |
| :--- | :--- |
| Empirical formula | C57 H52 Br2 C14 N2 Ni O |
| Formula weight | 1141.34 |
| Temperature/K | $298(2) \mathrm{K}$ |
| Crystal system | Triclinic |
| Space group | P-1 |
| $\mathrm{a} / \AA$ | $12.5431(11)$ |
| $\mathrm{b} / \AA$ | $14.4530(12)$ |
| $\mathrm{c} / \AA$ | $15.8001(13)$ |
| $\alpha /{ }^{\circ}$ | $83.121(2)$ |
| $\beta /{ }^{\circ}$ | $76.6860(10)$ |
| $\gamma /{ }^{\circ}$ | $79.3150(10)$ |
| Volume $/ \AA^{3}$ | $2730.1(4)$ |
| $Z$ | 2 |


| $\rho_{\text {calcg }} / \mathrm{cm}^{3}$ | 1.388 |
| :--- | :--- |
| $\mu / \mathrm{mm}^{-1}$ | 2.054 |
| $\mathrm{~F}(000)$ | 1164 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.40 \times 0.20 \times 0.13$ |
| Radiation | $\operatorname{MoK} \alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection $/{ }^{\circ} 2.36$ to 25.02 |  |
| Index ranges | $-14<=\mathrm{h}<=14,-17<=\mathrm{k}<=13,-18<=\mathrm{l}<=18$ |
| Reflections collected | 13979 |
| Independent reflections | $9472[\mathrm{R}(\mathrm{int})=0.0344]$ |
| Data/restraints/parameters | $9472 / 0 / 628$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.063 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\mathrm{R} 1=0.0467, \mathrm{wR} 2=0.0801$ |
| Final R indexes [all data $]$ | $\mathrm{R} 1=0.1112, \mathrm{wR} 2=0.0866$ |
| Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$ | 0.573 and -0.619 |



Table S4 Crystal data and structure refinement for 2.

| Identification code | $\mathbf{2}$ |
| :--- | :--- |
| Empirical formula | C57 H50 Br2 N2 Ni |
| Formula weight | 981.52 |
| Temperature/K | $298(2) \mathrm{K}$ |
| Crystal system | Monoclinic |
| Space group | P2 |
| $\mathrm{a} / \AA$ | $10.813(5)$ |
| $\mathrm{b} / \AA$ | $20.216(5)$ |
| $\mathrm{c} / \AA$ | $26.480(5)$ |
| $\alpha /^{\circ}$ | $90.000(5)$ |
| $\beta /{ }^{\circ}$ | $100.049(5)$ |
| $\gamma /{ }^{\circ}$ | $90.000(5)$ |
| Volume $/ \AA^{3}$ | $5700(3)$ |
|  |  |


| Z | 4 |
| :--- | :--- |
| $\rho_{\text {calcg }} / \mathrm{cm}^{3}$ | 1.144 |
| $\mu / \mathrm{mm}^{-1}$ | 1.775 |
| $\mathrm{~F}(000)$ | 2016 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.30 \times 0.20 \times 0.20$ |
| Radiation | $\mathrm{MoK} \alpha(\lambda=0.71069)$ |
| $2 \Theta$ range for data collection $/ 2.2 .393$ to 25.707 |  |
| Index ranges | $-12<=\mathrm{h}<=11,-23<=\mathrm{k}<=24,-31<=\mathrm{l}<=31$ |
| Reflections collected | 28707 |
| Independent reflections | $9978[\mathrm{R}(\mathrm{int})=0.1810]$ |
| Data/restraints/parameters | $9978 / 0 / 566$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.660 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\mathrm{R} 1=0.0760, \mathrm{wR} 2=0.1632$ |
| Final R indexes [all data] | $\mathrm{R} 1=0.1932, \mathrm{wR} 2=0.1944$ |
| Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$ | 0.459 and -0.358 |



Table S5 Crystal data and structure refinement for 3.

| Identification code | $\mathbf{3}$ |
| :--- | :--- |
| Empirical formula | C61 H58 Br2 N2 Ni |
| Formula weight | 1037.62 |
| Temperature/K | $298(2) \mathrm{K}$ |
| Crystal system | Monoclinic |
| Space group | P2(1)/m |
| $\mathrm{a} / \AA$ | $11.7600(11)$ |
| $\mathrm{b} / \AA$ | $20.6272(18)$ |
| $\mathrm{c} / \AA$ | $12.0491(12)$ |
| $\alpha /{ }^{\circ}$ | $90.000(5)$ |
| $\beta /{ }^{\circ}$ | $106.947(2)$ |
| $\gamma /{ }^{\circ}$ | $90.000(5)$ |
| Volume $/ \AA^{3}$ | $2795.9(5)$ |


| Z | 2 |
| :--- | :--- |
| $\rho_{\text {calc }} / \mathrm{cm}^{3}$ | 1.233 |
| $\mu / \mathrm{mm}^{-1}$ | 1.813 |
| $\mathrm{~F}(000)$ | 1072 |
| Crystal size $/ \mathrm{mm}^{3}$ | $0.21 \times 0.20 \times 0.12$ |
| Radiation | MoK $\alpha(\lambda=0.71073)$ |
| $2 \Theta$ range for data collection $/{ }^{\circ}$ | 2.35 to 25.02 |
| Index ranges | $-13<=\mathrm{h}<=13,-21<=\mathrm{k}<=24,-14<=\mathrm{l}<=14$ |
| Reflections collected | 14293 |
| Independent reflections | $5065[\mathrm{R}(\mathrm{int})=0.0629]$ |
| Data/restraints/parameters | $9978 / 0 / 333$ |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.025 |
| Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$ | $\mathrm{R} 1=0.0507, \mathrm{wR} 2=0.0895$ |
| Final R indexes [all data] | $\mathrm{R} 1=0.1203, \mathrm{wR} 2=0.0976$ |
| Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$ | 0.452 and -0.397 |

