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S1. Methods 

Techniques and Reagents. All manipulations were performed under an atmosphere of dry, oxygen-free N2 

within an MBraun glovebox (MBRAUN UNIlab Pro SP Eco equipped with a -40 oC freezer), or under an 

atmosphere of dry, oxygen-free Ar within a retrofitted VAC glovebox, or by standard Schlenk techniques. 

Pentane, C6D6, Et2O, DCM and THF (inhibitor-free) were dried and degassed on an MBraun Solvent 

Purification System and stored over activated 4 Å molecular sieves. All other solvents were degassed by 

freeze-pump-thaw and stored on activated 4 Å molecular sieves prior to use. Celite® and 4 Å molecular 

sieves were dried at 250 oC under dynamic vacuum (< 0.1 Torr) for 24 h prior to use. Compound 1 was 

prepared by previously reported methods.1 Ketjenblack® EC-600JD (KB) was purchased from a private 

supplier. All other reagents were obtained from Sigma-Aldrich, Fisher Scientific, or VWR and used without 

further purification. 

Electrochemical Measurements. Cyclic voltammograms were performed on a CH Instruments 630E 

Electrochemical Analysis Potentiostat. All working electrodes were of 3.0 mm diameter (CH Instruments) 

and were cleaned prior to each experiment by sequentially polishing with a gradient of 1.0 μm, 0.3 μm, and 

0.05 μm alumina (CH Instruments) on a cloth pad, followed by rinsing with distilled water and acetone. 

The Pt wire pseudoreference and counter electrodes were rinsed with distilled water and acetone and heated 

white-hot with a butane torch. All measurements were performed on recrystallized product and referenced 

to the Fc/Fc+ redox couple unless otherwise stated. Static cell cycling experiments were carried out using a 

Metrohm Autolab PGSTAT128N potentiostat/galvanostat, utilizing voltage cutoffs.  For cycling 

experiments, two coiled Pt electrodes (Bio-Logic) were used and were cleaned by rinsing with distilled 

water and acetone and then heating white-hot with a butane torch. All electrodes were transferred into a 

glovebox and subsequently rinsed with the respective electrolyte solution immediately prior to use. The H-

cell was custom-made by the in-house glassblower. All electrochemical measurements were performed 

under an inert atmosphere. For slurry measurements, solid material was first ground together using a mortar 

and pestle, and then combined with 5 mL of 0.2 M [Bu4N][PF6] in CH3CN, and sonicated for 1 h prior to 

addition to the H-cell. For all cycling efficiency metrics, the first cycle was discarded. 

Faradaic efficiency (FE) was defined by Eq. 1: 

(1) 𝐹𝐸 =
𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝑐ℎ𝑎𝑟𝑔𝑒
∗ 100% 

Where Q is charge transferred. Voltage efficiency (VE) was defined by Eq. 2: 

(2) 𝑉𝐸 =
𝑉(𝑚𝑒𝑎𝑛)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑉(𝑚𝑒𝑎𝑛)𝑐ℎ𝑎𝑟𝑔𝑒
∗ 100% 

Where V(mean) is the mean voltage. Energy efficiency (EE) was defined by Eq. 3: 

(3) 𝐸𝐸 =
(𝐹𝐸×𝑉𝐸)

100%
 

DigiSim simulations. All simulations were performed with the same concentration, starting potential, 

ending potential, voltage window, experimental E°, and scan rate as experimental, and the assumption that 

T = 298 K, r = 1.5 mm. All events were assumed to have an α/ λ ratio of 0.5, and the diffusion coefficient 

(D) and the heterogeneous charge transfer constant (ko) were fitted to all scan rates to produce the closest 

fits. 
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Energy density calculations. 

The energy density was calculated using the following assumptions: 

1) KB provides 2.5 C when 100 mg is used (estimated from experimental charge/discharge curves; 

Figure S9) 

2) 1 provides 2 e- per molecule, and has a molecular weight of 934 g/mol 

3) Experimental Vcell(discharge) values were used for each calculation 

Solution-state cycling: 

Using the following equation2:       ÊRFB = 0.5 n • Vcell • Cactive • F       

 

where:  ÊRFB = energy density for RFB 

 n = number of electrons transferred at the electrodes = 2 

 Vcell = cell potential 

 Cactive = concentration of the redox active species 

 F = Faraday’s constant = 96,485 C/mol 

 

with:  4.7 mg of 1 dissolved in 10 mL  

 Vcell = 1.40 V 

then:  ÊRFB = 0.5 × 2 × 1.4 V × (
0.0047 g

934 g/mol⁄

0.010 L
) × 96,485 C/mol = 67.9 J/L ≈ 0.02 Wh/L 

 

KB cycling: 

Using the following equation:  ÊEFC=
q × Vcell

volume
   

where:  ÊEFC = energy density for EFC 

 q = total charge transferred = 2.5 C (using 100 mg KB and following assumption 1 above) 

 volume = 0.010 L 

 

with:  Vcell = 0.84 V 

 

then:  ÊEFC = 
2.5 C × 0.84 V

0.010 L
= 210 J/L ≈ 0.06 Wh/L  

 

Slurry-state cycling: 

 

Using the following equation: Êtotal = ÊRFB + ÊEFC 

 

with: 130 mg of 1  

 210 mg of KB 

 volume = 0.010 L 

 Vcell = 1.04 V 
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then:  

Ê𝑡𝑜𝑡𝑎𝑙 = [0.5 × 2 × 1.04 𝑉 × 

0.130 𝑔
934 𝑔/𝑚𝑜𝑙⁄

0.010 𝐿
 × 96,485 𝐶/𝑚𝑜𝑙]

+ [
(210 𝑚𝑔 × 2.5 𝐶

100 𝑚𝑔⁄ ) × 1.04 𝑉

0.010 𝐿
] = 1943 𝐽/𝐿 ≈ 0.54 𝑊ℎ/𝐿  

 

 

S2. Electrochemistry 

 

Figure S1. CV of 1 at varying scan rates (inset). Experimental conditions: Taken in DCM with 

0.29 mM of 1, 0.1 M of [Bu4N][PF6], 3 mm diameter glassy carbon working electrode, Pt wire 

counter electrode, and Pt wire pseudoreference electrode. 

Red = 0.2 V/s, Blue = 0.4 V/s Teal = 0.6 V/s 

Green = 0.3 V/s,  Indigo = 0.5 V/s,  Orange = 0.7 V/s
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Figure S2. CV of 1 at varying scan rates (solid lines) and DigiSim fit of experimental results 

(dotted lines). Experimental conditions: Taken in DCM with 0.29 mM of 1, 0.1 M of [Bu4N][PF6], 

3 mm diameter glassy carbon working electrode, Pt wire counter electrode, and Pt wire 

pseudoreference electrode. 
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Figure S3. Multi-sweep CV of 1 displaying first scan (red) and 500th scan (blue). Experimental 

conditions: taken in DCM with 0.24 mM of 1, 0.1 M of [Bu4N][PF6], 3 mm diameter glassy carbon 

working electrode, Pt wire counter electrode, and Pt wire pseudoreference electrode, scan rate 500 

mV/s. 
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Figure S4. Randles-Ševčík plot for 1 in DCM. 

 

Table S1. Slope and R2 values obtained from the Randles-Ševčík analysis. 

Redox Event Slope R2 

1/1+ 2.68 • 10-5 0.98 

1+/12+ 3.43 • 10-5 0.99 

12+/1+ -1.12 • 10-5 0.99 

1+/1 -2.39 • 10-5 0.99 

1/1- -2.90 • 10-5 0.99 

1-/12- -3.90 • 10-5 0.99 

12-/1- 6.79 • 10-6 0.98 

1-/1 2.13 • 10-5 0.99 
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Figure S5. Nicholson plot for 1 in DCM. 

 

Table S2. Slope and R2 values obtained from the Nicholson analysis. 

Redox Event Slope R2 

1/1+ 0.0010 0.962 

1+/12+ 0.0009 0.863 

1/1- 0.0011 0.971 

1-/12- 0.0011 0.981 
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Figure S6. Galvanostatic, two-electrode charge-discharge curves of 1. Taken in a glass-fritted H-

cell in CH3CN (5 mL per compartment; 10 mL total) with [Bu4N][PF6] (0.2 M) and 1 (0.50 mM). 

Coiled Pt working electrode, coiled Pt counter electrode. 100 μA charge, -12.5 μA discharge. 

0 24 48 72 96 120
0.0

0.5

1.0

1.5

2.0

2.5

Time (h)

P
o

te
n

ti
a

l 
(V

)



S10 

 

  

Figure S7. Selected galvanostatic charge-discharge curves for 1. Taken in a glass-fritted H-cell in 

CH3CN (5 mL per compartment; 10 mL total) with [Bu4N][PF6] (0.2 M) and 1 (0.50 mM). Coiled 

Pt working electrode, coiled Pt counter electrode. 100 μA charge, -12.5 μA discharge. 
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Figure S8. Efficiency values of 1 (Faradaic efficiency (FE); Voltage efficiency (VE); Energy 

efficiency (EE)). Taken in a glass-fritted H-cell in CH3CN (5 mL per compartment; 10 mL total) 

with [Bu4N][PF6] (0.2 M) and 1 (0.50 mM). Coiled Pt working electrode, coiled Pt counter 

electrode. 100 μA charge, -12.5 μA discharge. 
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Figure S9. Galvanostatic, two-electrode charge-discharge curves of a slurry of KB. Taken in a 

glass-fritted H-cell with CH3CN, 0.2 M [Bu4N][PF6], 50 mg of KB per compartment, and 5 mL of 

solution per side. Coiled Pt working electrode, coiled Pt counter electrode. 500 μA charge, -250 

μA discharge. 
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Figure S10. Galvanostatic, two-electrode charge-discharge curves of a slurry of KB. Taken in a 

glass-fritted H-cell with CH3CN, 0.2 M [Bu4N][PF6], 50 mg of KB per compartment, and 5 mL of 

solution per side. Coiled Pt working electrode, coiled Pt counter electrode. 500 μA charge, -250 

μA discharge. 
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Figure S11. Efficiency values of a slurry of KB (Faradaic efficiency (FE); Voltage efficiency 

(VE); Energy efficiency (EE)). Taken in a glass-fritted H-cell with CH3CN, 0.2 M [Bu4N][PF6], 

50 mg of KB per compartment, and 5 mL of solution per side. Coiled Pt working electrode, coiled 

Pt counter electrode. 500 μA charge, -250 μA discharge. 
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Figure S12. Galvanostatic, two-electrode charge-discharge curves of a slurry of 1/KB. Taken in a 

glass-fritted H-cell with CH3CN, 0.2 M [Bu4N][PF6], 65 mg of 1 and 105 mg of KB per 

compartment, and 5 mL of solution per side. Coiled Pt working electrode, coiled Pt counter 

electrode. 500 μA charge, -250 μA discharge. 
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Figure S13. Galvanostatic, two-electrode charge-discharge curves of a slurry of 1/KB. Taken in a 

glass-fritted H-cell with CH3CN, 0.2 M [Bu4N][PF6], 65 mg of 1 and 105 mg of KB per 

compartment, and 5 mL of solution per side. Coiled Pt working electrode, coiled Pt counter 

electrode. 500 μA charge, -250 μA discharge. 
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Figure S14. Efficiency values of a slurry of 1/KB (Faradaic efficiency (FE); Voltage efficiency 

(VE); Energy efficiency (EE)). Taken in a glass-fritted H-cell with CH3CN, 0.2 M [Bu4N][PF6], 

65 mg of 1 and 105 mg of KB per compartment, and 5 mL of solution per side. Coiled Pt working 

electrode, coiled Pt counter electrode. 500 μA charge, -250 μA discharge. 
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Figure S15. Galvanostatic, two-electrode charge-discharge curves of a slurry of 1. Taken in a 

glass-fritted H-cell with CH3CN, 0.2 M [Bu4N][PF6], 32.1 μmol of 1 per compartment, and 5 mL 

of solution per side. Coiled Pt working electrode, coiled Pt counter electrode. 500 μA charge, -250 

μA discharge. 
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Figure S16. Galvanostatic, two-electrode charge-discharge curves of a slurry of 1. Taken in a 

glass-fritted H-cell with CH3CN, 0.2 M [Bu4N][PF6], 32.1 μmol of 1 per compartment, and 5 mL 

of solution per side. Coiled Pt working electrode, coiled Pt counter electrode. 500 μA charge, -250 

μA discharge. 
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Figure S17. Efficiency values of a slurry of 1 (Faradaic efficiency (FE); Voltage efficiency (VE); 

Energy efficiency (EE)). Taken in a glass-fritted H-cell with CH3CN, 0.2 M [Bu4N][PF6], 32.1 

μmol of 1 per compartment, and 5 mL of solution per side. Coiled Pt working electrode, coiled Pt 

counter electrode. 500 μA charge, -250 μA discharge. 
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Figure S18. Slurry-state self-discharge experiments for KB (red) and 1/KB (blue), with the same 

experimental and charging conditions as done for galvanostatic cycling experiments. Each cell was 

charged using a voltage cutoff of 2.35 V, and the OCP was monitored over the course of 24 h. 
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Figure S19. One full charge/discharge cycle of 1, in CH3CN with oxidation and reduction 

occurring in the left and right compartment on charging, respectively. (a-d) were taking during 

charging, and (e-f) were taken during discharging. (a) = ~0% state of charge (SOC), (b) = ~25% 

SOC, (c) = 50% SOC, (d) ~75% SOC, (e) ~35% SOC, (f) = ~0% SOC. 
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