Supporting Information

For

Experimental study on the selective removal of SO₂ from a ship exhaust gas stream using a membrane contactor

Hyung Jin Park^{a, c}, Umair Hassan Bhatti^{a, b}, Sang Hyun Joo^{a, c}, Sung Chan Nam^a, Sung Yeol Park^a, Ki Bong Lee^{c, *}, Il Hyun Baek^{a, *}

^a Greenhouse Gas Laboratory, Korea Institute of Energy Research, 34129, Daejeon, Republic of Korea

^b University of Science and Technology, Daejeon, 34113, Republic of Korea

^c Department of Chemical & Biological Engineering, Korea University, Seoul, 02 Republic of Korea

*Corresponding authors:

Ki Bong Lee: E-mail: <u>kibonglee@korea.ac.kr</u>

Il Hyun Baek: E-mail: ihbaek@kier.re.kr

Supporting Information contents:

Number of pages: 6 Number of figures: 2 Number of tables: 2

Investigating the membrane pore blockage issue: solubility of NaOH and Na₂SO₃ in water

The aqueous solutions of NaOH and Na_2SO_3 reacts with SO_2 to form salts having high solubility in water, so that there is no problem of precipitation in the membrane pore. Table S1 provides a solubility table for the absorbents and their reaction products used in the SO_2 removal experiments.

The amounts of "Na" in the absorbent can be calculated using Equations 1 and 2.

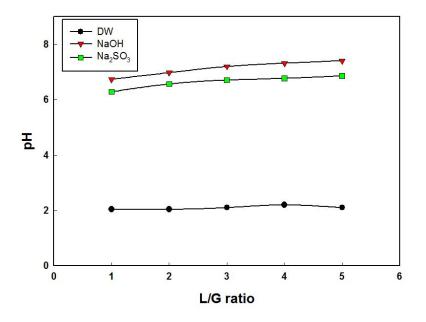
$$\frac{0.2mol}{1L}\text{NaOH} \times \frac{1molNa_2SO_3}{2molNaOH} \times \frac{126g}{1mol}Na_2SO_3 = 12.6\frac{g}{L}Na_2SO_3$$
(1)

$$\frac{0.2mol}{1L} Na_2 SO_3 \times \frac{2molNaHSO_3}{1molNa_2 SO_3} \times \frac{104g}{1mol} NaHSO_3 = 41.6\frac{g}{L} NaHSO_3$$
(2)

The solubility of Na₂SO₃ inn the water at 20 °C is 270g/L. However, the amount of the Na₂SO₃ formed is just 12.6 g/L that is almost 21 times lower than the solubility value. The solubility of NaHSO₃ in the water at 20 °C is 420g/L. However, the amount of the NaHSO₃ formed is just 41.6 g/L that is almost 28 times lower than the solubility value. This means that the formed Na₂SO₃ and NaHSO₃ will easily dissolve into the water and there will not be any solid salt in the membrane to deposit of clog the pores.

Absorbents & Products	Solubility		
	0°C	20°C	100°C
NaOH (Sodium hydroxide)	418 g/L	1110 g/L	3370 g/L
Na ₂ SO ₃ (Sodium Sulfite)	140 g/L	270 g/L	260 g/L
NaHSO ₃ (Sodium bisulfite)	-	420 g/L	-

 Table S1. Absorbents and product solubility table for membrane contactor.


Gas flow rates and liquid flow rates used to achieve L/G ratios of 1-5.

L/G ratio	Gas flow rate (L/min)	Liquid flow rate (mL/min)
1	16.6	16.6
2	16.6	33.2
3	16.6	49.8
4	16.6	66.4
5	16.6	83

Table S2. Feed gas and absorbent flow rates used to achieve different L/G ratios

Effect of L/G ratio on pH change of liquid absorbent

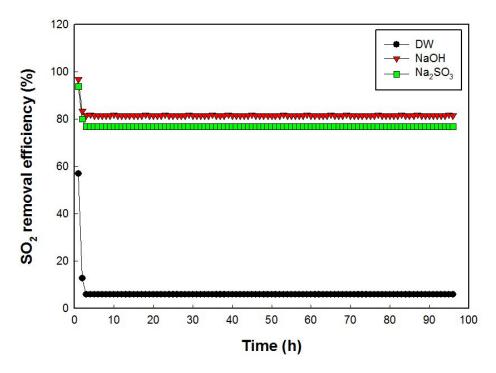

The pH of the absorbents were measured using a pH meter (Seven Compact S220, Mettler Toledo). For data reliability, the pH values were measured five times and the average values have been reported. The SO₂ is an acidic gas and when absorbed by the alkali absorbent, the pH value of the liquid absorbent should decrease. The pH values were measured when the absorbent achieved full saturation of SO₂ (SO₂ concentration in the outlet gas flow was constant). Assuming an ideal gas condition, with feed gas containing 1000 ppm of SO₂ and the L/G ratio is 1, the SO₂ flow rate reacting with the liquid absorbent is 0.016 L/min. Thus, 0.0065 moles of SO₂ react with the liquid absorbent per minute. Then, one mole of SO₂ molecule is ionized to SO₄²⁻ and two protons (H⁺) are released, which are neutralized with two moles of base ion. The measured change in absorbent pH at different L/G ratios is presented in Fig. S1. It can be seen from the figure that the pH of DW was almost unchanged after SO₂ absorption, whereas the pH values for the aqueous NaOH and Na₂SO₃ solutions slightly increased from 6.7 and 6.3 to 7.4 and 6.8, respectively. The reason for the increment in the pH value is that, with increase in the L/G ratio, the amount of the fresh liquid absorbent increased which, as a result, increased the pH of the absorbent.

Fig. S1. pH change of liquid absorbent at different L/G ratios.

Long-term stability test

The durability of a membrane is crucial for its commercial application. The durability of the membrane module used in this study was tested for 96 h and the SO_2 gas removal efficiency was recorded. The results are presented below in Fig. S2. It can be seen that the SO_2 removal was steady during the long-term stability test. A steady gas removal efficiency indicates that the membrane prevented wetting and no deterioration occurred.

Fig. S2. Long-term stability test; SO₂ removal efficiency achieved by all three absorbents during the 96 h stability test.