## **Supporting Information for**

## Growth of WOx Materials from Tungsten (VI) Oxo-Fluoroalkoxide Complexes with Partially Fluorinated β-diketonate/β-ketoesterate Ligands: Comparison of Chemical Vapor Deposition to Aerosol-Assisted CVD

Nathan C. Ou,<sup>a</sup> Duane C. Bock,<sup>a</sup> Xiaoming Su,<sup>a</sup> Doina Craciun,<sup>b</sup> Valentin Craciun<sup>b</sup> and Lisa McElwee-White<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7299 USA. <sup>b</sup>National Institute for Laser, Plasma, and Radiation Physics, Bucharest-Magurele, Romania

lmwhite@chem.ufl.edu

# **Table of Contents**

| Experimental Section                                                                         | 3   |
|----------------------------------------------------------------------------------------------|-----|
| General procedures                                                                           | 3   |
| Synthesis of WO(OC(CH3)2CF3)3(hfac) (2)                                                      | 4   |
| Synthesis of WO(OC(CH3)2CF3)3(etfac) (3)                                                     | 5   |
| Synthesis of WO(OC(CF <sub>3</sub> ) <sub>2</sub> CH <sub>3</sub> ) <sub>3</sub> (hfac) (5)  | 6   |
| Synthesis of WO(OC(CF <sub>3</sub> ) <sub>2</sub> CH <sub>3</sub> ) <sub>3</sub> (etfac) (6) | 6   |
| Synthesis of WO(OCH(CF <sub>3</sub> ) <sub>2</sub> ) <sub>4</sub> (Et <sub>2</sub> O)        | 7   |
| Synthesis of WO(OCH(CF <sub>3</sub> ) <sub>2</sub> ) <sub>3</sub> (acac) (7)                 | 8   |
| Synthesis of WO(OCH(CF3)2)3(hfac) (8)                                                        | 8   |
| Synthesis of WO(OCH(CF3)2)3(etfac) (9)                                                       | 9   |
| NMR spectra of 2 1                                                                           | 0   |
| Figure S1. <sup>1</sup> H NMR of 2 in CDCl <sub>3</sub> 1                                    | 0   |
| Figure S2. <sup>13</sup> C NMR of 2 in CDCl <sub>3</sub> 1                                   | . 1 |
| Figure S3. <sup>19</sup> F NMR of 2 in CDCl <sub>3</sub> 1                                   | . 1 |
| NMR spectra of <b>3</b> 1                                                                    | 2   |
| Figure S4. <sup>1</sup> H NMR of 3 in CDCl <sub>3</sub> 1                                    | 2   |
| Figure S5. <sup>13</sup> C NMR of 3 in CDCl <sub>3</sub> 1                                   | 2   |
| Figure S6. <sup>19</sup> F NMR of 3 in CDCl <sub>3</sub> 1                                   | 3   |
| NMR spectra of <b>5</b>                                                                      | .4  |
| Figure S7. <sup>1</sup> H NMR of 5 in CDCl <sub>3</sub> 1                                    | .4  |
| <b>Figure S8.</b> <sup>13</sup> C NMR of <b>5</b> in CDCl <sub>3</sub> 1                     | .4  |
| Figure S9. <sup>19</sup> F NMR of 5 in CDCl <sub>3</sub> 1                                   | 5   |
| NMR spectra of <b>6</b> 1                                                                    | 5   |
| Figure S10. <sup>1</sup> H NMR of 6 in CDCl <sub>3</sub> 1                                   | 5   |
| Figure S11. <sup>13</sup> C NMR of 6 in CDCl <sub>3</sub> 1                                  | 6   |

| Figure S12. <sup>19</sup> F NMR of 6 in CDCl <sub>3</sub>                                                                                                                                          | 16 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| NMR spectra of 7                                                                                                                                                                                   | 17 |
| <b>Figure S13.</b> <sup>1</sup> H NMR of <b>7</b> in $C_6D_6$                                                                                                                                      | 17 |
| <b>Figure S14.</b> <sup>13</sup> C NMR of <b>7</b> in $C_6D_6$                                                                                                                                     | 17 |
| <b>Figure S15.</b> <sup>19</sup> F NMR of <b>7</b> in $C_6D_6$                                                                                                                                     | 18 |
| NMR spectra of 8                                                                                                                                                                                   | 18 |
| Figure S16. <sup>1</sup> H NMR of 8 in CDCl <sub>3</sub>                                                                                                                                           | 18 |
| Figure S17. <sup>13</sup> C NMR of 8 in CDCl <sub>3</sub>                                                                                                                                          | 19 |
| Figure S18. <sup>19</sup> F NMR of 8 in CDCl <sub>3</sub>                                                                                                                                          | 19 |
| NMR spectra of 9                                                                                                                                                                                   | 20 |
| Figure S19. <sup>1</sup> H NMR of 9 in CDCl <sub>3</sub>                                                                                                                                           | 20 |
| Figure S20. <sup>13</sup> C NMR of 9 in CDCl <sub>3</sub>                                                                                                                                          | 20 |
| Figure S21. <sup>19</sup> F NMR of 9 in CDCl <sub>3</sub>                                                                                                                                          | 21 |
| NMR spectra of WO(OCH(CF <sub>3</sub> ) <sub>2</sub> ) <sub>4</sub> (Et <sub>2</sub> O)                                                                                                            | 21 |
| Figure S22. <sup>1</sup> H NMR of WO(OCH(CF <sub>3</sub> ) <sub>2</sub> ) <sub>4</sub> (Et <sub>2</sub> O) in CDCl <sub>3</sub>                                                                    | 21 |
| Figure S23. <sup>13</sup> C NMR of WO(OCH(CF <sub>3</sub> ) <sub>2</sub> ) <sub>4</sub> (Et <sub>2</sub> O) in CDCl <sub>3</sub>                                                                   | 22 |
| Figure S24. <sup>19</sup> F NMR of WO(OCH(CF <sub>3</sub> ) <sub>2</sub> ) <sub>4</sub> (Et <sub>2</sub> O) in CDCl <sub>3</sub>                                                                   | 22 |
| NMR spectra of thermolysis products from <b>5</b>                                                                                                                                                  | 23 |
| Figure S25. <sup>1</sup> H NMR of thermolysis products from 5 in CDCl <sub>3</sub>                                                                                                                 | 23 |
| Figure S26. <sup>19</sup> F NMR of thermolysis products from 5 in CDCl <sub>3</sub>                                                                                                                | 23 |
| GC-MS Spectra of thermolysis products from 5                                                                                                                                                       | 24 |
| Figure S27. Mass spectra and chromatograms of thermolysis products from 5 showing patterns attributed to hexafluoroisobutene                                                                       | 24 |
| <b>Figure S28.</b> Mass spectrum and chromatograms of thermolysis products from <b>5</b> showing fragmentation patterns attributed to hexafluoroacetylacetone and hexafluoro- <i>tert</i> -butanol | 25 |
| GC-MS Spectra of thermolysis products from 8                                                                                                                                                       | 26 |
| Figure S29. Mass spectra and chromatograms of thermolysis products from 8 showing patterns attributed to hexafluoroacetone                                                                         | 26 |
| Figure S30. Mass spectrum and chromatograms of thermolysis products from 8 showing fragmentation patterns attributed to hexafluoroacetylacetone                                                    | 26 |
| Figure S31. Mass spectrum and chromatograms of thermolysis products from 8 showing fragmentation patterns attributed to hexafluoroisopropanol                                                      | 27 |
| ESI MS/MS Spectra of 2-3, and 5-6                                                                                                                                                                  | 27 |
| Figure S32. ESI MS/MS of 2                                                                                                                                                                         | 27 |
| Figure S33. ESI MS/MS of 3                                                                                                                                                                         | 28 |
| Figure S34. ESI MS/MS of 5                                                                                                                                                                         | 28 |
| Figure S35. ESI MS/MS of 6                                                                                                                                                                         | 29 |

| XPS of $WO_x det to the second secon$ | eposition of WO(OC(CF <sub>3</sub> ) <sub>3</sub> CH <sub>3</sub> ) <sub>3</sub> (hfac) | 29 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----|
| Figure S36.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Survey of as-deposited film by AACVD grown from 5                                       | 29 |
| Figure S37.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | As-deposited C 1s of AACVD deposit grown at 500 °C from 5                               | 30 |
| Figure S38.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sputtered C 1s of AACVD deposit grown at 500 °C from 5                                  | 30 |
| Figure S39.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | As-deposited O 1s of AACVD deposit grown at 500 °C from 5                               | 31 |
| Figure S40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sputtered O 1s of AACVD deposit grown at 500 °C from 5                                  | 31 |
| Figure S41.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | As-deposited W 4f of AACVD deposit grown at 500 °C from 5                               | 32 |
| Figure S42.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sputtered W 4f of AACVD deposit grown at 500 °C from 5                                  | 32 |
| Rutherford Bac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ekscattering of WOx deposition of WO(OC(CF3)3CH3)3(hfac)                                | 33 |
| Figure S43.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RBS spectrum obtained from CVD deposit grown at 500 °C from 5                           | 33 |
| Figure S44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Particle size distribution histograms for AACVD deposits                                | 34 |
| Figure S45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Particle size distribution historgrams for CVD deposits                                 | 35 |

#### **Experimental Section**

### **General procedures**

All reactions were carried out under an atmosphere of dry nitrogen gas utilizing either glovebox or Schlenk techniques. All chemicals used were reagent grade. Solvents used were airfree and dried using standard procedures: CH<sub>2</sub>Cl<sub>2</sub> using an MBraun MB-SP solvent purification system and diethyl ether by distillation from sodium/benzophenone ketyl. Hexamethyldisiloxane (Sigma-Aldrich), 1,1,1-trifluoro-2-methyl-2-propanol (Synquest Laboratories), 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol (Synquest Laboratories), 1,1,1,3,3,3-hexafluoro-2-propanol (Synquest Laboratories), acetylacetone (Hacac, Sigma-Aldrich), hexafluoroacetylacetone (Hhfac), ethyl 4,4,4-trifluoro(acetoacetate) (Hetfac, Synquest Laboratories), and chloroform- $d_1$  (Cambridge Isotopes) were stored over 3 Å molecular sieves for 24 h prior to use. All other reagents were used as received. WOCl4,<sup>30</sup> NaOCH(CF<sub>3</sub>)2,<sup>31</sup> WO(OC(CH<sub>3</sub>)2CF<sub>3</sub>)4,<sup>32</sup> WO(OC(CF<sub>3</sub>)2CH<sub>3</sub>)4,<sup>32</sup> and compounds 1 and 4 were synthesized<sup>27</sup> and characterized according to literature procedures. Elemental analyses were obtained from Robertson Microlit Laboratories (Ledgewood, NJ). NMR spectra were recorded on a Varian Mercury 300BB (300 MHz) spectrometer. The chemical shifts for <sup>1</sup>H and <sup>13</sup>C NMR spectra are reported using residual solvent protons as reference, and are reported on the CFCl<sub>3</sub> scale for <sup>19</sup>F NMR spectra. Thermogravimetric analysis (TGA, TA Discovery5500) was performed under N<sub>2</sub> gas with a heating rate of 10 °C/min.

ESI mass spectra were obtained using a Bruker Daltonics Impact II-Qq-TOF instrument with electrospray as the source of ionization in positive mode. In a nitrogen-filled glovebox, a 4 mL (100  $\mu$ M) solution of sample was prepared using anhydrous, deoxygenated GC-MS-grade acetonitrile and added to a Hamilton 10 mL gas-tight syringe. The operation parameters were: gas temperature 200 °C, drying gas 4 L/min, nebulizer 1.0 bar, capillary voltage 4500 V in positive mode. The parent mass was further fragmented with a collision energy of 40 eV. The samples were injected using a syringe pump at a steady flow rate of 100  $\mu$ L/min.

For GC-MS, the mass spectrometry was performed using a ThermoScientific DSQ II with electron impact ionization (70 eV) with an ion source temperature of 250 °C. The gas chromatograph was a ThermoScientific Trace GC Ultra equipped with a Restek Corp., Rxi-5MS column, 30 m x 0.25 mm i.d. x 0.25  $\mu$ m df. The operation parameters were: MS transfer line of 240 °C with GC helium used as a carrier gas with constant flow of 1 mL/min. All samples were injected in split mode with a 10  $\mu$ L GC-type syringe with a flow rate of 10 mL/min. The NIST Mass Spectral Search Program library was used to compare fragmentation patterns of selected peaks.

#### Synthesis of WO(OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>)<sub>3</sub>(hfac) (2)

In a Schlenk flask,  $WO(OC(CH_3)_2CF_3)_4$  (0.927 mmol, 0.656 g) was dissolved in diethyl ether (40 mL) and chilled in an ice bath for 30 min. Hhfac (1.05 mmol, 0.22 g), dissolved in diethyl ether (10 mL), was added dropwise to the  $WO(OC(CH_3)_2CF_3)_4$  solution. Then the reaction was warmed to room temperature and allowed to stir for 15 h. Volatiles were removed *in vacuo* 

to afford a white solid. The solid was distilled under vacuum (30 mTorr) using a flask equipped with a drip-tip cold finger at 36 °C whereupon liquid droplets condensed on the cold finger. After 15 h, the droplets solidified to yield a solid white sublimate. Yield: 0.35 g (48 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  6.36 (s, 1H, OC(CF<sub>3</sub>)CH), 1.65 (s, 6H, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>), 1.61 (s, 6H, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>), 1.53 (s, 6H, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>, 25 °C): 179.9 (q, OC(CF<sub>3</sub>)CH), *J*<sub>C-F</sub> = 37.8 Hz), 173.6 (q, OC(CF<sub>3</sub>)CH), *J*<sub>C-F</sub> = 36.5 Hz), 125.9 (q, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>, *J*<sub>C-F</sub> = 286.0 Hz), 125.6 (q, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>, *J*<sub>C-F</sub> = 284.7 Hz), 117.5 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C-F</sub> = 282.2 Hz), 116.3 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C-F</sub> = 30.2 Hz), 22.8 (s, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>), 22.4 (s, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>), 21.9 (s, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>). <sup>19</sup>F{<sup>13</sup>C} NMR (282 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  -75.2 (s, 3F, OCCF<sub>3</sub>CH), -77.0 (s, 3F, OCCF<sub>3</sub>CH), -82.5 (s, 3F, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>), -83.0 (s, 6F, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>). MS (ESI): calc'd for [M + Na]<sup>+</sup> 811.0347, found 811.0355.

#### Synthesis of WO(OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>)<sub>3</sub>(etfac) (3)

Compound **3** was synthesized using the same procedure as **2**. In a Schlenk flask, WO(OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>)<sub>4</sub> (1.54 mmol, 1.09 g) was dissolved in diethyl ether (40 mL) and chilled in an ice bath for 30 min. Hetfac (1.64 mmol, 0.301 g), dissolved in diethyl ether (10 mL), was added dropwise to the WO(OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>)<sub>4</sub> solution. Then the reaction was warmed to room temperature and allowed to stir for 15 h. Volatiles were removed *in vacuo* to afford a yellow green oily residue. This residue was vacuum distilled (120 mTorr) at 55 °C for 15 h to yield a colorless, clear liquid. Yield: 0.25 g (21 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  5.61 (s, 1H, OC(CF<sub>3</sub>)CH), 4.29 (q, 2H, OC(OCH<sub>2</sub>CH<sub>3</sub>)CH, *J*<sub>H</sub>-H = 6 Hz), 1.63 (s, 12H, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>), 1.48 (s, 6H, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>), 1.33 (t, 3H, OC(OCH<sub>2</sub>CH<sub>3</sub>)CH, *J*<sub>H</sub>-H = 6 Hz). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  172.8 (s, OC(OCH<sub>2</sub>CH<sub>3</sub>), 163.9 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C</sub>-F = 35 Hz), 126.6 (q, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>, *J*<sub>C</sub>-F = 283.8 Hz), 126.0 (q, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>, *J*<sub>C</sub>-F = 282.5 Hz), 119.4 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C</sub>-F = 278.8 Hz), 91.71 (s, OC(CF<sub>3</sub>)CH), 85.9 (q, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>, *J*<sub>C</sub>-F = 31.3 Hz), 83.9 (q, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>, *J*<sub>C</sub>-F = 30 Hz), 63.6 (s, OC(OCH<sub>2</sub>CH<sub>3</sub>), 22.3 (s, OC(*C*H<sub>3</sub>)CF<sub>3</sub>) 22.2 (s, OC(*C*H<sub>3</sub>)CF<sub>3</sub>), 22.0 (s, OC(*C*H<sub>3</sub>)CF<sub>3</sub>), 14.03 (s, OC(OCH<sub>2</sub>CH<sub>3</sub>). <sup>19</sup>F{<sup>13</sup>C} NMR (282 MHz, CDCl<sub>3</sub>, 25 °C): δ -74.67 (s, 3F, OC(CF<sub>3</sub>)CH), -82.67 (s, 3F, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>), -82.94 (s, 6F, OC(CH<sub>3</sub>)<sub>2</sub>CF<sub>3</sub>). MS (ESI) calc'd for [M + Na]<sup>+</sup> 787.0735, found 787.0762.

#### Synthesis of WO(OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>)<sub>3</sub>(hfac) (5)

Compound 5 was synthesized following the same procedure as 2. In a Schlenk flask, WO(OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>)<sub>4</sub> (0.693 mmol, 0.491 g) was dissolved in diethyl ether (40 mL) and chilled in an ice bath for 30 min. Hhfac (0.843 mmol, 0.175 g), dissolved in diethyl ether (10 mL), was added dropwise to the WO(OC( $CF_3$ )<sub>2</sub>CH<sub>3</sub>)<sub>4</sub> solution. Then the reaction was warmed to room temperature and allowed to stir for 15 h. Volatiles were removed *in vacuo* to afford a yellowish solid. The solid was sublimed under vacuum (30 mTorr) at 36 °C for 15 h to yield a solid vellowish-white sublimate. Yield: 0.45 g (68 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  6.49 (s. 1H, OC(CF<sub>3</sub>)CH), 1.88 (s, 6H, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), 1.85 (s, 3H, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>).  ${}^{13}C{}^{1}H{}$  NMR (126) MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  182.5 (q, OC(CF<sub>3</sub>)CH,  $J_{C-F}$  = 39.1 Hz), 174.0 (q, OC(CF<sub>3</sub>)CH,  $J_{C-F}$  = 37.8 Hz), 122.9 (q, OC( $CF_3$ )<sub>2</sub>CH<sub>3</sub>,  $J_{C-F} = 288.5$  Hz), 122.8 (q, OC( $CF_3$ )<sub>2</sub>CH<sub>3</sub>,  $J_{C-F} = 286.0$  Hz), 122.3 (q, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>,  $J_{C-F} = 288.5$  Hz), 117.8 (q, OC(CF<sub>3</sub>)CH,  $J_{C-F} = 286.0$  Hz), 116.2 (q,  $OC(CF_3)CH$ ,  $J_{C-F} = 282.2 Hz$ ), 96.6 (s,  $OC(CF_3)CH$ ), 88.6 (sp,  $OC(CF_3)_2CH_3$ ,  $J_{C-F} = 31.5 Hz$ ), 86.2 (sp, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>,  $J_{C-F} = 31.5$  Hz), 15.9 (s, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), 15.6 (s, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>). <sup>19</sup>F{<sup>13</sup>C} NMR (282 MHz, CDCl<sub>3</sub>, 25 °C): δ -74.71 (s, 3F, OC(CF<sub>3</sub>)CH), -76.72 (s, 6F, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), -77.10 (s, 3F, OC(CF<sub>3</sub>)CH), -77.29 (m, 6F, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), -77.47 (m, 6F, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>). Anal. Calc'd for WO<sub>6</sub>C<sub>17</sub>H<sub>10</sub>F<sub>24</sub>: C: 21.49; H: 1.06%. Found: C: 21.66; H: 0.82%.

#### Synthesis of WO(OC(CF3)2CH3)3(etfac) (6)

Compound 6 was synthesized using the same procedure as 2. In a Schlenk flask,  $WO(OC(CF_3)_2CH_3)_4$  (0.914 mmol, 0.845 g) was dissolved in diethyl ether (40 mL) and chilled in

an ice bath for 30 min. Hetfac (1.06 mmol, 0.185 g), dissolved in diethyl ether (10 mL), was added dropwise to the WO(OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>)<sub>4</sub> solution. Then the reaction was warmed to room temperature and allowed to stir for 15 h. Volatiles were removed *in vacuo* to afford a yellow oily residue. This residue was vacuum distilled (60 mTorr) at 41 °C for 15 h to yield a yellowish distillate. Yield: 0.35 g (41 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  5.74 (s, 1H, OC(CF<sub>3</sub>)CH), 4.35 (q, 2H, OC(OCCH<sub>2</sub>CH<sub>3</sub>)CH, *J*<sub>H-H</sub> = 9 Hz), 1.86 (s, 6H, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), 1.82 (s, 3H, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), 1.34 (t, 3H, OC(OCCH<sub>2</sub>CH<sub>3</sub>)CH, *J*<sub>H-H</sub> = 6 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  173.0 (s, OC(OCH<sub>2</sub>CH<sub>3</sub>), 162.8 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C-F</sub> = 36.5 Hz), 123.3 (q, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>, *J*<sub>C-F</sub> = 287.3 Hz), 123.1 (q, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>, *J*<sub>C-F</sub> = 287.3 Hz), 122.8 (q, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>, *J*<sub>C-F</sub> = 30.2 Hz), 85.0 (sp, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>, *J*<sub>C-F</sub> = 30.2 Hz), 64.9 (s, OC(OCCH<sub>2</sub>CH<sub>3</sub>), 15.9 (s, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), 15.6 (s, 3F, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), 13.9 (s, OC(OCCH<sub>2</sub>CH<sub>3</sub>)). <sup>19</sup>F{<sup>13</sup>C} NMR (282 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  -74.36 (s, 3F, OC(CF<sub>3</sub>)CH), -77.21 (s, 6F, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), -77.25 (s, 6F, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>), -77.86 (m, 6F, OC(CF<sub>3</sub>)<sub>2</sub>CH<sub>3</sub>). MS (ESI): calc'd for [M + Na]<sup>+</sup> 948.9887, found 948.9909.

## Synthesis of WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub>(Et<sub>2</sub>O)

In a Schlenk flask, WOCl<sub>4</sub> (3.97 mmol, 1.36 g) was dissolved in diethyl ether (40 mL) and chilled in an ice bath for 30 min. NaOCH(CF<sub>3</sub>)<sub>2</sub> (16.2 mmol, 3.09 g), dissolved in diethyl ether (40 mL), was added dropwise to the WOCl<sub>4</sub> solution and a progressive color change from orange to dark blue was observed. The reaction was then warmed to room temperature and allowed to stir for 15 h after which volatiles were removed *in vacuo* to afford a sticky dark blue residue. The residue was sublimed under vacuum (60 mTorr) at room temperature for 15 h to yield a solid yellow sublimate. Yield: 1.26 g (36.5 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  5.35 (sp, 4H, OC*H*(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>H-F</sub> = 6 Hz), 3.92 (q, 4H, (CH<sub>3</sub>CH<sub>2</sub>)<sub>2</sub>O, *J*<sub>H-H</sub> = 6 Hz), 1.21 (t, 6H, (CH<sub>3</sub>CH<sub>2</sub>)<sub>2</sub>O, *J*<sub>H-H</sub> = 6 Hz). <sup>13</sup>C {<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  122.0 (q, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C-F</sub> = 273.4 Hz), 80.5 (sp, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C-F</sub> = 34.0 Hz), 65.1 (s, (CH<sub>3</sub>CH<sub>2</sub>)<sub>2</sub>O), 12.3 (s, (CH<sub>3</sub>CH<sub>2</sub>)<sub>2</sub>O). <sup>19</sup>F {<sup>13</sup>C} NMR

(282 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  -73.72 (d, 24F, OCH(C*F*<sub>3</sub>)<sub>2</sub>, *J*<sub>F-H</sub> = 5.6 Hz). MS (DART): calc'd for [M - Et<sub>2</sub>O - H]<sup>-</sup> 866.9103, found 866.9088.

#### Synthesis of WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>3</sub>(acac) (7)

Compound 7 was synthesized using the same procedure as 2. In a Schlenk flask, WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub>(Et<sub>2</sub>O) (1.27 mmol, 1.10 g) was dissolved in diethyl ether (40 mL) and in an additional funnel, Hacac (1.27 mmol, 0.128 g) was dissolved in diethyl ether (30 mL). The flask was chilled in an ice bath for 30 minutes. Hacac was added dropwise to the WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub>(Et<sub>2</sub>O) solution. The reaction was warmed to room temperature and allowed to stir for 15 h. The volatiles were removed *in vacuo* to afford a yellow solid. The crude product was sublimed (300 mTorr) at 40 °C to yield a yellow sublimate. Yield 0.46 g (45 %). <sup>1</sup>H NMR (300 MHz,  $C_6D_6$ , 25 °C):  $\delta$  5.73 (sp, 1H, OCH(CF<sub>3</sub>)<sub>2</sub>,  $J_{H-F} = 6$  Hz), 5.22 (sp, 2H, OCH(CF<sub>3</sub>)<sub>2</sub>),  $J_{H-F} = 6$  Hz),  $J_{H-F} = 6$  $_{\rm F} = 6$  Hz), 4.82 (s, 1H, OC(CH<sub>3</sub>)CH), 1.40 (s, 3H, OC(CH<sub>3</sub>)), 1.20 (s, 3H, OC(CH<sub>3</sub>)). <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, CDCl<sub>3</sub>, 25 °C): δ 197.72 (s, OC(CH<sub>3</sub>)CH), 185.46 (s, OC(CH<sub>3</sub>)CH), 121.71 (q, OCH $(CF_3)_2$ ,  $J_{C-F} = 284.3$  Hz), 121.48 (q, OCH $(CF_3)_2$ ,  $J_{C-F} = 282.8$  Hz), 108.27 (s, CH), 81.37 (sp, OCH(CF<sub>3</sub>)<sub>2</sub>, J<sub>C-F</sub> = 33.8 Hz), 77.98 (sp, OCH(CF<sub>3</sub>)<sub>2</sub>, J<sub>C-F</sub> = 34.5 Hz), 27.46 (s, C(CH<sub>3</sub>)), 25.16 (s, C(CH<sub>3</sub>)). <sup>19</sup>F{<sup>13</sup>C} NMR (282 MHz, C<sub>6</sub>D<sub>6</sub> 25 °C):  $\delta$  -73.34 (s, 6F, OCH(CF<sub>3</sub>)<sub>2</sub>), -74.18 (m, 6F, OCH(CF<sub>3</sub>)<sub>2</sub>,  $J_{F-F} = 8.5$  Hz), -74.31 (q, 6F, OCH(CF<sub>3</sub>)<sub>2</sub>,  $J_{F-F} = 8.5$  Hz). Anal. Calc'd for WO<sub>6</sub>C<sub>14</sub>H<sub>10</sub>F<sub>18</sub>: C, 21.02; H, 1.21. Found: C, 21.21; H, 0.99 %.

#### Synthesis of WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>3</sub>(hfac) (8)

Compound **8** was synthesized using the same procedure as **2**. In a Schlenk flask, WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub>(Et<sub>2</sub>O) (0.494 mmol, 0.429 g) was dissolved in diethyl ether (40 mL) and chilled in an ice bath for 30 min. Hhfac (0.632 mmol, 0.131 g), dissolved in diethyl ether (10 mL), was added dropwise to the WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub> solution. Then the reaction was warmed to room temperature and allowed to stir for 15 h. Volatiles were removed *in vacuo* to afford an oily dark green residue. This residue was vacuum distilled (60 mTorr) at room temperature for 15 h to afford an orange distillate. Yield: 0.11 g (25 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  6.65 (s, 1H, OC(CF<sub>3</sub>)C*H*), 5.59 (sp, 1H, OC*H*(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>H</sub>-F = 6 Hz). 5.47 (sp, 2H, OC*H*(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>H</sub>-F = 6 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  182.9 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C</sub>-F = 39.1 Hz), 174.3 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C</sub>-F = 39.1 Hz), 120.4 (q, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C</sub>-F = 284.7 Hz), 120.5 (q, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C</sub>-F = 283.5 Hz), 120.2 (q, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C</sub>-F = 283.5 Hz), 117.4 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C</sub>-F = 284.8 Hz), 116.5 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C</sub>-F = 282.2 Hz), 98.0 (s, OC(CF<sub>3</sub>)CH), 81.1 (sp, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C</sub>-F = 34.0 Hz), 80.0 (sp, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C</sub>-F = 35.3 Hz). <sup>19</sup>F{<sup>13</sup>C} NMR (282 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  -73.79 (s, 6F, OCH(CF<sub>3</sub>)<sub>2</sub>), -74.12 (s, 6F, OCH(CF<sub>3</sub>)<sub>2</sub>), -74.57 (s, 6F, OCH(CF<sub>3</sub>)<sub>2</sub>), -74.78 (s, 3F, OC(CF<sub>3</sub>)CH), -76.95 (s, 3F, OC(CF<sub>3</sub>)CH). MS (DART): calc'd for [M + H]<sup>+</sup> 908.9212, found 908.9209.

#### Synthesis of WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>3</sub>(etfac) (9)

Compound **9** was synthesized using the same procedure as **2**. In a Schlenk flask, WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub> (0.881 mmol, 0.624 g) was dissolved in diethyl ether (10 mL) and chilled in an ice bath for 30 min. Hetfac (0.934 mmol, 0.172 g), dissolved in diethyl ether (10 mL), was added dropwise to the WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub> solution. Then the reaction was warmed to room temperature and allowed to stir for 15 h. Volatiles were removed *in vacuo* to afford a dark green oily residue. This residue was vacuum distilled (120 mTorr) at 55 °C for 15 h to yield a dark green distillate. Yield: 0.10 g (12 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$  5.88 (s, 1H, OC(CF<sub>3</sub>)*CH*), 5.42 (sp, 1H, OCC*H*(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>H</sub>-F = 6 Hz), 5.38 (sp, 2H, OCC*H*(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>H</sub>-F = 6 Hz), 4.42 (q, 2H, OC(OC*H*<sub>2</sub>CH<sub>3</sub>), *J*<sub>H</sub>-H = 3 Hz), 1.38 (t, 3H, OC(OCH<sub>2</sub>CH<sub>3</sub>), *J*<sub>H</sub>-H = 3 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>, 25 °C): 173.4 (s, OC(OCH<sub>2</sub>CH<sub>3</sub>)), 162.9 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C</sub>-F = 37.5 Hz), 121.8 (q, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C</sub>-F = 282.5 Hz), 121.5 (q, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C</sub>-F = 282.5 Hz), 121.5 (q, OCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C</sub>-F = 280.0 Hz), 121.0 (q, OC(CF<sub>3</sub>)CH, *J*<sub>C</sub>-F = 276.2 Hz), 96.6 (s, OC(CF<sub>3</sub>)CH), 81.2 (sp, OCCH((CF<sub>3</sub>)<sub>2</sub>), *J*<sub>C</sub>-F = 33.8), 80.4 (sp, OCCH(CF<sub>3</sub>)<sub>2</sub>, *J*<sub>C</sub>-F = 33.8 Hz), 66.0 (s, OC(OCH<sub>2</sub>CH<sub>3</sub>)), 13.8 (s, OC(OCH<sub>2</sub>CH<sub>3</sub>)). <sup>19</sup>F{<sup>13</sup>C} NMR (282 MHz, CDCl<sub>3</sub>, 25 °C):  $\delta$ -73.91 (s, 6F, OCH(CF<sub>3</sub>)<sub>2</sub>), -74.06 (m, 6F, OCH(CF<sub>3</sub>)<sub>2</sub>), -74.61 (s, 3F, OC(CF<sub>3</sub>)CH), -74.76 (m, 6F, OCH(CF<sub>3</sub>)<sub>2</sub>). MS (DART): calc'd for [M – OR]<sup>-</sup> 716.9591 found 716.9634

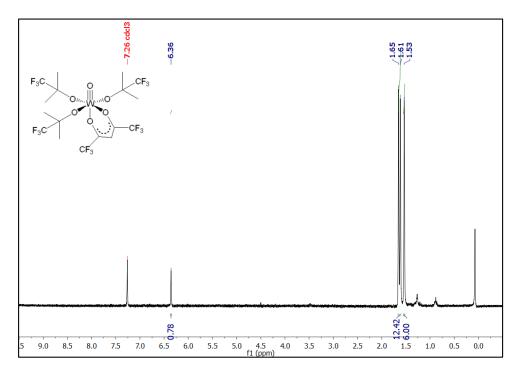



Figure S1. <sup>1</sup>H NMR of 2 in CDCl<sub>3</sub>

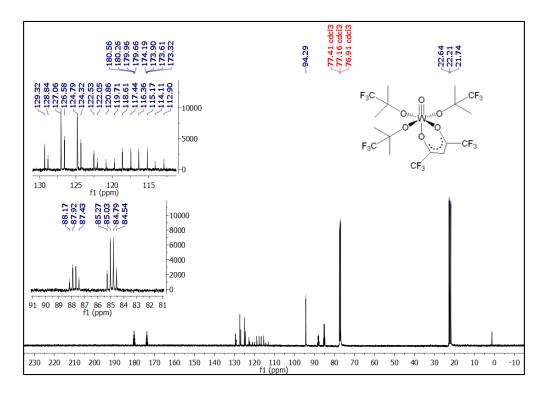



Figure S2. <sup>13</sup>C NMR of 2 in CDCl<sub>3</sub>

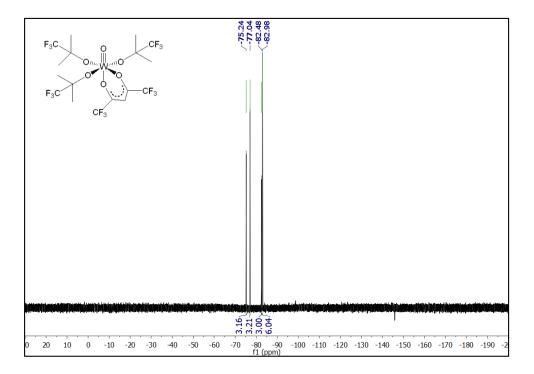



Figure S3.  ${}^{19}$ F NMR of 2 in CDCl<sub>3</sub>

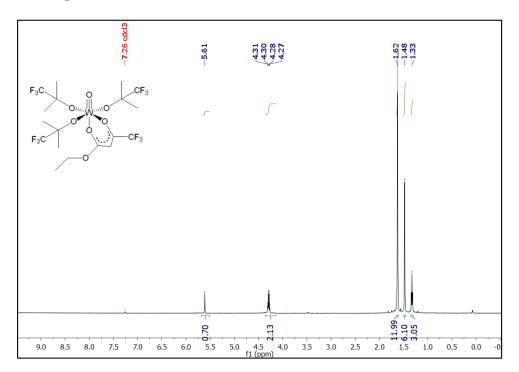



Figure S4. <sup>1</sup>H NMR of 3 in CDCl<sub>3</sub>

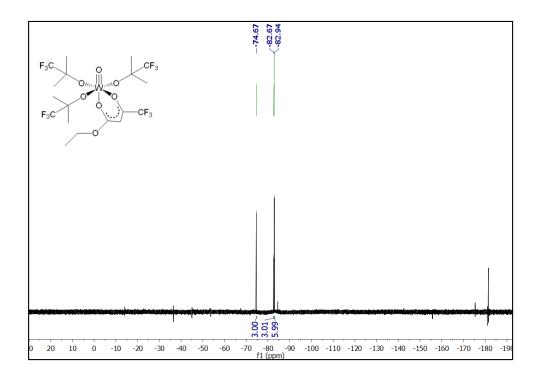
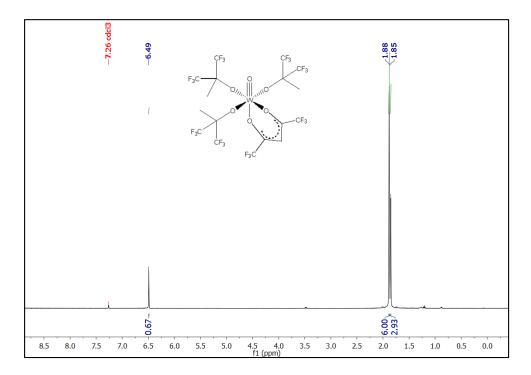





Figure S5. <sup>13</sup>C NMR of 3 in CDCl<sub>3</sub>



**Figure S6.** <sup>19</sup>F NMR of **3** in CDCl<sub>3</sub>



**Figure S7.** <sup>1</sup>H NMR of **5** in CDCl<sub>3</sub>

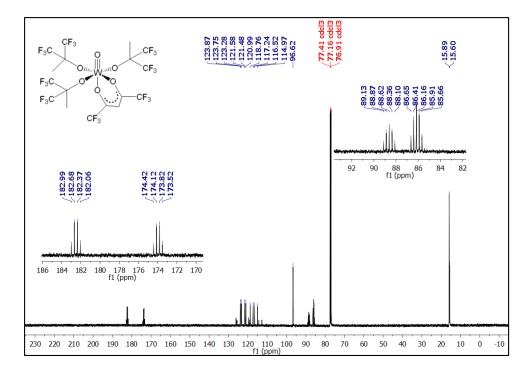



Figure S8. <sup>13</sup>C NMR of 5 in CDCl<sub>3</sub>

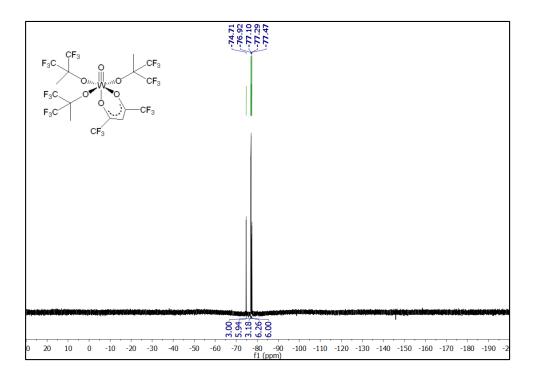



Figure S9.  $^{19}$ F NMR of 5 in CDCl<sub>3</sub>

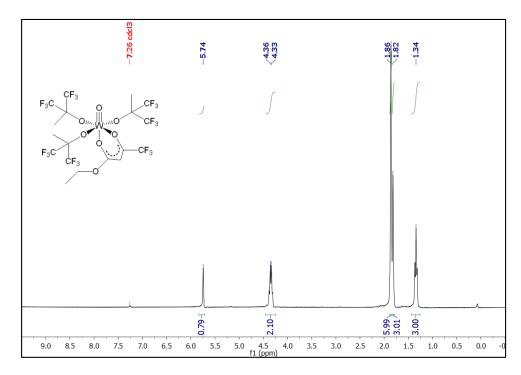



Figure S10. <sup>1</sup>H NMR of 6 in CDCl<sub>3</sub>

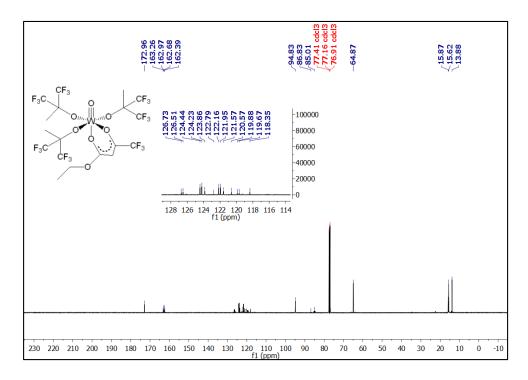
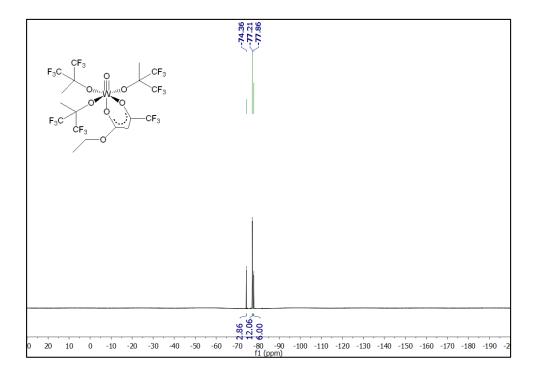
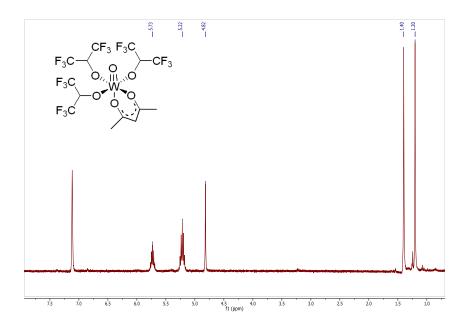
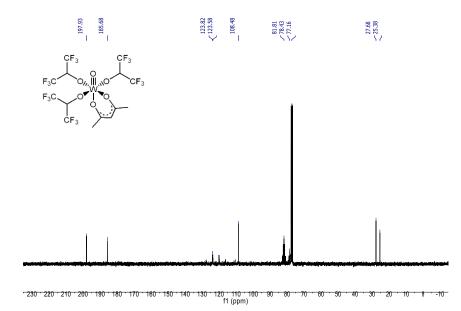
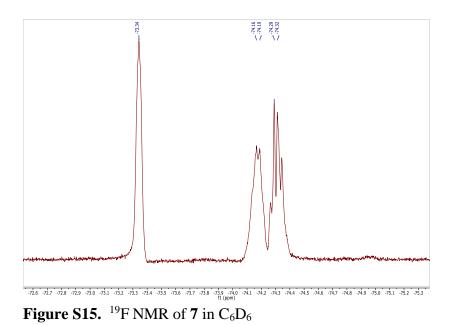



Figure S11. <sup>13</sup>C NMR of 6 in CDCl<sub>3</sub>



Figure S12. <sup>19</sup>F NMR of 6 in CDCl<sub>3</sub>



**Figure S13.** <sup>1</sup>H NMR of **7** in  $C_6D_6$ 



**Figure S14.** <sup>13</sup>C NMR of **7** in  $C_6D_6$ 



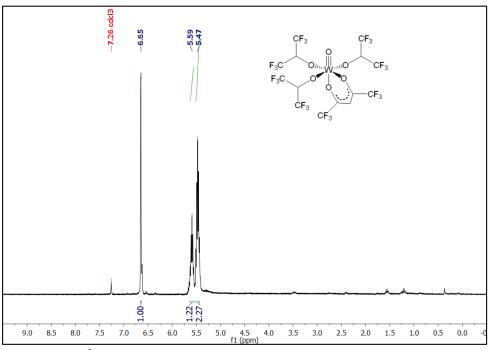



Figure S16. <sup>1</sup>H NMR of 8 in CDCl<sub>3</sub>

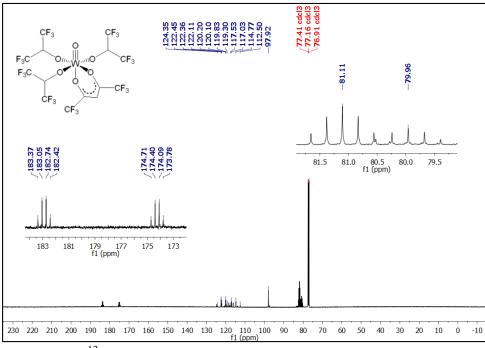



Figure S17. <sup>13</sup>C NMR of 8 in CDCl<sub>3</sub>

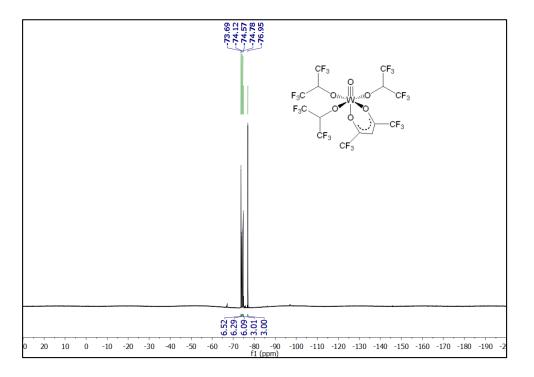



Figure S18. <sup>19</sup>F NMR of 8 in CDCl<sub>3</sub>

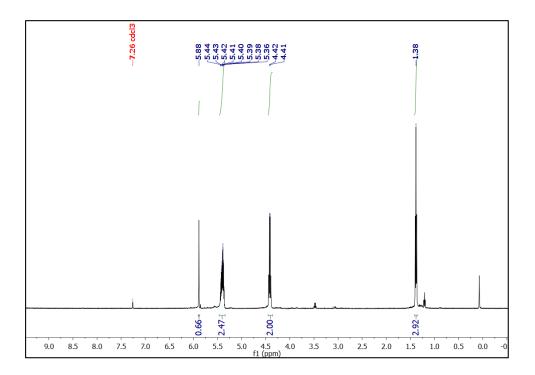



Figure S19. <sup>1</sup>H NMR of 9 in CDCl<sub>3</sub>

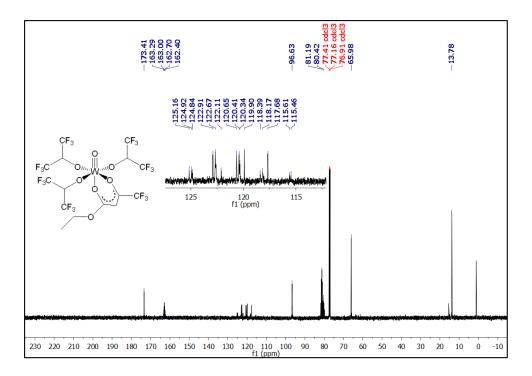



Figure S20. <sup>13</sup>C NMR of 9 in CDCl<sub>3</sub>

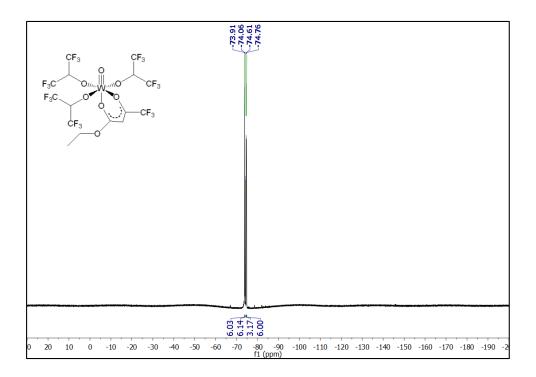



Figure S21. <sup>19</sup>F NMR of 9 in CDCl<sub>3</sub>



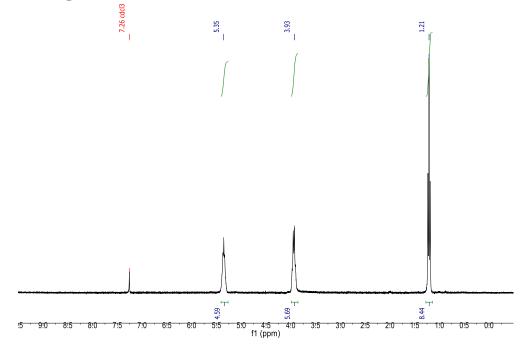



Figure S22. <sup>1</sup>H NMR of WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub>(Et<sub>2</sub>O) in CDCl<sub>3</sub>

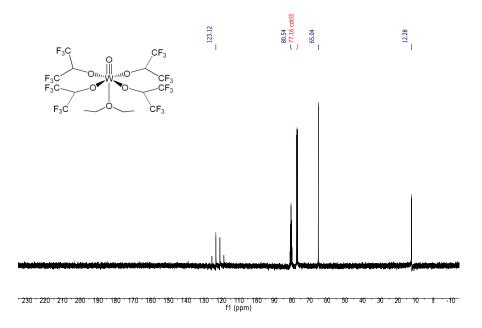



Figure S23. <sup>13</sup>C NMR of WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub>(Et<sub>2</sub>O) in CDCl<sub>3</sub>

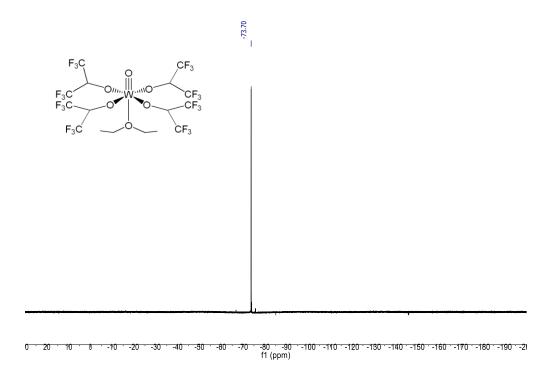



Figure S24. <sup>19</sup>F NMR of WO(OCH(CF<sub>3</sub>)<sub>2</sub>)<sub>4</sub>(Et<sub>2</sub>O) in CDCl<sub>3</sub>

NMR spectra of thermolysis products from 5

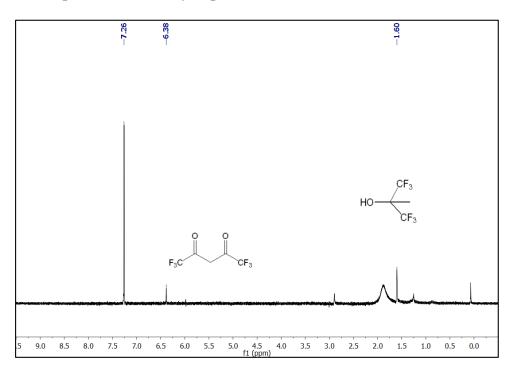



Figure S25. <sup>1</sup>H NMR of thermolysis products from 5 in CDCl<sub>3</sub>

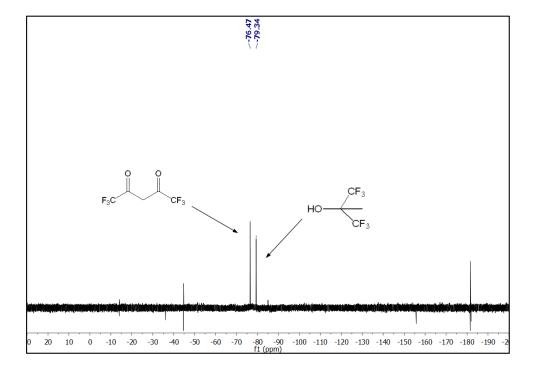



Figure S26. <sup>19</sup>F NMR of thermolysis products from 5 in CDCl<sub>3</sub>

## GC-MS Spectra of thermolysis products from 5

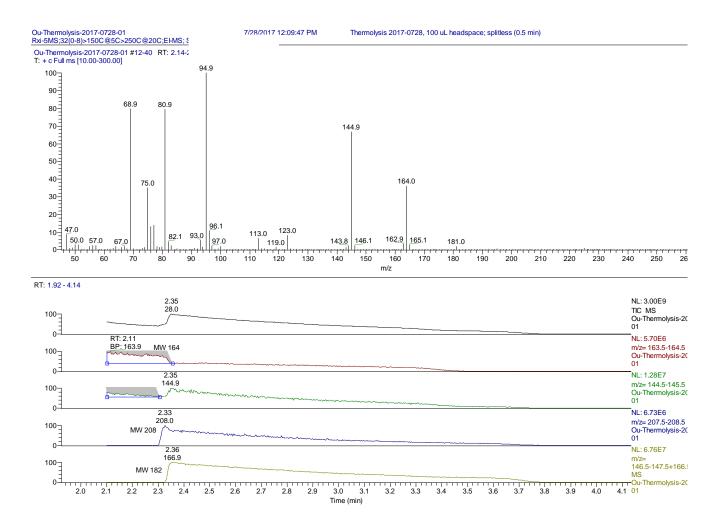
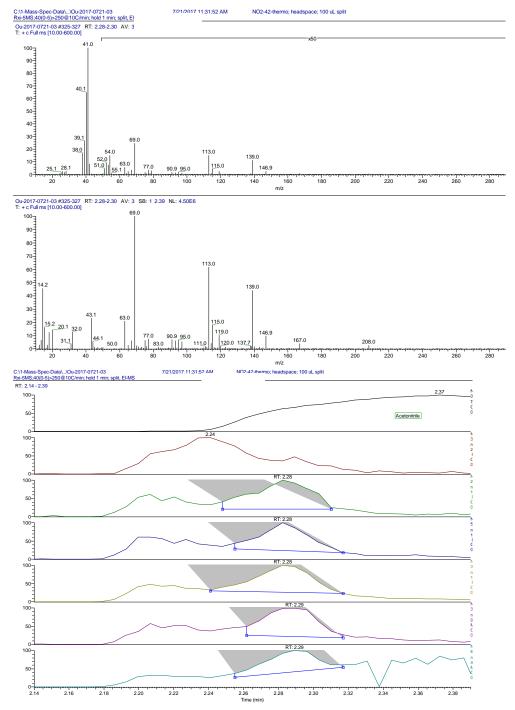




Figure S27. Mass spectra and chromatograms of thermolysis products from 5 showing patterns attributed to hexafluoroisobutene



**Figure S28.** Mass spectrum and chromatograms of thermolysis products from **5** showing fragmentation patterns attributed to hexafluoroacetylacetone and hexafluoro-*tert*-butanol.

## GC-MS Spectra of thermolysis products from 8

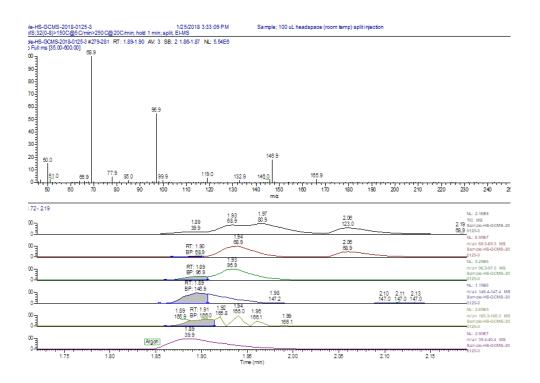



Figure S29. Mass spectra and chromatograms of thermolysis products from 8 showing patterns attributed to hexafluoroacetone

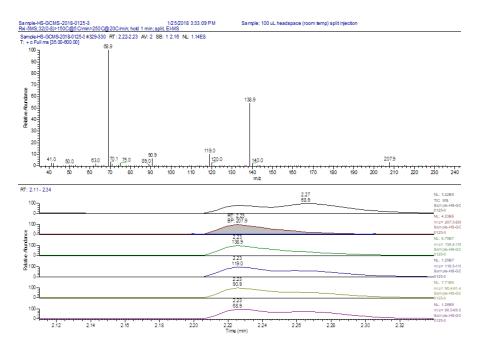



Figure S30. Mass spectrum and chromatograms of thermolysis products from 8 showing fragmentation patterns attributed to hexafluoroacetylacetone

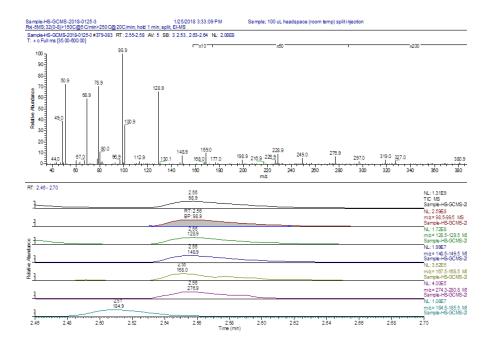



Figure S31. Mass spectrum and chromatograms of thermolysis products from 8 showing fragmentation patterns attributed to hexafluoroisopropanol

# ESI MS/MS Spectra of 2-3, and 5-6

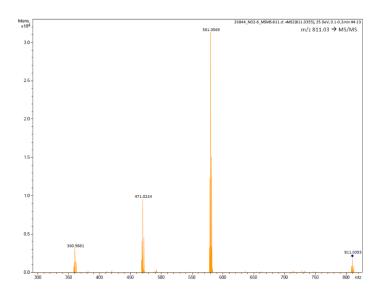



Figure S32. ESI MS/MS of 2

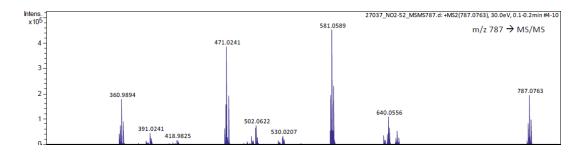



Figure S33. ESI MS/MS of 3

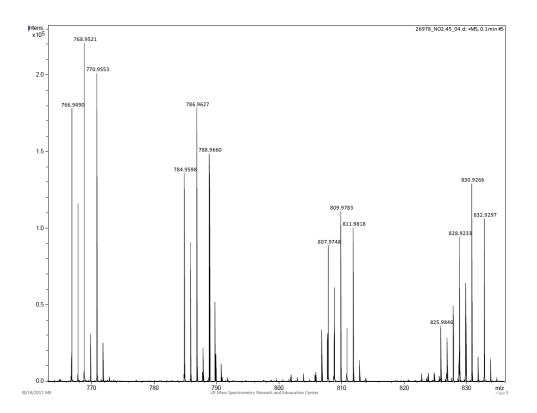



Figure S34. ESI MS/MS of 5.

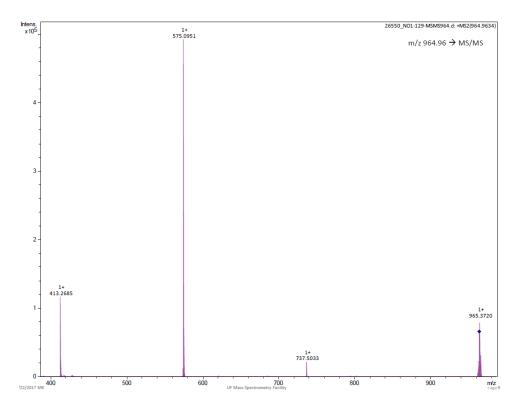



Figure S35. ESI MS/MS of 6

XPS of WO<sub>x</sub> deposition of WO(OC(CF<sub>3</sub>)<sub>3</sub>CH<sub>3</sub>)<sub>3</sub>(hfac)

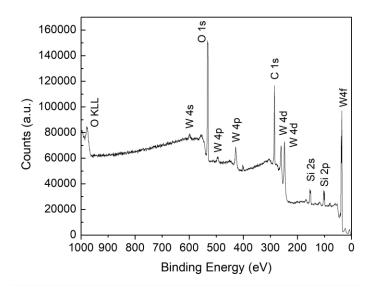
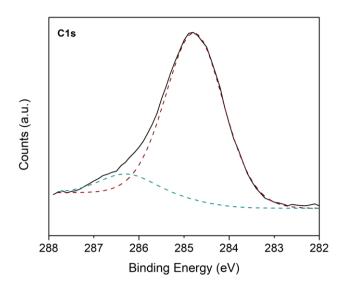
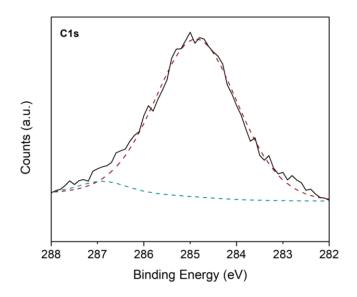
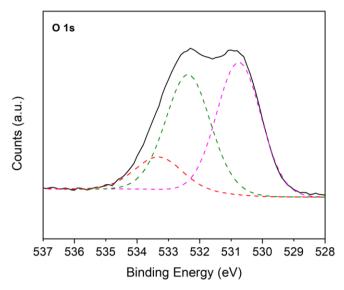
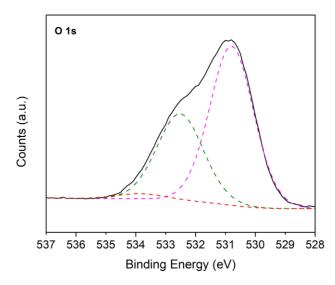
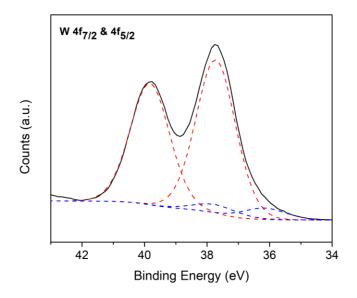



Figure S36. Survey of as-deposited film by AACVD grown from 5

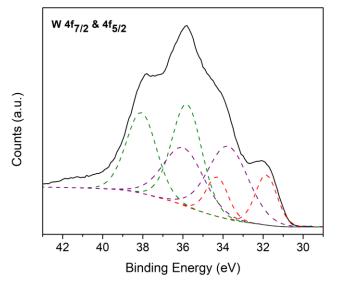






Figure S37. As-deposited C 1s of AACVD deposit grown at 500 °C from 5




**Figure S38.** C 1s of AACVD deposit grown at 500 °C from **5** acquired after gentle sputtering (500 eV) the surface for 2 min

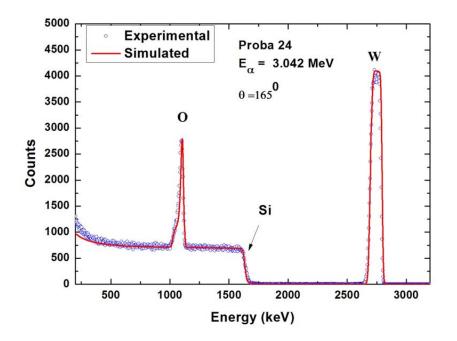



**Figure S39.** As-deposited O 1s high resolution spectrum of AACVD deposit grown at 500 °C from **5**. The peak located at 530.2 eV is from  $O^{2-}$  in WO<sub>3</sub> lattice, the peak located at 532.3 eV is from C-O-C and C-O-H oxygen atoms, while the one located at 533.5 eV is from H<sub>2</sub>O

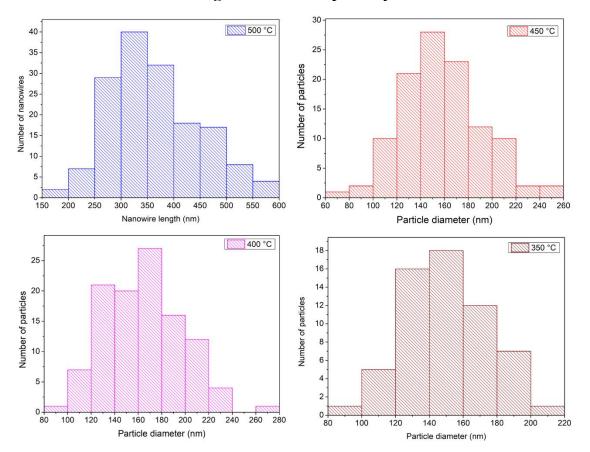


**Figure S40.** Sputtered O 1s of AACVD deposit grown at 500 °C from **5**. The O 1s core level peaks corresponding to  $H_2O$  and C-O-C or C-O-H strongly decreased in intensity (surface contaminants) while that corresponding to WO<sub>3</sub> increased.




**Figure S41.** As-deposited W 4f of AACVD deposit grown at 500 °C from **5**. The deconvolution process identified mostly WO<sub>3</sub> and a small fraction (around 5%) of WO<sub>3-x</sub>.




**Figure S42.** Sputtered W 4f of AACVD deposit grown at 500 °C from **5**. After sputtering, the deconvolution process for the W 4f core level peak identified the presence of three peaks: WO<sub>3</sub> (35.8 eV), WO<sub>x</sub> (33.8 eV) and metallic W (31.8 eV).

| Sample      | Beam spot position | Characterization |               |          |         |
|-------------|--------------------|------------------|---------------|----------|---------|
| Sample      |                    | Layers           | Thickness (Å) | Comp     | osition |
|             | First point        | 1                | 2350          | W        | 0       |
|             |                    |                  |               | 1.000    | 3.000   |
|             |                    | *2               | 100000        | Si 1.000 |         |
| CVD, 500 °C | Second point       | 1                | 2300          | W        | 0       |
|             |                    |                  |               | 1.000    | 3.000   |
|             |                    | *2               | 100000        | Si 1     | .000    |

Rutherford Backscattering of WO<sub>x</sub> deposition of WO(OC(CF<sub>3</sub>)<sub>3</sub>CH<sub>3</sub>)<sub>3</sub>(hfac)



**Figure S43**. RBS spectrum obtained from CVD deposit grown at 500 °C from **5**. The Rutherford scattering cross-section is proportional to the square of the nuclear charge of the target nucleus. Therefore, the scattering peaks from light elements such as C, N and O are superimposed on a relatively high background due to backscattering from heavy elements in the sample. In recent years, high energy 1H and 4He backscattering has been utilized to overcome this difficulty and to quantify the stoichiometry or to profile the light elements in the heavy bulk samples. In the high energy backscattering experiments, 1H and 4He ions of 3-9 MeV (or even more) are used as incident projectiles. The elastic scattering cross section for light elements becomes a nuclear rather than a Rutherford interaction, called non–Rutherford backscattering or nuclear resonance elastic scattering. The non–Rutherford backscattering can be used to enhance the sensitivity for light elements. For example, at 4He energy of 3.042 MeV the elastic backscattering cross section for O is 25 times larger than that corresponding to Rutherford cross sections. An example of this type of non-Rutherford scattering is presented in Fig. S43 for a thin WO<sub>3</sub> film deposited on a Si substrate.



Particle size distribution histograms of WOx deposits by AACVD and CVD

Figure S44. Particle size distribution histograms for AACVD deposits

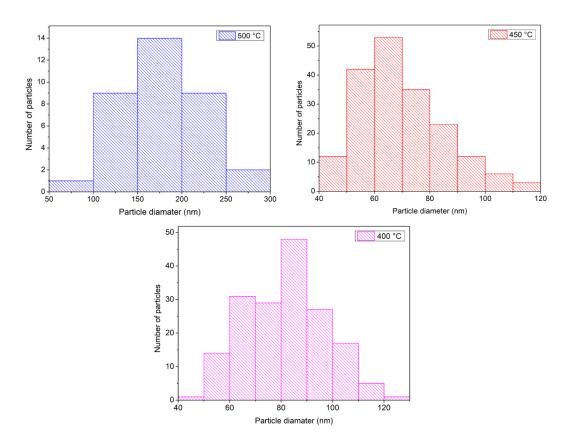



Figure S45. Particle size distribution histograms for CVD deposits