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Calculation model for microphone sensitivity from graphene Raman modes

The dependence of the position of the G mode with doping  1–3 is given in equation 1:n

ωG = ωG0 +
α

2πcℏ ⋅ 10 ―5∫
∞

―∞
sign(E)

(fFD(E ― EF) ― fFD(E)) ⋅ E2

E2 ―  (ωG0ℏ 2)2 dE (1)

with  as a fitting parameter, as the Fermi-Dirac α = 4.39 ⋅ 10 ―3 fFD(E) = 1 (exp (E kBT) + 1) 

distribution with  and  as the EF =  sign(n) ⋅ |n (1012cm ―2)| (10.36 ⋅ 10 ―8) ωG0 ≈ 1581 cm ―1

position of the G mode nearly without doping and stress4. There exists no analytical solution 

for equation 1 at finite temperatures. The dependence of the G mode with electron/hole 

density  was thus determined by approximation with a square root function at 300 K, which n

results in equation 2:

ωG(n) = ωG0 + p1 ⋅ |n| + p2 + p3 (2)

with the fitting parameters ,  and  and an electron/hole p1 = 12.13 p2 = 1.088 p3 = ―1.313

density of  = 1012 cm-2. The dispersion of the G mode with mechanical strain is in principle n

different for the two sub-modes G+ and G-, but for small elongations , the displacement of ε

both sub-modes is equal and shifts with 5. Therefore the total dependence of ―10.8 cm ―1 %
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the G mode with doping concentration and mechanical strain can be described with equation 

3 in the present case.

ωG(n, ε) = ωG0 + p1 ⋅ |n| + p2 + p3 ―  10.8 
cm ―1

% ε
(3)

The dependence of the position of the 2D mode with excitation wavelength  6, doping  7 λ n

and stress  5 can be described by equation 4.ε

ω2D(n, ε, λ) = ω2D0 + (514.5 ― λ) ⋅ 70.94 ⋅ 10 ―3 
cm ―1

nm +
25 cm ―1

eV ⋅ |EF| ―
21 cm ―1

% ε (4)

Where   is the dependence on charge carrier density (Fermi energy level) and 25 cm ―1 eV

 is the dependence with mechanical stress. From the dependencies of the G ―21 cm ―1 %

and the 2D mode on charge carrier density and mechanical stress, the elongation of the 

graphene plane due to mechanical stress can be calculated with equation 5:

ε(∆ωG, ∆ω2D) = ―
q1

2·q2
+

q2
1

4·q2
2

― q3 % (5)

The following substitutions are required: 

∆ωG(n,ε) = ωG(n,ε) ― ωG0 (6)

∆ω2D(n,ε,λ) = ω2D(n,ε) ― ω2D0 ― (514.5 ― λ) ⋅ 70.94 ⋅ 10 ―3 cm ―1 nm (7)

 q1 = 42 ⋅ ∆ω2D(n,ε,λ) ―  5.467532873 ⋅ (∆ωG(n,ε) + 1.313) (8)

q2 = ∆ωG(n,ε) ― 1.420766436 (9)

q3 = (∆ω2
2D(n,ε,λ) + 0.08969) (∆ωG(n,ε) ― 1.420766436) (10)

From the relation , with  as the E-modulus in graphene (1020 GPa 8), the surface σ = E·ε E

tension in the graphene plane can be calculated from the Raman spectra. The mechanical 

compliancy for circular membranes is defined in equation 11:9 

C ∗
m = ( 1

1 + 1.1·(σc σ)0.6)·( 1
σc σ + 1)·

R2

8·t·σ (11)

with  as the characteristic surface tension9σc

σc =
2·E·t2

(1 ― ν2)·R2 (12)
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and  as the membrane radius,  as the thickness of the membrane ( )10 and R t 3.35·10 ―10 m ν

  as the Poisson ratio of graphene11. From these equations the sensitivity of the = 0.16

graphene-based microphone can be calculated 9:

Sα =
U0

Up
·

8·x0·C ∗
m

27·ε0
 (13)

with  as the bias voltage of the microphone,  as the collapse voltage,  as the distance U0 Up x0

between the graphene membrane and the perforated counter electrode ( ) and  x0 = 2.2 µm ε0

as the permittivity of air. 
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