1	Supporting Information		
2	Interactive Toxicity of Triclosan and Nano-TiO ₂ to Green Alga <i>Eremosphaera</i>		
3	viridis in Lake Erie: A New Perspective based on Fourier Transform Infrared		
4	Spectromicroscopy and Synchrotron-based X-ray Fluorescence Imaging		
5	Xiaying Xin, ^a Gordon Huang, ^{a,*} Chunjiang An ^b , Renfei Feng ^c		
6			
7	^a Institute for Energy, Environment and Sustainable Communities, University of		
8	Regina, Regina, Canada S4S 0A2		
9	^b Department of Building, Civil and Environmental Engineering, Concordia		
10	University, Montreal, Canada H3G 1M8		
11	° Canadian Light Source, Saskatoon, Saskatchewan, Canada S7N 2 V3		
12			
13	*Corresponding author: Tel: +1-306-5854095; Fax: +1-306-5854855; E-mail:		
14	gordon.huang@uregina.ca		
15			
16	This SI file contains:		
17			
18	34 Pages		
19			
20	11Narrative section		
21			
22	14 Figures		
23			
24	2 tables		
25			

26 MAERIALS AND METHODS

27

28 Triclosan adsorption and P25 photocatalysis experiments

29

30	Adsorption and photocatalysis experiments were conducted in the dark and visible
31	light conditions respectively, at room temperature (23 \pm 1 °C) by mixing 5 mg/L P25
32	with different concentrations of triclosan ranging from 312.5 to 5 000 μ g/L. The
33	solution concentrations were determined at three time intervals including 12h, 24, and
34	72 h. Hydrodynamic diameter and zeta potential of the P25 in aqueous phase in the
35	presence of triclosan were measured by a Zetasizer Nano ZS (Malvern, United
36	Kindom). For the quantification of residual triclosan, the aqueous phase was separated
37	using centrifugation at 16128g for 20 min. The triclosan in supernatant was analyzed
38	using Agilent 1260 liquid chromatograph equipped with a diode array detector (Santa
39	Clara, CA, USA). A ZORBAZ XDB-C18 column (250 \times 4.6 mm, 5 μm , Agilent) was
40	used for the analysis, with the oven temperature of 40 $^\circ$ C. The injection volume was
41	50 μ L. The mobile phase consisting of 70:30 v:v% acetonitrile : water with flow rate
42	of 0.8 mL/min. The wavelength used for detection was 214 nm. The material in the
43	pellet was used to determine the adsorption efficiency of triclosan by P25 through
44	detecting the functional groups of triclosan on the surface of P25 using a FT-IR
45	Bruker Tensor 27 spectroscopy (Bruker, Etlinger, Germany) equipped with an
46	attenuated total reflectance.
47	

48 Determination of algal dry weight and Chlorophyll a/b concentrations

49

50 Biomass dry weight was obtained by filtering a known volume of algal cells on a pre-51 weighed 0.45 µm membrane filter. Filters with algal cells were dried for 24 hours at 52 60 °C and weighed to determine cell mass per volume of culture. The dry weight of 53 cells was obtained by the difference between weight before and after drying.

54

55 Chlorophyll a (Chl a) and chlorophyll b (Chl b) were measured according to a modified method.¹ Briefly, the algae were exposed to target components for 120 h. 56 57 8 mL of algal suspension was centrifuged at 2268g for 15 min, after which the supernatant was discarded. The pellet was resuspended in 8 mL 90% ethanol with 1% 58 59 MgCO₃, incubated at 75 °C for 5 min in the dark. 1% MgCO₃ was added to prevent the conversion of chlorophylls to phaeophytin.² The extract was centrifuged at 2268g 60 61 for 15 min, and the pellet was discarded. The absorbance of chlorophyll in the 62 supernatant of the extract at 645 and 663 nm were analyzed by a Cary-300 double 63 beam UV-visible spectrophotometer (Agilent Technologies, CA, USA). The content 64 of Chl a and Chl b were calculated according to Jeffrey and Humphrey equation.³ 65

66 *Cell morphology and ultrastructure observations*

67

Surface morphology of cells grown for 120h was investigated using scanning electron microscopy (SEM). Samples were centrifuged at 10,000g for 15 min, after which the supernatants were removed. The pellets were fixed in 2% glutaraldehyde in 50mM sodium cacodyate buffer (NaCac), pH 7.2 at room temperature for three hours, and then stored overnight in a refrigerator. Samples were subsequently washed in 50mM NaCac three times and further fixed in 1% Osmium tetroxide in 50mM NaCac for 60 min. Samples were then washed in 50mM NaCac three times and dehydrated in an

75	ethanol gradient. After drying through a critical point drying apparatus (Polaron
76	E3000, Canada), samples were coated with gold in a sputter coater (Quorum Q150T
77	ES, Canada). SEM images were obtained using a FE-SEM-cold field emission
78	scanning electron microscope (Hitachi SU8010, Japan).
79	
80	Transmission electron microscopy (TEM) was used to investigate cellular
81	ultrastructure. Algal cells grown for 120 h were thoroughly washed using deionized
82	water, prefixed in 2% glutaraldehyde, postfixed in 1% osmium tetroxide for 1 h, and
83	dehydrated through graded ethanol series. Samples were infiltrated with LR white
84	resin 1:1 100% EtOH for 3 hours, and 100% LR white resin overnight. Samples were
85	blocked into BEEM capsule and polymerized for 24 hours at 60 degrees. Ultrathin
86	sections (90nm) were cut using an ultramicrotome (Leica, Canada). TEM images
87	were obtained on a transmission electron microscopy (Hitachi HT7700, Japan).
07	
88	
	Elemental distribution for single cells through Synchrotron-based X-ray
88	
88 89	Elemental distribution for single cells through Synchrotron-based X-ray
88 89 90	Elemental distribution for single cells through Synchrotron-based X-ray
88 89 90 91	Elemental distribution for single cells through Synchrotron-based X-ray fluorescence imaging
88 89 90 91 92	Elemental distribution for single cells through Synchrotron-based X-ray fluorescence imaging For the present XFI measurement, single algal cells were scanned using a
88 89 90 91 92 93	Elemental distribution for single cells through Synchrotron-based X-ray fluorescence imaging For the present XFI measurement, single algal cells were scanned using a polychromatic (pink) beam with a spot size of 3 × 3 μm, a step size of 5 μm and a
88 89 90 91 92 93 94	Elemental distribution for single cells through Synchrotron-based X-ray fluorescence imaging For the present XFI measurement, single algal cells were scanned using a polychromatic (pink) beam with a spot size of $3 \times 3 \mu m$, a step size of $5 \mu m$ and a dwell time of 5 s per data point. The cell deposited on the metal-free Lexan TM
88 89 90 91 92 93 94 95	 Elemental distribution for single cells through Synchrotron-based X-ray fluorescence imaging For the present XFI measurement, single algal cells were scanned using a polychromatic (pink) beam with a spot size of 3 × 3 μm, a step size of 5 μm and a dwell time of 5 s per data point. The cell deposited on the metal-free LexanTM polycarbonate sheets were mounted on a sample holder and attached to a motorized
88 89 90 91 92 93 94 95 96	 Elemental distribution for single cells through Synchrotron-based X-ray fluorescence imaging For the present XFI measurement, single algal cells were scanned using a polychromatic (pink) beam with a spot size of 3 × 3 μm, a step size of 5 μm and a dwell time of 5 s per data point. The cell deposited on the metal-free LexanTM polycarbonate sheets were mounted on a sample holder and attached to a motorized stage. Synchrotron X-ray beam (pink) was incident at an angle of 90° to the cell,
88 89 90 91 92 93 94 95 96 97	 Elemental distribution for single cells through Synchrotron-based X-ray fluorescence imaging For the present XFI measurement, single algal cells were scanned using a polychromatic (pink) beam with a spot size of 3 × 3 μm, a step size of 5 μm and a dwell time of 5 s per data point. The cell deposited on the metal-free LexanTM polycarbonate sheets were mounted on a sample holder and attached to a motorized stage. Synchrotron X-ray beam (pink) was incident at an angle of 90° to the cell, while a Vortex[®] silicon drift detector (SDD), positioned 50 mm away from the cell at

100 $160 \,\mu\text{m} \times 160 \,\mu\text{m}$ was selected for the elemental mapping of all algae samples. Three

101 replicates of algae cells from each treatment were used for XFI to ensure

102 reproducibility of the collected data.

103

104 Oxidative stress

105

106 Intracellular ROS was measured using 2,7-dichlorodihydrofluorescein diacetate

107 (DCFH-DA, BioVision Incorporated, USA), which is an oxidation-sensitive

108 fluorescent probe dye.⁴ Briefly, algal cells were grown for 120 h in the presence of 0-

109 4 mg/L triclosan with or without 5 mg/L P25, harvested (12,000 \times g, 10 min), washed

and suspended in phosphate-buffered saline (PBS) containing 10µM DCFH-DA in

111 dimethyl sulfoxide (DMSO), and then incubated for 30 min in the dark at 30 °C. Algal

cells were harvested, washed and lysed by sonication on ice for 2min in 30 s/min

113 on/off cycles in the dark. 200 µL of the supernatant was transferred to a 96 well plate

and the fluorescence measured using a BioTek microplate reader (Winooski, VT, US;

115 $\lambda ex = 485 \text{ nm}; \lambda em = 528 \text{ nm}$). The assay was repeated a minimum of three times.

116

117 The mitochondrial dysfunction of exposed algal cells was measured by alteration of 118 mitochondrial membrane potential (MMP, $\Delta \Psi m$). Briefly, cells were collected by 119 centrifugation (12,000 × g, 10 min) and washed by assay buffer. MMP was measured 120 by the incorporation of a cationic florescent dye, tetramethylrhodamine, ethyl ester 121 (TMRE) dye. Aliquots of approximately 1×10⁵ - 5×10⁵ cells/mL were stained with 122 TMRE dye to a final concentration of 200 nM at 37 °C for 30 min. The dyed algal 123 cells were washed three times by assay buffer to eliminate the excess dye. After

124	washing, 100 μ L assay buffer was added and the fluorescence was measured using a
125	BioTek microplate reader (Winooski, VT, US; $\lambda ex = 549 \text{ nm}$; $\lambda em = 575 \text{ nm}$).
126	
127	The decomposition rate of hydrogen peroxide by catalase (CAT) was used to assay
128	the enzyme activity according to manufacturer's instruction (EnzyChrom Catalase
129	Assay Kit, BioAssay Systems Co, CA, USA). Briefly, cells were are homogenized in
130	cold PBS, and centrifuged for 10 min at 12, 000g. A reaction mixture of 100 μL
131	containing 90 μL of 50 μM H_2O_2, and 10 μL algae supernatant was reacted for 30 min
132	at room temperature. 100 μ L detection reagent containing horse radish peroxidase
133	enzyme and dye reagent was added and incubated for 10 min. a mixture of 100 μL
134	was transferred to a 96 well plate and the fluorescence was measured using a BioTek
135	microplate reader (Winooski, VT, US; $\lambda ex = 530$ nm; $\lambda em = 585$ nm). Catalase
136	activity was normalized to the unit amount of total protein to compare results between
137	different treatments.
138	

139

140 **RESULTS AND DISCUSSIONS**

141

142 Verification of triclosan adsorption and P25 photocatalysis

143

144	P25 is a mixture with the crystallographic forms of 78 % anatase and 14 % rutile. ⁵
145	TEM micrographs showed that P25 was spherical with diameters of 15-25 nm (Figure
146	S3). The mean hydrodynamic diameter of P25 after 48 h was determined to be 417.6
147	\pm 22.23 nm when distributed in LEW and aggregation was observed. The zeta
148	potential of P25 was -9.29 \pm 0.54 mV. The pH of LEW was 6.8, higher than 6.3 (pzc of
149	P25), which led to higher degree of deprotonation of surface hydroxyl groups, causing
150	negatively charged surface of P25. The relatively low negative zeta potential may lead
151	to the disequilibrium of chemicals in the surrounding water environment and result in
152	charge heterogeneity, which was favorable for particle aggregation. ⁶
153	
154	In dark adsorption experiments, the average size of aggregated P25 showed an
155	increasing trend with increasing concentrations of triclosan at 48h (Figure S4). As
156	well, there was a decreasing trend of zeta potential with increasing triclosan
157	concentrations (Figure S5). Lower zeta potential corresponded to larger
158	hydrodynamic diameter, which was favorable for the formation of aggregation. Thus,
159	higher concentrations of triclosan resulted in the aggregation of P25 into larger
160	aggregates. Since larger particle aggregates may be more difficult to enter the cells, it
161	is hypothesized that larger P25 aggregates with higher levels of triclosan might not
162	cause enhanced toxicity compared to that with triclosan-only exposed cells. But that
163	one more thing should be considered is molecular concentration of triclosan also
164	played a key role in toxicity. Because non-ionized triclsoan is known to be more toxic

165	than its ionized form,' the toxicity would be more serious when non-ionized triclosan
166	is more than ionized triclsoan. Since triclosan has a pKa of 8.1,8 most triclosan was in
167	its molecular form at pH 6.8 in LEW. Thus, triclosan concentration seriously matters
168	using LEW in our study.
169	
170	Through adsorption studies in dark, the results showed triclosan adsorption onto P25
171	occurred from 0 to 24h, and it reached equilibrium after 24h. However, the adsorption
172	of triclosan on P25 was so mild and the adsorption rate was less than 6% (data not
173	shown). In Figure S6, it does not show any difference in terms of band intensities and
174	frequencies when comparing ATR-FTIR spectra of P25 in the absence and in the
175	presence of triclosan at both 5000 μ g/L and 2500 μ g/L. It might be because the
176	detection limit of ATR-FTIR was not enough to verify the adsorption of triclosan on
177	P25 surface. The mild adsorption occurred; but it was too weak to be observed by
178	ATR-FTIR.
179	

Through triclosan photodegradation study (Figure S7), it can be seen that triclosan 180 181 degradation under illumination was a slow process no matter it was due to photolysis 182 (in the absence of P25) or photocatalysis (in the presence of P25) in visible light. 183 Triclosan degradation rate in the presence of P25 was from 4 to 7 %, higher than that without P25 in 120h. The highest degradation rate was 6.47% in the presence of P25 184 185 in 120h. However, triclosan degradation rate in the presence of P25 was lower than 186 that without P25 in 60h. It suggested that triclosan can be phototransformed by P25 in 187 visible light, but with a low degradation rate. Normally, there are two principal 188 catalytic phases of P25, anatase and rutile. Anatase P25 has a band gap of 3.2 eV (385 189 nm), and can not be active in visible light.⁹ Rutile has a smaller band gap of 3.0 eV

with excitation wavelengths extending into visible wavelength at 410 nm.⁹ Thus, P25
can extend the photoactivity into visible wavelengths due to the existence of 14%
rutile. It is also the reason that triclosan photodegradation could be enhanced in the
presence of P25. However, only 14% rutile contributed to triclosan degradation, with
hydroxyl radicals as the main species of ROS.¹⁰ Therefore, the degradation rate of
triclosan in visible light is low.

196

197 Dry weight analysis

198

199 The size of *Eremosphaera* is too large to be counted by a hemocytometer. In order to 200 estimate the size of the cultured algal population, dry weight measurement was 201 performed. Figure S8 shows that dry weight exhibited dose-response relationship and 202 had significant decreases in cells exposed to 4000 and 1000 µg/L triclosan. In the 203 presence of P25, there was a significant decrease in cells exposed to 250 μ g/L triclosan, while there were no significant changes of cells exposed to the same dose of 204 205 triclosan in the absence of P25. Thus, the interaction can cause a significant reduction 206 in dry weight at 250 μ g/L triclosan, while pure triclosan can not cause a significant 207 reduction until reaching 1000 μ g/L. The dry weight in the presence of P25 was higher 208 than that in the absence of P25. Hartmann's study⁶ had the similar results that the 209 growth of *Pseudokrihneriella subcaptitata* was stimulated by 2 mg/L P25. This effect 210 is considered to be the hormesis response, which is a stimulatory effect caused by short-term exposure to a low dose of a toxicant.¹¹ Interestingly, the dry weight of cells 211 212 co-exposed to 15.625 µg/L triclosan and P25 was significantly higher than that of 213 unexposed cells and cells only exposed to P25 and triclosan. It showed a stimulation 214 of cell growth under such an interaction, with larger cell density than any individual

215	exposure. Since the absolute value of dry weight exposed to the combinations was
216	higher than that exposed to pure triclosan, P25 may alleviate the toxic effects of
217	triclosan on algal biomass.

218

219 Chlorophyll a/b analysis

220

221 The chlorophyll content is an indicator of photosynthetic ability. In Figure S9, in the absence of P25, there were significant decreases in chlorophyll a content to cells 222 223 exposed to 1000 and 4000 µg/L triclosan, and significant decreases in chlorophyll b 224 content to cells exposed to 4000 µg/L triclosan. Our previous study presented an 225 inhibition in chlorophyll content of Chlorococcum sp. with increasing triclosan concentrations.¹² Pan¹³ also reported a significant decrease in chlorophyll content of 226 227 Chlamydomonas reinhardtii at 405.3 µg/L triclosan due to the damages in photopigments. Moreover, chlorophyll a/b content of cells only exposed to 5 mg/L 228 P25 was much higher than that of unexposed cells. Similarly, in Middepogu's study,¹⁴ 229 230 chlorophyll a content of Chlorella pyrenoidosa after 96 h exposure to 20 mg/L nano-231 TiO₂ was significant higher than that in no-exposed cells, and chlorophyll a content also increased from 20 to 45 nmol/10⁵ cells with increasing nano-TiO₂ concentration 232 233 from 0.1 to 10 mg/L. 234 235 In the presence of P25, there were significant decreases in chlorophyll a/b contents of

cells exposed to triclosan in a range from 250 to 4000 μ g/L, while a significant

237 increase was observed for cells exposed to 15.625 μ g/L triclosan. Our previous study

also found that there was a significant stimulation of chlorophyll contents in

239 Asterococcus superbus and Eremosphaera viridis, when exposed to much lower

240	triclosan concentrations of 0.56 or 0.0862 $\mu g/L.^{15}$ Such a significant stimulation in
241	chlorophy a/b is probably attributed to the hormesis caused by the interaction of low
242	levels of triclosan and P25. The hormesis is the consequence of regulatory
243	overcorrections by biosynthetic control mechanisms to low levels of inhibiting
244	challenge, causing greater index than normal. ¹⁶
245	
246	Variation of triclosan concentrations
247	
248	The concentration of triclosan was measured during the exposure period and the
249	results are given in Figure S11. pH value was stable at 6.8 before and after exposure
250	experiment. There was a trend that triclosan decreased rapidly at the first 3 days, and
251	then decreased gradually at the rest 2 days in the absence and presence of P25. The
252	final average concentrations of triclosan for all treatments were in the range of $80 -$
253	90% of initial concentrations, suggesting that triclosan was relatively stable during the
254	exposure period.
255	
256	The ratios of triclosan concentration variation in the presence of P25 to that in the
257	absence of P25 in nonaqueous phase were shown in Table S2. On day 0, the ratio was
258	between 1 and 2, indicating the adsorption of triclosan in the presence of P25 was
259	higher than that in the absence of P25. Triclosan reduction in the presence of P25 was
260	attributed to the adsorption of both cells and P25 particles. On day 5, the ratio all
261	decreased, indicating triclosan decline in the presence of P25 became lower than that
262	in the absence of P25. At 4000 $\mu g/L$ triclosan, the difference between two-day's ratios
263	was the smallest, whereas at 15.625 μ g/L triclosan, the difference was the largest.

When triclosan concentration decreased, the growth became more stimulated, and ledto the enlargement of cell population, increasing triclosan reduction.

266

267 Responses of mitochondrion membrane potential

268

269 Mitochondria is important not only in bioenergetics and metabolism, but also in 270 cellular processes to environmental stressors.¹⁷ Mitochondrial membrane potential is 271 often used for assessing mitochondrial function, as it relates to cells' capability to 272 generate ATO by oxidative phosphorylation.¹⁸ Thus, $\Delta \Psi m$ is a key indicator of cell 273 health or injury.

274

275 Figure S13 shows the changes on mitochondrial membrane potential of treated cells. 276 The absolute value of the mitochondrial depolarization in co-occurrence of P25 and 277 triclosan was higher than that of only-triclosan-exposed treatments (data not shown). 278 Triclosan at 15.625 and 62.5 µg/L with or without P25 had provoked mitochondrial 279 depolarization but not significant. Thus, both P25 and low level triclosan with or 280 without P25 could cause hormetic response in membrane potential depolarization. 281 282 At 250 µg/L triclosan, mitochondrial membrane potential decreased with or without 283 P25, indicating deleterious effects on mitochondrium. But co-exposed cells did not 284 have such significant decrease as triclosan-only exposed cells in this situation. At 1000 µg/L triclosan, co-exposed cells had a significant lower mitochondrial 285 286 membrane potential than triclosan-only exposed cells, indicating the interactive 287 effects beyond a certain amount of triclosan enhanced the inhibition in mitochondrial 288 function. It has been proved that triclosan may impair the function of mitochondria,

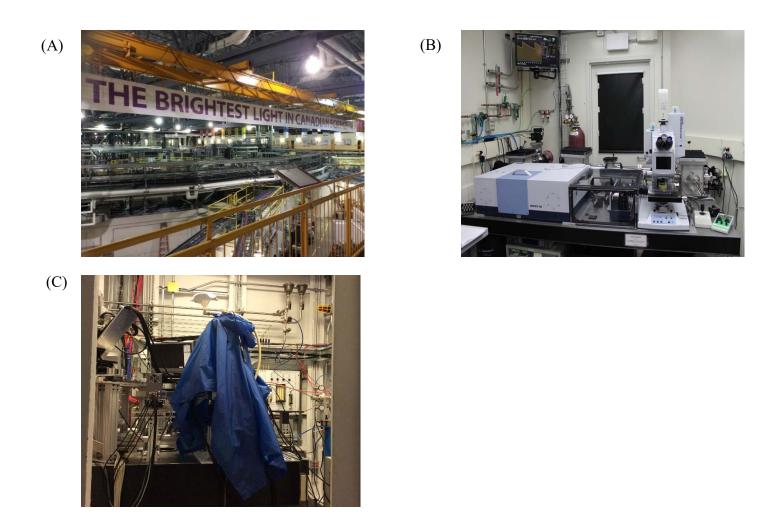
289	through uncoupling oxidative phosphorylation and disrupting mitochondrial
290	membrane fluidity. ^{19, 20} However, P25 alleviated damages on mitochondrium at 250
291	μ g/L triclosan and intensified damages at 1000 μ g/L triclosan. Thus, the interaction of
292	P25 and a specific lower dose of triclosan led to antagonism in mitochondrial
293	membrane potential. Once the cell membrane was damaged with elevating triclosan
294	dose, P25 may enter the cells and attach to mitochondria, resulting in protein
295	denaturation and cytoplasm flow-out. ²¹ Hence, the interaction of P25 and a specific
296	higher dose of triclosan caused synergetic damage on mitochondrial function.
297	
298	At 4000 μ g/L triclosan, there was significant lower mitochondrial membrane potential
299	for cells in the presence and in the absence of P25, but there was no significant
300	difference between those two situations. It indicated pure triclosan at such
301	concentration caused serious cell apoptosis so that P25 had little additional effects on
302	cells.
303	
304	Responses of catalase activity
305	
306	An increase in ROS production will eventually improve the production of antioxidant
307	enzymes present inside the cells, such as SOD (acts on O ₂ -), catalase (on H ₂ O ₂), and
308	GST (on the conjugation of glutathione). ²² H_2O_2 is generated through the catalysis of
309	O_2^- during the photo respiration and β -oxidation of fatty acids. ²³ Catalase is a
310	manganese or heme-containing enzyme, catalyzing the decomposition of H2O2 to
311	water and oxygen. ²⁴ Catalase plays an important role in the detoxification of active

312 oxygen species generated by various types of environmental stress.²³ Catalase activity

has been frequently described in the mitochondria, and also been detected in
chloroplasts.²⁵

315

316	Figure S14 presents the catalase content of triclosan-exposed cells in the absence and
317	presence of P25. Significant catalase changes in Eremosphaera were observed when
318	cells were exposed to triclosan at 15.625 μ g/L and beyond 1000 μ g/L. No matter with
319	or without P25, cells had a significant increase in catalase at 15.625 μ g/L triclosan,
320	but a significant decrease at 4000 μ g/L triclosan. At 15.625 μ g/L triclosan in the
321	absence and presence of P25, catalase content had been stimulated by 133 and 155%,
322	respectively, compared to its corresponding control. At 4000 μ g/L triclosan in the
323	absence and presence of P25, catalase content had been inhibited by 20 and 15 %,
324	respectively, compared to its corresponding control. What's more, there was no
325	significant difference between P25-only exposed cells and untreated cells, indicating
326	P25 did not induce excess catalase. However, the distinctions between cells in the
327	absence and presence of P25 at 250 and 1000 μ g/L triclosan were significant. Thus,
327 328	absence and presence of P25 at 250 and 1000 μ g/L triclosan were significant. Thus, although 5 mg/L P25 did not cause significant changes in catalase content, its
328	although 5 mg/L P25 did not cause significant changes in catalase content, its
328 329	although 5 mg/L P25 did not cause significant changes in catalase content, its interaction with triclosan did. The main reason was attributed to triclosan and its
328 329 330	although 5 mg/L P25 did not cause significant changes in catalase content, its interaction with triclosan did. The main reason was attributed to triclosan and its
328 329 330 331	although 5 mg/L P25 did not cause significant changes in catalase content, its interaction with triclosan did. The main reason was attributed to triclosan and its
328 329 330 331 332	although 5 mg/L P25 did not cause significant changes in catalase content, its interaction with triclosan did. The main reason was attributed to triclosan and its
328 329 330 331 332 333	although 5 mg/L P25 did not cause significant changes in catalase content, its interaction with triclosan did. The main reason was attributed to triclosan and its
328 329 330 331 332 333 334	although 5 mg/L P25 did not cause significant changes in catalase content, its interaction with triclosan did. The main reason was attributed to triclosan and its


338 List of figures and tables

- **Figure S1.** The microscopic image of freshwater green alga *Eremosphaera*.
- 340 Figure S2. (A) The Canadian light source, (B) Bruker Vertex 70v Interferometer /
- 341 Hyperion 3000 IR Microscope on Mid-IR beamline, (C) Workstation on VESPERS
- 342 beamline.
- **Figure S3**. TEM micrograph of P25.
- **Figure S4**. Hydrodynamic diameter for 5 mg/L P25 in the presence of triclosan (n=3).
- **Figure S5**. Zeta potential for 5 mg/L P25 in the presence of triclosan (n=3).
- **Figure S6**. ATR-FTIR spectra of pure triclosan, P25, P25 5000 μ g/L triclosan, and
- 347 P25 2500 μ g/L triclosan.
- Figure S7. Degradation rate of triclosan in the absence and presence of 5 mg/L P25 inLEW.
- **Figure S8**. Dry weight of *Eremosphaera* exposed to triclosan in the absence and
- 351 presence of 5 mg/L P25 (n=3).
- **Figure S9**. The variation of chlorophyll content in cultures exposed to triclosan in the
- absence and presence of 5 mg/L P25 (n=3). (A) chlorophyll a, (B) chlorophyll b.
- **Figure S10**. TEM images of *Eremosphaera*. (A) (B) Cells exposed to 1000 μg/L
- triclosan; (C) (D) Cells co-exposed to 5 mg/L P25 and 1000 μ g/L triclosan.
- **Figure S11**. Observed triclosan concentration in algal media.
- **Figure S12**. Partial investigation of the distribution of multi-elements in an individual
- algal cell. (A) Cells exposed to 250 μ g/L triclosan; (B) Cells exposed to 5 mg/L P25;
- 359 (C) Cells co-exposed to 5 mg/L P25 and 62.5 µg/L triclosan; (D) Cells co-exposed to
- 360 5 mg/L P25 and 250 μ g/L triclosan.
- 361 Figure S13. Mitochondrial depolarization of algal cells exposed to triclosan in the
- absence and presence of 5 mg/L P25 (n=3).

- **Figure S14**. Catalase of algal cells exposed to triclosan in the absence and presence of
- 364 5 mg/L P25 (n=3).
- **Table S1.** Triclosan given with its molecular information, water solubility and
- 366 application area.
- **Table S2.** The ratios of triclosan concentration variation in the presence of P25 to that
- in the absence of P25 in nonaqueous phase.
- 369
- 370

Figure S1. The microscopic image of freshwater green alga *Eremosphaera*.

Figure S2. (A) The Canadian light source, (B) Bruker Vertex 70v Interferometer / Hyperion 3000 IR Microscope on Mid-IR beamline, (C) Workstation on VESPERS beamline.

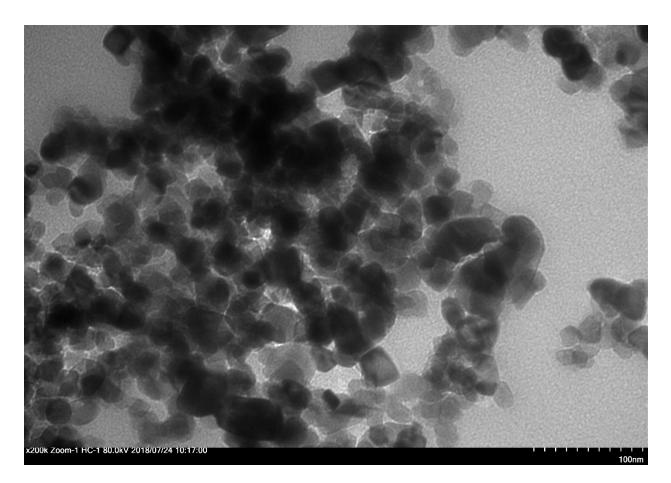


Figure S3. TEM micrograph of P25.

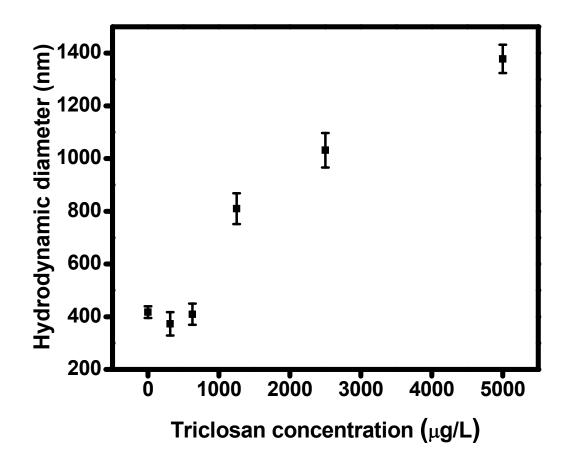


Figure S4. Hydrodynamic diameter for 5 mg/L P25 in the presence of triclosan (n=3).

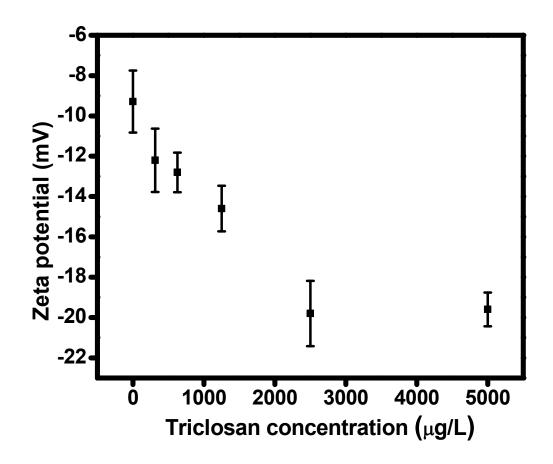


Figure S5. Zeta potential for 5 mg/L P25 in the presence of triclosan (n=3).

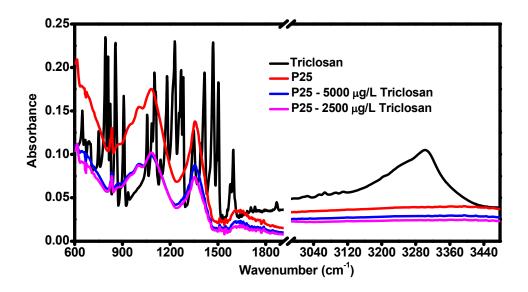


Figure S6. ATR-FTIR spectra of pure triclosan, P25, P25 – 5000 μ g/L triclosan, and P25 – 2500 μ g/L triclosan.

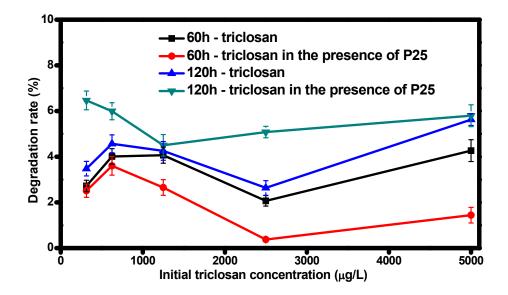
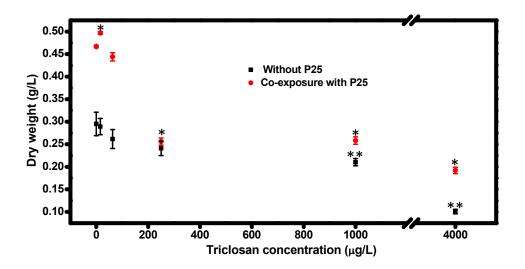
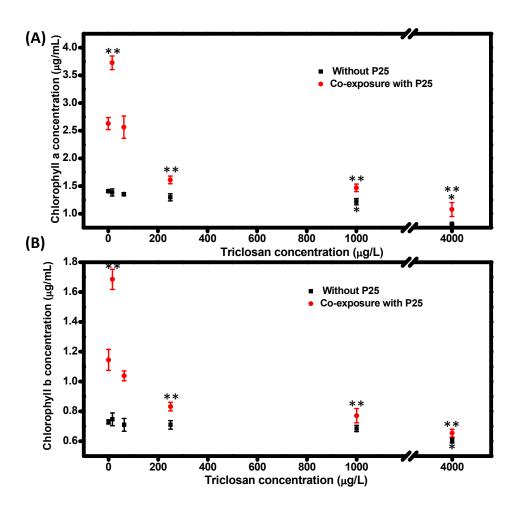




Figure S7. Degradation rate of triclosan in the absence and presence of 5 mg/L P25 in LEW.

Figure S8. Dry weight of *Eremosphaera* exposed to triclosan in the absence and presence of 5 mg/L P25 (n=3).

Note: "*" represents results that were significantly different from the untreated control (p < 0.05); "**" represents results that were significantly different from the control only exposed to 5 mg/L P25 (p < 0.05).

Figure S9. The variation of chlorophyll content in cultures exposed to triclosan in the absence and presence of 5 mg/L P25 (n=3). (A) chlorophyll a, (B) chlorophyll b. Note: "*" represents results that were significantly different from the untreated control (p < 0.05); "**" represents results that were significantly different from the control only exposed to 5 mg/L P25 (p < 0.05).

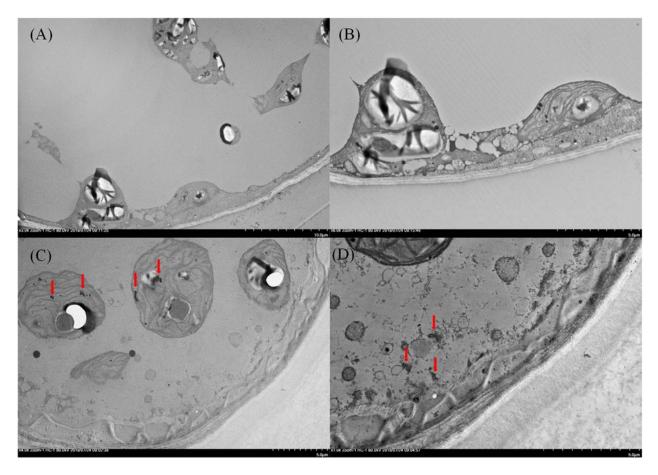


Figure S10. TEM images of *Eremosphaera*. (A) (B) Cells exposed to 1000 μg/L triclosan; (C)(D) Cells co-exposed to 5 mg/L P25 and 1000 μg/L triclosan.

Note: Red arrow indicated P25 inside the cells.

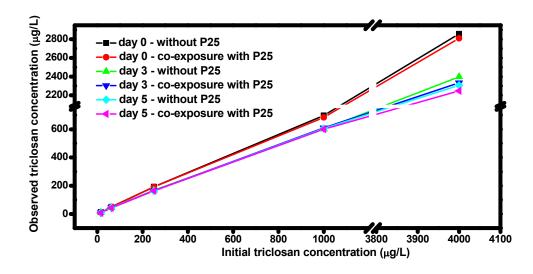
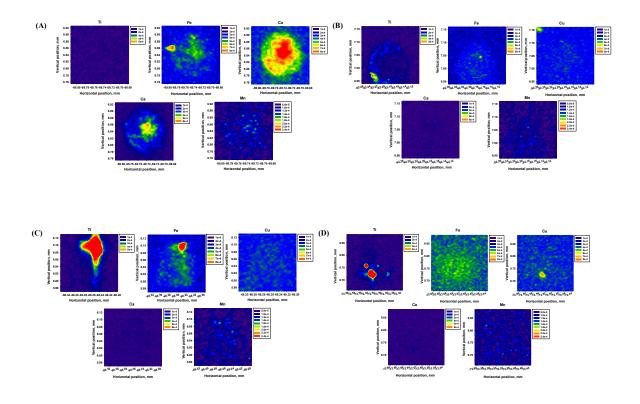
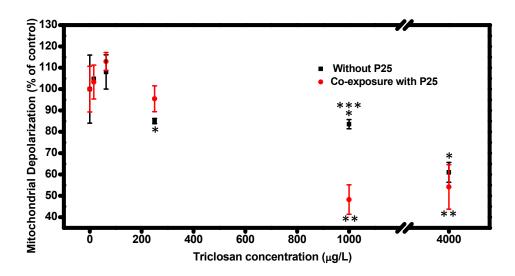




Figure S11. Observed triclosan concentration in algal media.

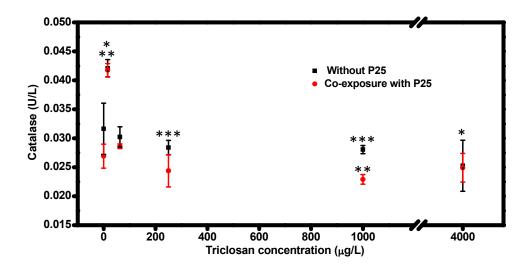


Figure S12. Partial investigation of the distribution of multi-elements in an individual algal cell. (A) Cells exposed to 250 μ g/L triclosan; (B) Cells exposed to 5 mg/L P25; (C) Cells co-exposed to 5 mg/L P25 and 62.5 μ g/L triclosan; (D) Cells co-exposed to 5 mg/L P25 and 250 μ g/L triclosan.

Figure S13. Mitochondrial depolarization of algal cells exposed to triclosan in the absence and presence of 5 mg/L P25 (n=3).

Note: "*" represents results that were significantly different from the untreated control (p < 0.05); "**" represents results that were significantly different from the control only exposed to 5 mg/L P25 (p < 0.05). "***" represents results that were significantly different in treatments between in the absence and in the presence of 5 mg/L P25 (p < 0.05).

Figure S14. Catalase of algal cells exposed to triclosan in the absence and presence of 5 mg/L P25 (n=3).

Note: "*" represents results that were significantly different from the untreated control (p < 0.05); "**" represents results that were significantly different from the control only exposed to 5 mg/L P25 (p < 0.05). "***" represents results that were significantly different in treatments between in the absence and in the presence of 5 mg/L P25 (p < 0.05).

Characteristics	Triclosan
Molecular Formula	C12H7Cl3O2
Molecular Structure	
MW (g/mol)	289.54
Solubility (mg/L)	10
pKa	8.1
Application	Antimicrobial agent

Table S1. Triclosan given with its molecular information, water solubility and application area.^a

^aThis table has been published in Xin et al. 2018.¹²

Reprinted from Environmental Pollution, Volume 226, Xiaying Xin, Guohe Huang, Xia Liu, Chunjiang An, Yao Yao, Harold Weger, Peng Zhang, Xiujuan Chen, Molecular toxicity of triclosan and carbamazepine to green algae *Chlorococcum* sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy, 12-20, Copyright (2017), with permission from Elsevier.

Triclosan concentration	Day 0	Day 5	
(µg/L)			
4000	1.04180	1.03523	
1000	1.04679	1.02336	
250	1.05003	1.02900	
62.5	1.05307	1.01713	
15.625	2.20821	1.47657	

Table S2. The ratios of triclosan concentration variation in the presence of P25 to that in the absence of P25 in nonaqueous phase.

References

(1) Wen, Y.; Chen, H.; Shen, C.; Zhao, M.; Liu, W. Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species. *Environ. Sci. Technol.* **2011**, *45*, (11), 4778-4784.

(2) White, E.; Payne, G. Chlorophyll production, in response to nutrient additions, by the algae in Lake Rotorua water. *New Zeal. J. Mar. Fresh.* **1978**, *12*, (2), 131-138.

(3) Jeffrey, S. t.; Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. *Biochem. Physiol. Pflanz.* **1975**, *167*, (2), 191-194.

(4) Zhao, J.; Cao, X.; Liu, X.; Wang, Z.; Zhang, C.; White, J. C.; Xing, B. Interactions of CuO nanoparticles with the algae *Chlorella pyrenoidosa*: adhesion, uptake, and toxicity. *Nanotoxicology* **2016**, *10*, (9), 1297-1305.

(5) Bickley, R. I.; Gonzalez-Carreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. A structural investigation of titanium dioxide photocatalysts. *J. Solid State Chem.* **1991**, *92*, (1), 178-190.

(6) Hartmann, N.; Von der Kammer, F.; Hofmann, T.; Baalousha, M.; Ottofuelling, S.; Baun, A. Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. *Toxicology* **2010**, *269*, (2-3), 190-197.

(7) Orvos, D. R.; Versteeg, D. J.; Inauen, J.; Capdevielle, M.; Rothenstein, A.; Cunningham, V. Aquatic toxicity of triclosan. *Environ. Toxicol. Chem.* **2002**, *21*, (7), 1338-1349.

(8) Singer, H.; Müller, S.; Tixier, C.; Pillonel, L. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. *Environ. Sci. Technol.* **2002**, *36*, (23), 4998-5004.

(9) Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO₂ using EPR. *J. Phys. Chem. B* **2003**, *107*, (19), 4545-4549.

(10) Rafqah, S.; Wong-Wah-Chung, P.; Nelieu, S.; Einhorn, J.; Sarakha, M. Phototransformation of triclosan in the presence of TiO₂ in aqueous suspension: Mechanistic approach. *Appl. Catal. B. Environ.* **2006**, *66*, (1-2), 119-125.

(11) Calabrese, E. J.; Iavicoli, I.; Calabrese, V. Hormesis: why it is important to biogerontologists. *Biogerontology* **2012**, *13*, (3), 215-235.

(12) Xin, X.; Huang, G.; Liu, X.; An, C.; Yao, Y.; Weger, H.; Zhang, P.; Chen, X. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy. *Environ. Pollut.* **2017**, *226*, 12-20.

(13) Pan, C.-G.; Peng, F.-J.; Shi, W.-J.; Hu, L.-X.; Wei, X.-D.; Ying, G.-G. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. *Ecotoxicol. Environ. Safety* **2018**, *148*, 393-401.

(14) Middepogu, A.; Hou, J.; Gao, X.; Lin, D. Effect and mechanism of TiO 2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. *Ecotoxicol. Environ. Safety* **2018**, *161*, 497-506.

(15) Xin, X.; Huang, G.; An, C.; Raina-Fulton, R.; Weger, H. Insights into Long-term Toxicity of Triclosan to Freshwater Green Algae in Lake Erie. *Environ. Sci. Technol.* **2019**.

(16) Stebbing, A. Hormesis—the stimulation of growth by low levels of inhibitors. *Sci. Total Environ.* **1982**, *22*, (3), 213-234.

(17) González-Pleiter, M.; Rioboo, C.; Reguera, M.; Abreu, I.; Leganés, F.; Cid, Á.; Fernández-Piñas, F. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan. *Aquat. Toxicol.* **2017**, *186*, 50-66.

(18) Perry, S. W.; Norman, J. P.; Barbieri, J.; Brown, E. B.; Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. *Biotechniques* 2011, *50*, (2), 98-115.
(19) Franz, S.; Altenburger, R.; Heilmeier, H.; Schmitt-Jansen, M. What contributes to the sensitivity of microalgae to triclosan? *Aquat. Toxicol.* 2008, *90*, (2), 102-108.

(20) Newton, A. P. N.; Cadena, S. M. S.; Rocha, M. E. M.; Carnieri, E. G. S.; De Oliveira, M. B. M. Effect of triclosan (TRN) on energy-linked functions of rat liver mitochondria. *Toxicol. Lett.* **2005**, *160*, (1), 49-59.

(21) Hou, J.; Wang, L.; Wang, C.; Zhang, S.; Liu, H.; Li, S.; Wang, X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. *J. Environ. Sci.* **2018**.

(22) Roy, B.; Chandrasekaran, H.; Krishnan, S. P.; Chandrasekaran, N.; Mukherjee, A. UVA preirradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus. *Environ. Sci. Pollut. Res.* **2018**, 1-14.

(23) Cohen, G.; Heikkila, R. E. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. *J. Biol. Chem.* **1974**, *249*, (8), 2447-2452.

(24) Peng, Y.; Luo, Y.; Nie, X.-P.; Liao, W.; Yang, Y.-F.; Ying, G.-G. Toxic effects of Triclosan on the detoxification system and breeding of *Daphnia magna*. *Ecotoxicology* **2013**, *22*, (9), 1384-1394.

(25) Mhamdi, A.; Queval, G.; Chaouch, S.; Vanderauwera, S.; Van Breusegem, F.; Noctor, G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. *J. Exp. Bot.* **2010**, *61*, (15), 4197-4220.