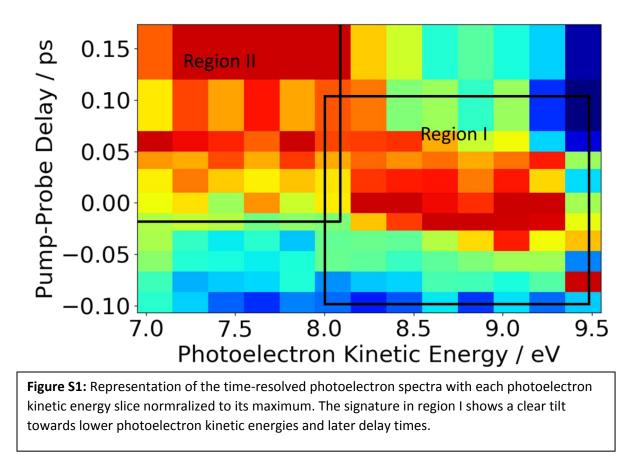
Observation of Ultrafast Intersystem Crossing in Thymine by Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy

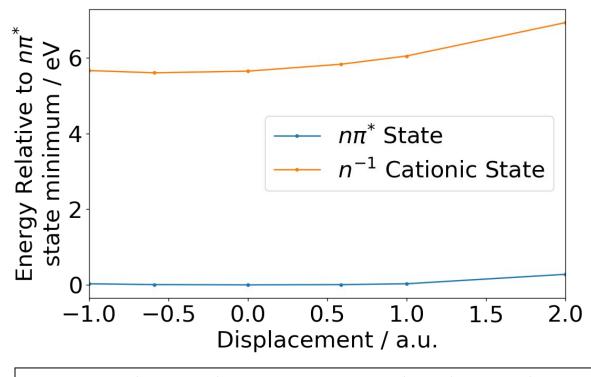
Thomas J. A. Wolf^{†, *}, Robert M. Parrish^{†‡}, Rolf H. Myhre[§], Todd J. Martínez^{†‡}, Henrik

Koch[∥], Markus Gühr^{†⊥,}*

[†]Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA.

[‡]Department of Chemistry, Stanford University, Stanford, USA.


[§]Department of Chemistry, Norwegian University of Science and Technology, NO-7491


Trondheim, Norway.

Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa PI, Italy.

[⊥]Institut für Physik und Astronomie, Universität Potsdam, Potsdam, Germany.

Supporting Information

Figure S2: Results from a scan of the lowest vibrational mode of the $n\pi^*$ minimum of thymine. The curvature of the Koopmans-correlated cationic state ist considerably stronger than the $n\pi^*$ state. The photoelectron band center is therefore crucially sensitive to the wavepacket distribution in the $n\pi^*$ state and cannot be simply compared to the ionization potential at the minimum geometry.