Supplementary Materials for

Asymmetric Induction and Enantiodivergence in Catalytic Radical C-H Amination via Enantiodifferentiative H-Atom Abstraction and Stereoretentive Radical Substitution

Kai Lang, ${ }^{1}$ Sebastian Torker, ${ }^{1}$ Lukasz Wojtas, ${ }^{2}$ and X. Peter Zhang* ${ }^{1}$
Corresponding author. Email: peter.zhang@bc.edu
${ }^{1}$ Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
${ }^{2}$ Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States

This PDF file includes:

Materials and Methods
Supplementary Text
Tables S1 to S3
Figures S1 to S14-2
Schemes S1 to S6
Captions for movies (SI-C and SI-D) to illustrate the major pathways leading to the enantiodifferentiative HAA and stereoretentive RS by $[\mathrm{Co}(\mathbf{P 4})]$ and $[\mathrm{Co}(\mathbf{P 5})]$

CD Spectra
Density Functional Theory (DFT) Calculations
Other Supplementary Material for this manuscript includes the following:
Coordinates for DFT Calculated Structures (SI-B)
Movie for Major C-H Amination Pathway by [Co(P4)] (SI-C).
Movie for Major C-H Amination Pathway by $[\mathrm{Co}(\mathbf{P 5})]$ (SI-D).

Table of Contents

General Information S4.
Figure S1. Select Examples of Biologically Important Molecules Containing Chiral Five-Membered Cyclic Sulfamide and Vicinal Diamine Motifs S5.
Figure S2. Summary of Structures Confirmed by X-ray S6.
Figure S3. Summary of Library Synthesis of Co(II)-Based, Bridged Amidoporphyrins S8.
Synthesis and Characterization of of Catalyst Building Blocks S9.
General Procedure A (Synthesis of Ester Amidoporphyrins) S11.
Characterization of Ester Amidoporphyrins S11.
General Procedure B (Synthesis of Bridged Amidoporphyrins) S18.
Characterization of Bridged Amidoporphyrins S18.
Figure S4. ${ }^{1}$ H NMR Spectra of Bridged Amidoporphyrins (Low-field Region) S-24.
General Procedure C (Synthesis of Co(II)-Based, Open and Bridged Amidoporphyrins) S24.
Characterization of $\mathbf{C o}($ II)-Based, Open and Bridged Amidoporphyrins S24.
General Procedure D (Amine Synthesis) S29.
Characterization of Amines S30.
General Procedure E (Synthesis of Sulfamoyl Azides 1) S38.
Characterization of Sulfamoyl Azides (1a-1u) S38.
General Procedure F (Co(II)-Catalyzed Intramolecular Radical 1,5-C-H Amination) S47.
Figure S-5. Representative Survey of Open Catalysts for Asymmetric Radical 1,5-C-H Amination. S48.
Table S1. Systematic Control of Degree and Sense of Asymmetric Induction for Intramolecular Radical 1,5-C-H Amination of Sulfamoyl Azide 2a by [Co(HuPhyrin)]. S49.
Characterization of Sulfamides ($\mathbf{2 a}-2 \mathrm{~m}^{\prime}$) S50.
Table S2. Ligand Effect on Co (II)-Catalyzed Selective Formation of 5-Membered Ring Structures (Open vs Bridged Catalysts) S59.
Characterization of Sulfamides (2n-2u) S60.
Table S3. KIE Studies on Catalytic C-H Amination of Enantiopure Isotopomeric Azides via Co(II)-Based MRC. S65.
Key Information of Asymmetric Induction Process Obtained from the Results in Table S3 S66.
Synthesis and Characterization of Deuterated Azides (S)-1a $\mathrm{a}_{\mathrm{D}},(R)-\mathbf{1} \mathrm{a}_{\mathrm{D}}$ and Products $\mathbf{2} \mathrm{a}_{\mathrm{H}}$ S66.
Experimental Evidence for Radical Mechanism S68.

1. TEMPO Trapping Experiment S68.
2. EPR Experiment S69.
Figure S6. Experimental and Simulated X-Band EPR Spectra for α-Co(III)-Aminyl Radical I in Toluene at RT. S70.
3. HRMS Experiment S71.
Figure S7. Observed and Simulated ESI-MS Spectra with Isotope Distribution S73.
X-ray Crystallography and Data Interpretation S74.
General Procedure for CD Spectra Study S88.
Figure S8. CD Spectra of (a) $[\mathrm{Co}(\mathbf{P 3})]$, (b) $[\mathrm{Co}(\mathbf{P 5})]$ at $25^{\circ} \mathrm{C}$ S88.
Figure S9. CD Spectra of (a) $[\mathrm{Co}(\mathbf{P 4})]$, (b) $[\mathrm{Co}(\mathbf{P 6})]$ at $25^{\circ} \mathrm{C}$. 888.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR Spectra, HPLC Trace and Cif-Check (X-ray) for Ligands, New Compounds S89.
${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$ NMR Spectra, HPLC Trace for KIE S312.
Density Functional Theory (DFT) Calculations S333.
4. Methods S333.
5. Challenges and Simplifications S337.
6. Various conformers for HAA transition states after optimization with M06L/LANL2DZ S338.
7. Energetically most stable HAA transition state in model system without a bridge S348.
8. The free energy surface: kinetic vs thermodynamic control (M06L/Def2SVP) S351.
9. Rationale regarding enantioselectivity trends based on variations of the substrate S353.
10. Kinetic selectivity for HAA leading to 5 - or $\mathbf{6}$-membered ring products S354.
11. Captions for movies (SI-C and SI-D) to illustrate the major pathways leading to theenantiodifferentiative HAA and stereoretentive RS by $[\mathbf{C o}(\mathbf{P 4})]$ and $[\mathrm{Co}(\mathrm{P} 5)]$S355.

References.

General Information

General Considerations. Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware following standard Schlenk techniques. Gas tight syringes were used to transfer liquid reagents and solvents in catalytic reactions. Solvent was freshly distilled/degassed prior to use unless otherwise noted. Thin layer chromatography was performed on Merck TLC plates (silica gel 60 F254), visualizing with UV-light 254 nm or 365 nm fluorescence quenching, and cerium ammoniummolybdate (CAM) stain (ammonium pentamolybdate, cerium(IV) sulfate, sulfuric acid aqueous solution). Flash column chromatography was performed with ICN silica gel ($60 \AA, 230-400$ mesh, $32-63 \mu \mathrm{~m}$).
Materials. Commercial reagents were purchased from Sigma Aldrich, Acros, Alfa Aesar, Strem, Oakwood Products Inc., TCI, or Matrix Scientific and used as received with the following exceptions. Dichloromethane was distilled under nitrogen from calcium hydride. Tetrahydrofuran (THF) and toluene were distilled under nitrogen from sodium benzophenone ketyl. 1,4-Dioxane (inhibitor free, ACS reagent grade $>99 \%$) was freshly distilled from Na under an atmosphere of dry N_{2} prior to use. Anhydrous cobalt(II) chloride, palladium(II) acetate, and 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthenes (Xantphos) were purchased from Strem.
Instrument. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H} N \mathrm{NR}$) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Varian $600-\mathrm{MHz}$ or Bruker $500-\mathrm{MHz}$ or Bruker $400-$ MHz instrument. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}=7.26 \mathrm{ppm}\right.$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}=2.05 \mathrm{ppm},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}=2.5 \mathrm{ppm}\right)$. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent residual peak $\left(\mathrm{CDCl}_{3}=77.00 \mathrm{ppm}\right)$. Infrared spectra were measured with a Nicolet Avatar 320 spectrometer with a Smart S8 Miracle accessory, HPLC measurements were carried out on a Shimadzu HPLC system with Chiralcel OD-H, AD-H and IC. GC measurements were carried out on a Shimadzu GCMS system with a Dex-CB column. Optical rotations were measured on a Rudolph Research Analytical AUTOPOL®IV digital polarimeter. High-resolution mass spectra were obtained on an Agilent 6220 using electrospray ionization time-of-flight (ESI-TOF). The X-ray diffraction data were collected using Bruker-AXS SMART-APEXII CCD diffractometer ($\mathrm{CuK} \alpha, \lambda=1.54178 \AA$) and Bruker D8 Venture PHOTON 100 CMOS system equipped with a $\mathrm{Cu} \mathrm{K}_{\alpha}$ INCOATEC Imus micro-focus source ($\lambda=1.54178 \AA$).

Figure S1. Select Examples of Biologically Important Molecules Containing Chiral Five-Membered Cyclic Sulfamide and Vicinal Diamine Motifs
A. Examples of Biologically Active Molecules Carrying Chiral Five-Membered Cyclic Sulfamide as the Key Motif

For the discussion of importance of this class of molecules, please also see: K. C. Nicolaou et al. Angew. Chem. Int. Ed. 2002, 41,3866.
B. Method Demonstrated for Converting Cyclic Sulfamides into Diamines in our Previous Report

C. Examples of Biologically Important Molecules Containing Vicinal Diamine Motifs

U-50488(к Agonist)

Biotin: Vitamin B_{7}

Tamiflu® (Antiviral Drug)

Eloxatin ${ }^{\circledR}$ (Anticancer Drug)

Penicillins (Antibiotics)
D. Selected Examples of Enantiomers of Vicinal Diamine Motifs for Entirely Different Therapeutic Possibilities

Figure S2. Summary of Structures Confirmed by X-ray

Figure S2. Summary of Structures Confirmed by X-ray (continued)

Figure S3. Summary of Library Synthesis of Co(II)-Based, Bridged Amidoporphyrins (4 Steps)

Step 2: Synthesis of Ester Amidoporphyrins

Step 4: Synthesis of Co(II)-Based, Bridged Amidoporphyrins

Synthesis and Characterization of of Catalyst Building Blocks

(1R,2R)-tert-Butyl 2-carbamoylcyclopropanecarboxylate was synthesized according to the reported procedure. ${ }^{1}(S)-\left[\operatorname{Co}\left(3,5-\mathrm{di}^{t} \mathrm{Bu}-C h e n P h y r i n\right)\right]^{1}(400 \mathrm{mg}, 0.3 \mathrm{mmol}, 0.01$ equiv $)$, acryl amide ($10.6 \mathrm{~g}, 150$ mmol, 5 equiv) and DMAP ($1.83 \mathrm{~g}, 15 \mathrm{mmol}, 0.5$ equiv) were placed in an oven dried resealable Schlenk tube. The tube was capped with a Teflon screw cap, evacuated, and backfilled with nitrogen. The screw cap was replaced with a rubber septum. Chlorobenzene (100 mL) was added via syringe. After the solution was cooled to $0{ }^{\circ} \mathrm{C},{ }^{t} \mathrm{BDA}(4.4 \mathrm{~mL}, 30 \mathrm{mmol}, 1$ equiv) was added dropwise followed by the addition of 20 mL of chlorobenzene. The tube was purged with nitrogen for 1 min and sealed with Teflon screwcap. The reaction mixture was warmed up to r.t. and stirred for three days. After the reaction finished, the resulting mixture was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1) to give tert-butyl ($1 R, 2 R$)-2-carbamoylcyclopropane-1-carboxylate ($5.2 \mathrm{~g}, 93 \%$), ${ }^{2}{ }^{2} \mathrm{TLC}_{f}=0.25$ (Hexanes/EtOAc 3:1) in 98% ee. The following recrystallization gave $>\boldsymbol{9 9 \%}$ ee. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta \mathrm{ppm} 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{ddd}, J=3.8,5.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (ddd, $J=3.8,5.7$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{ddd}, J=3.7,5.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{ddd}, J=3.7,5.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 173.0,171.7,81.2,28.1,23.1,23.0,14.9 ; \mathrm{GC}\left(\mathrm{DCB}, 5^{\circ} \mathrm{C} / \mathrm{min}\right)$: Major t $=12.95 \mathrm{~min}$. , Minor $\mathrm{t}=11.77 \mathrm{~min}$.

Representative procedure for the synthesis of (3,5-Di ${ }^{\mathrm{t}}{ }^{\mathbf{B u}-\mathrm{Tao}}{ }^{\left({ }^{(} \mathbf{B u}\right)}{ }^{(1) P h y r i n) . ~ 3,5-\mathrm{Di}^{t} \mathrm{Bu}-\mathrm{Bromosyn} \text { thon }}$ $\left(686 \mathrm{mg}, 0.59 \mathrm{mmol}, 1\right.$ equiv), ${ }^{1}$ the above synthesized chiral amide (tert-butyl ($1 R, 2 R$)-2-carbamoylcyclopropane-1-carboxylate) $\left(1.76 \mathrm{~g}, 9.5 \mathrm{mmol}, 16\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(53 \mathrm{mg}, 0.236 \mathrm{mmol}, 0.4$
equiv), Xantphos ($274 \mathrm{mg}, 0.47 \mathrm{mmol}, 0.8$ equiv) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.1 \mathrm{~g}, 9.5 \mathrm{mmol}, 16$ equiv) were placed in an oven dried Schlenk tube. The tube was capped with a Teflon screw cap, evacuated, and backfilled with nitrogen. Under positive nitrogen atmosphere, the screw cap was replaced with a rubber septum. Dioxane $(60 \mathrm{~mL})$ was added via syringe and the tube was purged with nitrogen for 1 min and sealed with Teflon screwcap. Reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for three days prior to being cooled to r.t. The reaction mixture was filtered through a short pad of Celite. The solvent was removed and the residue was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1) to give the title compound (820 mg , 88%); TLC $\mathrm{R}_{f}=0.35$ (Hexanes/EtOAc 4:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 9.02(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H})$, $8.79(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.53(\mathrm{~s}, 4 \mathrm{H}), 8.16(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.87-7.81(\mathrm{~m}, 4 \mathrm{H}), 6.66(\mathrm{~s}, 4 \mathrm{H}), 1.85-$ $1.76(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 40 \mathrm{H}), 1.01(\mathrm{~s}, 36 \mathrm{H}), 0.57-0.40(\mathrm{~m}, 8 \mathrm{H}),-2.43(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 170.7,168.7,149.2,140.0,139.0,130.3,130.2,123.2,121.6,121.2,117.0,107.0$, 106.9, 80.7, 35.1, 31.7, 27.7, 24.1, 22.8, 15.1; HRMS (ESI) Calcd. for $\mathrm{C}_{96} \mathrm{H}_{114} \mathrm{~N}_{8} \mathrm{NaO}_{12}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 1593.8448, Found: 1593.8510; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \operatorname{max~} \mathrm{nm}(\log \varepsilon): 421(5.27)$, 517(4.77), 552(4.37), 592(4.27), 648(4.18). (Note: To build up enough materials, multiple runs were conducted.)

Representative procedure for the synthesis of (2,6-DiMeO-Tao(${ }^{\text {t }} \mathbf{B u}$)Phyrin). 2, 6-DiMeOBromosynthon ($800 \mathrm{mg}, 0.76 \mathrm{mmol}, 1$ equiv), ${ }^{1}$ the above synthesized chiral amide (tert-butyl ($1 R, 2 R$)-2-carbamoylcyclopropane-1-carboxylate) $\left(2.25 \mathrm{~g}, 12 \mathrm{mmol}, 16\right.$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(68 \mathrm{mg}, 0.3 \mathrm{mmol}, 0.4$ equiv), Xantphos ($356 \mathrm{mg}, 0.61 \mathrm{mmol}, 0.8$ equiv) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.9 \mathrm{~g}, 12 \mathrm{mmol}, 16$ equiv) were placed in an oven dried Schlenk tube. The tube was capped with a Teflon screw cap, evacuated, and backfilled with nitrogen. Under positive nitrogen atmosphere, the screw cap was replaced with a rubber septum. Dioxane $(80 \mathrm{~mL})$ was added via syringe and the tube was purged with nitrogen for 1 min and sealed with Teflon screwcap. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for three days prior to being cooled to r.t. The reaction mixture was filtered through a short pad of Celite. The solvent was removed and the residue was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 2:1) to give the title compound ($757 \mathrm{mg}, 68 \%$); TLC R ${ }_{f}=0.30$ (Hexanes/EtOAc 2:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.87$ (d, $J=4.8$
$\mathrm{Hz}, 4 \mathrm{H}), 8.73(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.46(\mathrm{br}, 4 \mathrm{H}), 7.89-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{~s}$, $4 \mathrm{H}), 3.54(\mathrm{~s}, 12 \mathrm{H}), 1.85(\mathrm{ddd}, J=3.9,5.7,9.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.01(\mathrm{~s}, 36 \mathrm{H}), 0.96-0.92(\mathrm{~m}, 4 \mathrm{H}), 0.60-0.54(\mathrm{~m}$, $8 \mathrm{H}),-2.42(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 170.5,168.9,160.3,139.0,130.9,130.2,121.9$, 118.6, 117.8, 114.1, 106.4, 104.2, 80.6, 55.9, 27.7, 24.0, 22.8, 14.9; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{84} \mathrm{H}_{91} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1467.6548$, Found: 1467.6509; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \varepsilon): 421(5.53)$, $515(4.34), 545(3.81), 590(3.85), 643(3.55)$. (Note: To build up enough materials, multiple runs were conducted.)

General Procedure A (Synthesis of Ester Amidoporphyrins)

TFA (100 equiv) was added to a solution of the above synthesized 3,5-Di'Bu-Tao($\left.{ }^{\boldsymbol{t}}{ }^{\mathbf{B}} \mathbf{B u}\right) \mathbf{P h y r i n}$ (1 equiv) or 2,6-DiMeO-Tao($\left.{ }^{t} \mathbf{B u}\right) \mathbf{P h y r i n}\left(1\right.$ equiv) in $\mathrm{DCM}(0.5 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. Then the reaction mixture was slowly warmed up to room temperature and stirred overnight. After the evaporation of all the volatiles, the residue was dissolved in DMF (0.1 M) . $\mathrm{K}_{2} \mathrm{CO}_{3}$ (50 equiv) was added, followed by the addition of alkylating reagents (16 equiv). The reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 12 h . After cooling to the room temperature, the reaction mixture was diluted with EtOAc and water. The organic layer was separated and washed with brine 5 times. The organic solvent was removed under vacuum and the resulting oil was then purified by silica gel column chromatography (Conditions were given below) to afford the pure TaoPhyrin derivatives. (The reaction can be easily scaled up to 800 mg scale.)

Characterization of Ester Amidoporphyrins

(3,5-Dit ${ }^{t} \mathbf{B u}-\mathbf{T a o}(\mathbf{n B u})$ Phyrin) (P10) was synthesized following General Procedure A using n-butyl 4methylbenzenesulfonate as the alkylating reagent and $\left.\mathbf{3 , 5 - D i} \mathbf{i}^{\boldsymbol{t}} \mathbf{B u - T a o}{ }^{t}{ }^{t} \mathbf{B u}\right) \mathbf{P h y r i n}(48 \mathrm{mg}, 0.031 \mathrm{mmol})$ as
catalyst building block, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 6:1) to give the title compound in 82% yield (40 mg); $\mathrm{TLC} \mathrm{R}_{f}=0.35$ (Hexanes/EtOAc $4: 1$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 9.03(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.79(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.65-8.39(\mathrm{~m}, 4 \mathrm{H}), 8.19(\mathrm{~d}, J=1.5$ Hz, 4 H), 7.90-7.77 (m, 4 H), 6.68 (br. s., 4 H), 3.64-3.46(m, 8 H), 1.87-1.85 (m, 4 H), 1.57 ($\mathrm{s}, 36 \mathrm{H}$), 1.24-1.21 (m, 8H), 1.13-0.94 (m, 12 H$), 0.65-0.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}), 0.62-0.60(\mathrm{~m}, 4 \mathrm{H}), 0.55-$ 0.37 (m, 4 H), -2.46 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 171.7, 168.3, 149.2, 140.0, 139.0, 133.7, $130.4,130.3,129.7,123.3,121.6,116.8,106.7,64.5,35.1,31.7,30.2,24.5,21.7,18.7,15.2,13.4$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{96} \mathrm{H}_{115} \mathrm{~N}_{8} \mathrm{O}_{12}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1571.8629$, Found: 1571.8658; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}$ ($\log \varepsilon$): 422(5.33), 522(4.09), 560(3.54), 598(3.55), 652(3.31).

(2,6-DiMeO-Tao($\boldsymbol{n P r}$)Phyrin) (P11) was synthesized following General Procedure A using n-propyl 4methylbenzenesulfonate as the alkylating reagent and 2,6-DiMeO-Tao(${ }^{\text {t Bu }}$)Phyrin ($76 \mathrm{mg}, 0.052 \mathrm{mmol}$) as catalyst building block, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 3:1) to give the title compound in 82% yield (60 mg); $\mathrm{TLC} \mathrm{R}_{f}=0.30$ (Hexanes/EtOAc 2:1). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}) $\delta \mathrm{ppm} 8.87(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.72(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.47$ (br. s., 4 H), $7.83(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2$ H), 7.78 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (d, $J=9.2 \mathrm{~Hz}, 4 \mathrm{H}$), 6.76 (br. s., 4 H), 3.55 (s, 12 H), $3.54-3.46$ (m, 8 H), 1.96-1.85 (m, 4 H), 1.36-1.17 (m, 8 H), 1.13-0.95 (m, 4 H$), 0.60(\mathrm{~m}, ~, 20 \mathrm{H}),-2.42(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 171.3,168.5,160.3,138.9,130.9,130.3,118.4,117.6,114.1,106.3$, 104.2, 66.0, 55.9, 24.4, 21.7, 21.5, 14.9, 10.0; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{80} \mathrm{H}_{83} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 1411.5922, Found: 1411.5939; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 424(5.54), 514(4.53), 556(3.80)$, 590(4.04), 644(3.68).

(3,5-Di ${ }^{t}$ Bu-Tao(Allyl)Phyrin) was synthesized following General Procedure \mathbf{A} at $80^{\circ} \mathrm{C}$ using allyl bromide as the alkylating reagent and 3,5-Dit Bu-Tao($\left.{ }^{t} \mathbf{B u}\right)$ Phyrin ($139 \mathrm{mg}, 0.088 \mathrm{mmol}$) as catalyst building block, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 6:1) to give the title compound in 90% yield (120 mg); $\mathrm{TLC} \mathrm{R}_{f}=0.35$ (Hexanes/EtOAc 4:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 9.09(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.84(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 8.23(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4$ H), $7.97-7.85$ (m, 4 H), 6.74 (br. s., 4 H), $5.53-5.37$ (m, $4 H$), $5.01-4.82(\mathrm{~m}, 8 \mathrm{H}), 4.03$ (dd, $J=4.6$, $15.0 \mathrm{~Hz}, 8 \mathrm{H}$), $1.93-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 36 \mathrm{H}), 1.18-1.11$ (m, 4 H), 0.65 (br. s., 4 H), 0.56 (br. s., 4 H), -2.42 ($\mathrm{s}, 2 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 171.3,168.1,149.2,140.0,139.0,131.4,130.5$, 130.2, 123.3, 121.6, 118.1, 117.0, 107.0, 65.1, 35.1, 31.8, 24.6, 21.6, 15.2; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{92} \mathrm{H}_{98} \mathrm{~N}_{8} \mathrm{NaO}_{12}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 1529.7196$, Found: 1529.7243; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 422(5.33)$, 516(4.11), 550(3.68), 590(3.61), 646(3.45).

(2,6-DiMeO-Tao(Allyl)Phyrin) was synthesized following General Procedure At $80{ }^{\circ} \mathrm{C}$ using allyl bromide as the alkylating reagent and 2,6-DiMeO-Tao(${ }^{\text {t }} \mathbf{B u}$)Phyrin ($139 \mathrm{mg}, 0.095 \mathrm{mmol}$) as catalyst building block, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 3:1) to give the title compound in 75% yield (100 mg); $\mathrm{TLC} \mathrm{R}_{f}=0.30$ (Hexanes/EtOAc 2:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta \mathrm{ppm} 8.90(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.74(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.48(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.90-7.79(\mathrm{~m}, 4 \mathrm{H})$, $7.08(\mathrm{~d}, ~ J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.82$ (br. s., 4 H), $5.56-5.36(\mathrm{~m}, 4 \mathrm{H}), 5.08-4.68(\mathrm{~m}, 8 \mathrm{H}), 3.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 8 H), 3.58 (s, 12 H), 1.85 (br. s, 4 H), 1.03 (br. s, 4 H), 0.62 (br. s, 4 H), 0.53 (br. s., 4 H), -2.42 (br. s, 2 $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 170.9,168.4,160.3,138.9,131.6,131.0,130.3,121.7,118.4$, 118.0, 117.6, 114.2, 106.3, 104.3, 65.1, 55.9, 24.5, 21.6, 14.9; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{80} \mathrm{H}_{75} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 1403.5296$, Found: 1403.5332; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 422(5.26), 514(4.10)$, 548(3.48), 588(3.60), 6.44(3.16).

(3,5-Di ${ }^{\boldsymbol{t}} \mathbf{B u}$-Tao(But-3-en-1-yl)Phyrin) was synthesized following General Procedure A using but-3-en-1-yl 4-methylbenzenesulfonate as the alkylating reagent and 3,5-Di'Bu-Tao(${ }^{\boldsymbol{t}} \mathbf{B u}$) Phyrin ($190 \mathrm{mg}, 0.121$ mmol) as catalyst building block, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 6:1) to give the title compound in 95% yield (180 mg); $\mathrm{TLC}_{f}=0.35$ (Hexanes/EtOAc $4: 1$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 9.07(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$), $8.83(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.63-8.55(\mathrm{~m}, 4 \mathrm{H}), 8.21(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.90(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 4 \mathrm{H}), 5.44-5.33(\mathrm{~m}, 4 \mathrm{H})$, 4.80-4.66(m, 8H), 3.83-3.47(m, 8H), 2.18-1.95 (m, 8H), 1.88 (ddd, $J=3.8,5.3,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.59(\mathrm{~s}$, $36 \mathrm{H}), 1.12$ (ddd, $J=4.0,5.5,9.0 \mathrm{~Hz}, 4 \mathrm{H}), 0.69-0.60(\mathrm{~m}, 4 \mathrm{H}), 0.56-0.47(\mathrm{~m}, 4 \mathrm{H}),-2.43(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 171.6,168.3,149.3,140.0,139.0,133.5,130.5,130.3,123.3,121.7$, $117.0,116.8,106.8,63.5,35.2,32.6,31.8,24.6,21.7,15.2$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{96} \mathrm{H}_{106} \mathrm{~N}_{8} \mathrm{NaO}_{12}{ }^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1585.7822$, Found: 1585.7854. UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 422(5.26), 516(4.08)$, 552(3.81), 592(3.60), 648(3.50).

(2,6-DiMeO-Tao(But-3-en-1-yl)Phyrin) was synthesized following General Procedure A using but-3-en-1-yl 4-methylbenzenesulfonate as the alkylating reagent and 2,6-DiMeO-Tao(${ }^{\mathbf{t}} \mathbf{B u}$) Phyrin $(270 \mathrm{mg}$, 0.184 mmol) as catalyst building block, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 3:1) to give the title compound in 70% yield (188 mg); $\mathrm{TLC} \mathrm{R}_{f}=0.30$ (Hexanes/EtOAc 2:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.88(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.72(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.48(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.83(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.75$ (br. s., 4 H$)$, 5.63-5.25 (m, 4 H), 4.86-4.68(m, 8 H), 3.62-3.52 (m, 8H), $3.55(\mathrm{~s}, 12 \mathrm{H}), 1.97(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 8 \mathrm{H})$, 1.92-1.83 (m, 4 H$), 1.10-0.99(\mathrm{~m}, 4 \mathrm{H}), 0.65-0.58(\mathrm{~m}, 8 \mathrm{H}),-2.42(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta \mathrm{ppm} 171.2,168.4,160.3,138.9,133.5,130.9,130.3,118.4,117.5,116.9,114.2,106.3,104.2$, 63.4, 55.9, 32.6, 24.4, 21.7, 14.9; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{84} \mathrm{H}_{83} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1459.5922$, Found: 1459.5950; UV-vis $\left.\left(\mathrm{CHCl}_{3}\right) \lambda \operatorname{max~nm~(log~} \varepsilon\right): 424(5.26), 514(4.20), 546(3.59), 588(3.71), 644(3.27)$.

(3,5-Di'Bu-Tao(Pent-4-en-1-yl)Phyrin) was synthesized following General Procedure A using pent-4-en-1-yl 4-methylbenzenesulfonate as the alkylating reagent and $\mathbf{3 , 5} \mathbf{- D i}{ }^{\boldsymbol{t}} \mathbf{B u} \mathbf{- T a o}\left({ }^{\boldsymbol{t}} \mathbf{B u}\right) \mathbf{P h y r i n}(235 \mathrm{mg}$, 0.150 mmol) as catalyst building block, purified by silica gel column chromatography (eluent:

Hexanes/EtOAc 6:1) to give the title compound in 70% yield (170 mg); TLC $\mathrm{R}_{f}=0.35$ (Hexanes/EtOAc 4:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 9.08(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.84(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.60(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 4 \mathrm{H}), 8.23(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.91(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 4 \mathrm{H})$, 5.67-5.44 (m, 4 H), 4.82-4.62(m, 8 H), 3.70-3.47(m, 8 H), 1.91 (ddd, $J=3.8,5.3,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.86-$ $1.76(\mathrm{~m}, 8 \mathrm{H}), 1.61(\mathrm{~s}, 36 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 8 \mathrm{H}), 1.14(\mathrm{ddd}, J=4.0,5.1,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 0.68-0.62(\mathrm{~m}, 4$ H), 0.57-0.50 (m, 4 H), -2.41 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 171.7,168.3,149.3,140.0$, $139.0,137.1,130.5,130.3,123.4,121.6,116.8,115.1,106.8,64.1,35.2,31.8,29.7,27.4,24.6,21.7,15.3$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{100} \mathrm{H}_{114} \mathrm{~N}_{8} \mathrm{NaO}_{12}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 1641.8448$, Found: 1641.8433; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 422(5.46), 516(4.22), 550(3.84), 590(3.74), 646(3.55)$.

LK-IV-116A

(2,6-DiMeO-Tao(Pent-4-en-1-yl)Phyrin) was synthesized following General Procedure A using pent-4-en-1-yl 4-methylbenzenesulfonate as the alkylating reagent and 2,6-DiMeO-Tao(${ }^{t} \mathbf{B u}$) Phyrin (75 mg , 0.051 mmol) as catalyst building block, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 3:1) to give the title compound in 90% yield (70 mg); TLC $\mathrm{R}_{f}=0.30$ (Hexanes/EtOAc 2:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.87$ (d, $J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$), 8.72 (d, $J=4.0 \mathrm{~Hz}, 4 \mathrm{H}$), 8.47 (br. s., 4 H), 7.83 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (d, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}$), 6.76 (br. s., 4 H), 5.59 $5.45(\mathrm{~m}, 4 \mathrm{H}), 4.85-4.73(\mathrm{~m}, 8 \mathrm{H}), 3.72-3.40(\mathrm{~m}, 8 \mathrm{H}), 3.54(\mathrm{~s}, 12 \mathrm{H}), 1.91(\mathrm{td}, J=4.6,8.8 \mathrm{~Hz}, 4 \mathrm{H})$, $1.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 8 \mathrm{H}), 1.09-0.97(\mathrm{~m}, 4 \mathrm{H}), 0.70-0.55(\mathrm{~m}, 8 \mathrm{H}),-2.43(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta \mathrm{ppm} 171.4,168.5,160.3,138.9,137.2,131.0,130.3,118.4,117.6,115.1$, 114.2, 110.0, 106.3, 104.2, 64.0, 55.9, 29.7, 27.4, 24.4, 21.7, 15.0; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{88} \mathrm{H}_{91} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1515.6548$, Found: 1515.6579; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 424(5.28)$, 514(4.25), 546(3.64), 588(3.75), 642(3.34).

(3,5-Di'Bu-Tao(Hex-5-en-1-yl)Phyrin) was synthesized following General Procedure A using hex-5-en-1-yl 4-methylbenzenesulfonate as the alkylating reagent and 3,5-Di'Bu-Tao(${ }^{t} \mathbf{B u}$) Phyrin ($64 \mathrm{mg}, 0.041$ mmol) as catalyst building block, purified by silica gel column chromatography (eluent: Hexanes/EtOAc $6: 1$) to give the title compound in 66% yield (45 mg); TLC $\mathrm{R}_{f}=0.35$ (Hexanes/EtOAc $4: 1$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 9.04(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.79(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.63-8.48(\mathrm{~m}, 4 \mathrm{H}), 8.19(\mathrm{~s}$, 4 H), 7.85 (d, $J=12.4 \mathrm{~Hz}, 4 \mathrm{H}$), 6.68 (br. s., 4 H), $5.63-5.51$ (m, 4 H$), 4.87-4.74$ (m, 8 H), $3.63-3.44$ $(\mathrm{m}, 8 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 12 \mathrm{H}), 1.57(\mathrm{~s}, 36 \mathrm{H}), 1.25-1.22(\mathrm{~m}, 8 \mathrm{H}), 1.18-1.04(\mathrm{~m}, 12 \mathrm{H}), 0.66-0.56(\mathrm{~m}$, $4 \mathrm{H}), 0.54-0.42(\mathrm{~m}, 4 \mathrm{H}),-2.46(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 171.8,168.3,149.2,140.0$, $139.0,138.6,138.0,130.5,130.3,123.3,121.6,114.7,64.6,35.2,33.5,33.0,31.8,27.6,24.8,21.7,15.3 ;$ HRMS (ESI) m / z Calcd. for $\mathrm{C}_{104} \mathrm{H}_{123} \mathrm{~N}_{8} \mathrm{O}_{12}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1675.9255$, Found: 1675.9187; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 424(5.27), 516(4.08), 552(3.67), 590(3.59), 646(3.41)$.

(2,6-DiMeO-Tao(Hex-5-en-1-yl)Phyrin) was synthesized following General Procedure A using hex-5-en-1-yl 4-methylbenzenesulfonate as the alkylating reagent and 2,6-DiMeO-Tao(${ }^{t} \mathbf{B u}$)Phyrin (62 mg , 0.042 mmol) as catalyst building block, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1) to give the title compound in 65% yield (43 mg); TLC $\mathrm{R}_{f}=0.30$ (Hexanes/EtOAc 3:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.87$ (d, $J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$), 8.72 (d, $J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$), 8.46 (br. s., 4
H), $7.83(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.75(b r . \mathrm{s} ., 4 \mathrm{H}), 5.59(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.87-4.78(\mathrm{~m}, 8 \mathrm{H}), 3.58$ (br. s., 4 H), $3.55(\mathrm{~s}, 12 \mathrm{H}), 1.91(\mathrm{td}, J=4.6,8.8 \mathrm{~Hz}, 4 \mathrm{H})$, $1.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}), 1.36-1.21(\mathrm{~m}, 12 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 8 \mathrm{H}), 1.08-0.97(\mathrm{~m}, 4 \mathrm{H}), 0.60(\mathrm{br} . \mathrm{s} .$, $8 \mathrm{H}),-2.42(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 171.4,168.5,162.6,160.3,138.9,138.1,131.0$, $130.3,118.4,117.6,115.2,114.7,114.2,104.3,64.5,55.9,33.1,27.7,24.9,24.4,21.7,15.0$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{92} \mathrm{H}_{99} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1571.7174$, Found: 1571.7114; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon)$: 422(5.13), 516(4.06), 546(3.47), 590(3.56), 644(3.22).

General Procedure B (Synthesis of Bridged Amidoporphyrins)

Under nitrogen atmosphere, Grubbs 2 nd generation catalyst (0.1 equiv) was added to a solution of the above synthesized porphyrins with olefin side chains (1 equiv) in $\mathrm{DCM}(0.001 \mathrm{M})$. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 hours. The reaction mixture was directly poured onto a pad of silica gel (Hexanes/EtOAc $=1: 1$) to afford the mixture of trans-cis olefin metathesis isomers. The solvent was removed and the residue was dissolved in EtOAc-toluene (V/V $2 / 1,0.02 \mathrm{M}$) in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ (1 mg per mg of porphyrin). Hydrogen gas was bubbled through the reaction mixture until the reaction was completed (Typically for 30 min). The reaction mixture was pass through a short pad of Celite, the filtrate was concentrated and purified by silica gel column chromatography (Conditions were given below) to afford the desired product. (The reaction can be easily scaled up to 500 mg scale.)

Characterization of Bridged Amidoporphyrins

(3,5-Di ${ }^{t} \mathbf{B u}-\mathbf{H u}\left(\mathbf{C}_{4}\right)$ Phyrin) (P1) was synthesized following General Procedure B from (3,5-Di'BuTao(Allyl)Phyrin) (73 mg, 0.049 mmol), purified by silica gel column chromatography (eluent:

Hexanes/EtOAc 3:1) to give the title compound in 85% yield (60 mg); TLC $\mathrm{R}_{f}=0.35$ (Hexanes/EtOAc 2:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 9.14(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.92(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.45(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.14(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 4 \mathrm{H}), 6.63(\mathrm{~s}, 4 \mathrm{H}), 3.63-3.54(\mathrm{~m}, 4 \mathrm{H}), 3.37$ $3.28(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{ddd}, J=4.0,5.5,9.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.61(\mathrm{~s}, 36 \mathrm{H}), 1.08-1.02(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.89(\mathrm{~m}, 8$ H), $0.69(\mathrm{dd}, J=4.6,8.7 \mathrm{~Hz}, 4 \mathrm{H}), 0.66-0.57(\mathrm{~m}, 4 \mathrm{H}),-2.53(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 170.6, 168.1, 149.6, 139.4, 138.8, 130.6, 130.0, 123.2, 123.0, 122.1, 118.6, 108.1, 64.0, 35.1, 31.7, 24.6, 23.7, 22.0, 14.9; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{88} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{NaO}_{12}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 1477.6883$, Found: 1477.6867; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 424(5.29), 514(3.97), 552(3.67), 590(3.55), 644(3.36)$.

(2,6-DiMeO-Hu(C4)Phyrin) (P2) was synthesized following General Procedure B from (2,6-DiMeO-
Tao(Allyl)Phyrin) ($89 \mathrm{mg}, 0.063 \mathrm{mmol}$), purified by silica gel column chromatography (eluent: Hexanes/EtOAc 2:1) to give the title compound in 82% yield (70 mg); TLC $\mathrm{R}_{f}=0.2$ (Hexanes/EtOAc 1:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.98(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.82(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.46(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.92-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.67(\mathrm{~s}, 4 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 12 \mathrm{H}), 3.60-$ 3.49 (m, 4 H), $3.35-3.26$ (m, 4 H), 1.88 (ddd, $J=4.0,5.5,9.0 \mathrm{~Hz}, 4 \mathrm{H}$), 1.03 (td, $J=4.6,8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 0.98-0.84 (m, 8 H), 0.78-0.64 (m, 4 H), $0.58(\mathrm{td}, J=4.6,8.8 \mathrm{~Hz}, 4 \mathrm{H}),-2.50(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 170.6,168.2,160.2,138.9,131.3,130.5,122.5,118.3,117.8,114.2,107.0,104.4$, 64.1, 56.1, 24.6, 23.8, 22.2, 14.8; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{76} \mathrm{H}_{71} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 1351.4983, Found: 1351.4970; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 422(5.11), 514(4.06), 544(3.42), 586(3.58), 640(3.10)$.

(3,5-Di ${ }^{t} \mathbf{B u}-\mathbf{H u}\left(\mathbf{C}_{6}\right)$ Phyrin) (P3) was synthesized following General Procedure \mathbf{B} from (3,5-Dit ${ }^{\boldsymbol{t}} \mathbf{B u}$ -Tao(But-3-en-1-yl)Phyrin) ($168 \mathrm{mg}, 0.107 \mathrm{mmol}$), purified by silica gel column chromatography (eluent: Hexanes/EtOAc 3:1) to give the title compound in 80% yield (130 mg); $\mathrm{TLC} \mathrm{R}_{f}=0.37$ (Hexanes/EtOAc 2:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 9.05(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.85(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.41(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.11(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.94-7.79(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~s}, 4 \mathrm{H}), 3.62-3.56$ (m, 4 H), 3.50 $3.44(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.57(\mathrm{~s}, 36 \mathrm{H}), 1.07(\mathrm{dd}, J=3.7,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.01-0.90(\mathrm{~m}, 8 \mathrm{H})$, $0.78(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 8 \mathrm{H}), 0.67-0.49(\mathrm{~m}, 8 \mathrm{H}),-2.55(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 171.1$, $168.3,149.4,139.8,138.7,130.5,130.4,130.3,130.2,123.3,122.4,121.9,118.6,107.7,64.3,35.1,31.8$, 27.3, 24.2, 23.9, 22.1, 15.1; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{92} \mathrm{H}_{102} \mathrm{~N}_{8} \mathrm{NaO}_{12}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 1533.7515$, Found: 1533.7542; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 424(5.43), 518(4.22), 554(3.83), 590(3.73), 646(3.58)$.

(2,6-DiMeO-Hu(C6)Phyrin) (P4) was synthesized following General Procedure B from (2,6-DiMeO-Tao(But-3-en-1-yl)Phyrin) ($171 \mathrm{mg}, 0.117 \mathrm{mmol}$), purified by silica gel column chromatography (eluent: Hexanes/EtOAc 2:1) to give the title compound in 85% yield (140 mg); TLC $\mathrm{R}_{f}=0.2$ (Hexanes/EtOAc 1:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{pm} 8.88(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$), $8.76(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.35(\mathrm{~d}, J=$
$8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.83(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.70(\mathrm{~s}, 4 \mathrm{H})$, $3.64(\mathrm{dt}, J=7.0,10.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 12 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 4 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{dt}, J=4.4$, $8.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.00-0.88(\mathrm{~m}, 8 \mathrm{H}), 0.80-0.65(\mathrm{~m}, 12 \mathrm{H}), 0.57(\mathrm{dd}, J=6.8,10.9 \mathrm{~Hz}, 4 \mathrm{H}),-2.50(\mathrm{~s}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 170.8,168.3,160.2,138.6,131.1,130.3,122.6,118.9,118.3,114.2$, 106.8, 104.3, 64.1, 55.9, 27.4, 24.4, 23.8, 22.1, 14.7; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{80} \mathrm{H}_{79} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 1407.5614, Found: 1407.5642; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda \operatorname{max~} \mathrm{nm}(\log \varepsilon): 422(5.26), 516(4.08), 548(3.52)$, 588(3.59), 644(3.23).

(3,5-Di'Bu-Hu(C)Phyrin) (P5) was synthesized following General Procedure \mathbf{B} from (3,5-Di'Bu-Tao(Pent-4-en-1-yl)Phyrin) ($158 \mathrm{mg}, 0.098 \mathrm{mmol}$), purified by silica gel column chromatography (eluent: Hexanes/EtOAc 3:1) to give the title compound in 88% yield (135 mg); TLC $\mathrm{R}_{f}=0.37$ (Hexanes/EtOAc 2:1). ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 9.02(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.80(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4$ H), $8.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.15(\mathrm{~s}, 4 \mathrm{H}), 7.88-7.81(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~s} .4 \mathrm{H}), 3.72-3.61(\mathrm{~m}, 4 \mathrm{H}), 3.58-$ $3.50(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 36 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 4 \mathrm{H}), 1.12-1.00(\mathrm{~m}, 8 \mathrm{H}), 0.94-0.80$ (m, 16 H), $0.65-0.52(\mathrm{~m}, 8 \mathrm{H}),-2.49(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 171.5,168.4,149.3$, $140.0,138.8,130.5,130.2,123.3,121.7,117.8,107.1,63.8,35.2,31.8,27.3,26.8,24.1,21.9,15.3$; HRMS (ESI) m/z Calcd. for $\mathrm{C}_{96} \mathrm{H}_{110} \mathrm{~N}_{8} \mathrm{NaO}_{12}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$1589.8341, Found: 1589.8372; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 424(5.17), 518(4.05), 552(3.67), 592(3.57), 646(3.43)$.

(2,6-DiMeO-Hu(C8)Phyrin) (P6) was synthesized following General Procedure B from (2,6-DiMeO-Tao(Pent-4-en-1-yl)Phyrin) ($59 \mathrm{mg}, 0.039 \mathrm{mmol}$), purified by silica gel column chromatography (eluent: Hexanes/EtOAc/DCM 2:1:1) to give the title compound in 74% yield (42 mg); TLC $\mathrm{R}_{f}=0.3$ (Hexanes/EtOAc/DCM 1:1:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.90(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.77(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.82(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4$ Hz, 4 H), 6.81 (br. s., 4 H), 3.74-3.59 (m, 4 H), 3.59-3.41 (m, 16H), 2.03-1.89 (m, 4 H), 1.23-1.04 (m, $12 \mathrm{H}), 0.89-0.76(\mathrm{~m}, 16 \mathrm{H}), 0.70-0.65(\mathrm{~m}, 4 \mathrm{H}), 0.64-0.55(\mathrm{~m}, 4 \mathrm{H}),-2.39(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 171.1,168.4,160.3,138.6,130.9,130.2,122.5,118.9,118.4,114.1,106.5,104.2,64.0$, 55.8, 27.2, 27.0, 24.2, 24.0, 21.8, 14.8; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{84} \mathrm{H}_{87} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1463.6235$, Found: 1463.6278; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 424(5.17), 516(4.17), 550(3.64), 590(3.68)$, 644(2.34).

(3,5-Di'Bu-Hu($\mathbf{C}_{\mathbf{1 0}}$)Phyrin) (P7) was synthesized following General Procedure B from (3,5-Dit Bu-
Tao(Hex-5-en-1-yl)Phyrin) ($40 \mathrm{mg}, 0.024 \mathrm{mmol}$), purified by silica gel column chromatography (eluent: Hexanes/EtOAc 5:1) to give the title compound in 65% yield (25 mg); TLC $\mathrm{R}_{f}=0.35$ (Hexanes/EtOAc 4:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 9.03(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}$), $8.80(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.56-8.41$
$(\mathrm{m}, 4 \mathrm{H}), 8.17(\mathrm{~s}, 4 \mathrm{H}), 7.90-7.80(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~s}, 4 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.57-3.45(\mathrm{~m}, 4 \mathrm{H}), 1.94$ $-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 36 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 12 \mathrm{H}), 1.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 0.99-0.85(\mathrm{~m}, 20$ H), 0.58 (br. s., 8 H), $-2.48(\mathrm{~s}, 2 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 171.6,168.4,149.3,140.0,138.9$, $130.9,130.4,130.2,128.8,123.2,121.6,107.7,63.9,35.1,31.8,27.5,27.3,26.7,24.2,24.0,21.8,15.3$; HRMS (ESI) m / z Calcd for $\mathrm{C}_{100} \mathrm{H}_{19} \mathrm{~N}_{8} \mathrm{O}_{12}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1623.8942$, Found: 1623.8916; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 424(5.32), 518(4.07), 552(3.66), 592(3.56), 646(3.40)$.

(2,6-DiMeO-Hu($\left.\mathbf{C}_{10}\right)$ Phyrin) (P8) was synthesized following General Procedure B from (2,6-DiMeO-
Tao(Hex-5-en-1-yl)Phyrin) ($40 \mathrm{mg}, 0.025 \mathrm{mmol}$), purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1) to give the title compound in 67% yield (26 mg); TLC $\mathrm{R}_{f}=0.2$ (Hexanes/EtOAc 3:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.86(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.72(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.39(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.83(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.74$ (br. s., 4 H$)$, $3.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 8 \mathrm{H}), 3.55(\mathrm{~s}, 12 \mathrm{H}), 1.94(\mathrm{ddd}, J=3.9,5.5,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.34-1.14(\mathrm{~m}, 12 \mathrm{H}), 1.04$ (ddd, $J=3.9,5.2,8.8 \mathrm{~Hz}, 4 \mathrm{H}), 0.99-0.83(\mathrm{~m}, 20 \mathrm{H}), 0.67$ (br. s., 4 H), 0.57 (br. s., 4 H), -2.41 (s, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 187.6, 171.3, 168.5, 160.3, 138.7, 130.9, 130.2, 118.5, 114.1, 106.4, 104.2, 63.9, 55.9, 27.5, 27.4, 26.8, 24.2, 24.1, 21.7, 15.0; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{88} \mathrm{H}_{95} \mathrm{~N}_{8} \mathrm{O}_{16}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 1519.6861$, Found: 1519.6814; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 422(5.22)$, 516(4.11), 548(3.50), 588(3.62), 644(3.21).

Figure S4. ${ }^{1}$ H NMR Spectra of Bridged Amidoporphyrins (Low-field Region)

General Procedure C (Synthesis of Co(II)-Based, Open and Bridged

Amidoporphyrins)

The desired porphyrin starting material (1 equiv) and CoCl_{2} (8 equiv) were placed in an oven dried Schlenk tube. The tube was capped with a Teflon screw cap, evacuated, and backfilled with nitrogen. The screw cap was replaced with a rubber septum. 2,6-Lutidine (4 equiv) and THF (0.05 M) were added and the tube was purged with nitrogen for 1 min and sealed with Teflon screwcap. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h prior to being cooled to r.t. The reaction mixture was diluted with DCM and washed with brine. The organic layer was separated, dried, and concentrated. The residue was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 1:1) to give the title compound.

Characterization of Co(II)-Based, Open and Bridged Amidoporphyrins

[Co(3,5-Di'Bu-Tao(nBu)Phyrin)] ([Co(P10)]) was synthesized in 95% yield (32 mg) following General Procedure C from (3,5-Di'Bu-Tao(nBu)Phyrin) (P10) ($33 \mathrm{mg}, 0.021 \mathrm{~mol}$). HRMS (ESI) m/z Calcd. for $\mathrm{C}_{96} \mathrm{H}_{113} \mathrm{CoN}_{8} \mathrm{O}_{12}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1628.7804$, Found: 1628.7886; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 438(5,26)$, 550(4.24).

[Co(2,6-DiMeO-Tao(nPr)Phyrin)] ([Co(P11)]) was synthesized in 88% yield (26 mg) following General Procedure C from (2,6-DiMeO-Tao($\boldsymbol{n P r}$)Phyrin) (P11) ($28 \mathrm{mg}, 0.02 \mathrm{mmol}$). HRMS (ESI) m/z Calcd. for $\mathrm{C}_{80} \mathrm{H}_{81} \mathrm{CoN}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1468.5097$, Found: 1468.5096; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon)$: 436(5.21), 546(4.24), 662(3.71).

CoCl_{2}, 2,6-lutidine

[Co(3,5-Di'Bu-Hu(C4)Phyrin)] ([Co(P1)]) was synthesized in 84% yield (40 mg) following General Procedure C from (3,5-Di'Bu-Hu(C4)Phyrin) (P1) ($46 \mathrm{mg}, 0.032 \mathrm{mmol}$). HRMS (ESI) m/z Calcd. for $\mathrm{C}_{88} \mathrm{H}_{93} \mathrm{CoN}_{8} \mathrm{O}_{12}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1512.6239$, Found: 1512.6259; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 438(4.78)$, 546(3.84), 662(3.49).

[Co(2,6-DiMeO-Hu($\left.\left.\left.\mathbf{C}_{4}\right) \mathbf{P h y r i n}\right)\right]$ ($\left.[\mathbf{C o}(\mathbf{P 2})]\right)$ was synthesized in 90% yield (55 mg) following General Procedure C from (2,6-DiMeO-Hu(\mathbf{C}_{4})Phyrin) ($\mathbf{P 2}$) ($58 \mathrm{mg}, 0.043 \mathrm{mmol}$). HRMS (ESI) m/z Calcd. for $\mathrm{C}_{76} \mathrm{H}_{69} \mathrm{CoN}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1408.4158$, Found: 1408.4120 ; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 432(4.85)$, 542(3.96), 658(3.21).

[Co(3,5-Di'Bu-Hu($\left.\left.\left.\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 3})])$ was synthesized in 90% yield (170 mg) following General Procedure C from (3,5-Di'Bu-Hu(C6)Phyrin) (P3) ($182 \mathrm{mg}, 0.121 \mathrm{mmol}$). HRMS (ESI) m/z Calcd. for $\mathrm{C}_{92} \mathrm{H}_{101} \mathrm{CoN}_{8} \mathrm{O}_{12}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1568.6865$, Found: $1568.6894 ;$ UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 436(5.01)$, 548(4.03), 660(3.31).

[Co(2,6-DiMeO-Hu(C6)Phyrin)] ([Co(P4)]) was synthesized in 95% yield (50 mg) following General Procedure C from (2,6-DiMeO-Hu(C6)Phyrin) (P4) (51 mg, 0.036 mmol). HRMS (ESI) m/z Calcd. for $\mathrm{C}_{80} \mathrm{H}_{77} \mathrm{CoN}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1464.4784$, Found: 1464.4754; UV-vis $\left(\mathrm{CHCl}_{3}\right) \lambda \max \mathrm{nm}(\log \varepsilon): 434(4.92)$, 544(3.94), 646(3.26). (The reaction can be easily scaled up to 400 mg scale.)

$\left[\mathbf{C o}\left(\mathbf{3 , 5 - D i}{ }^{\boldsymbol{t}} \mathbf{B u}-\mathbf{H u}\left(\mathbf{C}_{\mathbf{8}}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 5})])$ was synthesized in 91% yield (128 mg) following General Procedure C from (3,5-Di'Bu-Hu(C8)Phyrin) (P5) (136 mg, 0.086 mmol). HRMS (ESI) m/z Calcd. for $\mathrm{C}_{96} \mathrm{H}_{109} \mathrm{CoN}_{8} \mathrm{O}_{12}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1624.7491$, Found: 1624.7521; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 436(4.97)$, $550(3.97), 668(3.38)$. (The reaction can be easily scaled up to 500 mg scale.)

[Co(2,6-DiMeO-Hu(C8)Phyrin)] ([Co(P6)]) was synthesized in 95% yield $(50 \mathrm{mg})$ following General Procedure C from (2,6-DiMeO-Hu(C8)Phyrin) (P6) (51 mg, 0.035 mmol). HRMS (ESI) m / z Calcd. for $\mathrm{C}_{84} \mathrm{H}_{85} \mathrm{CoN}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1520.5410$, Found: 1520.5432; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 436(5.05)$, 544(4.08), 668(3.41).

[Co(3,5-Di'Bu-Hu(C $\left.\mathbf{C}_{\mathbf{1 0}}\right)$ Phyrin)] ([Co(P7)]) was synthesized in 92% yield (17 mg) following General Procedure C from (3,5-Di'Bu-Hu(C $\mathbf{C l}_{\mathbf{1 0}}$)Phyrin) (P7) ($18 \mathrm{mg}, 0.011 \mathrm{mmol}$). HRMS (ESI) m/z Calcd. for $\mathrm{C}_{100} \mathrm{H}_{117} \mathrm{CoN}_{8} \mathrm{O}_{12}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}, 1680.8117$, Found: 1680.8033; UV-vis $\left(\mathrm{CHCl}_{3}\right), \lambda \max \mathrm{nm}(\log \varepsilon): 438(4.91)$, 550(3.94), 670(3.37).

[Co(2,6-DiMeO-Hu($\left.\mathbf{C}_{\mathbf{1 0}}\right)$ Phyrin)] ([Co(P8)]) was synthesized in 90% yield (18 mg) following General Procedure C from (2,6-DiMeO-Hu(C $\mathbf{1 0}_{\mathbf{1 0}}$)Phyrin) (P8) (19 mg, 0.013 mmol). HRMS (ESI) m / z Calcd. for $\mathrm{C}_{88} \mathrm{H}_{93} \mathrm{CoN}_{8} \mathrm{O}_{16}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 1576.6036$, Found: 1576.5922; UV-vis $\left(\mathrm{CHCl}_{3}\right)$, $\lambda \max \mathrm{nm}(\log \varepsilon): 436(4.88)$, 546(3.91), 670(3.35).

General Procedure D (Amine Synthesis).

Procedure D1 ($\mathbf{S}_{\mathbf{N}} \mathbf{2}$ Amination)

Methanesulfonyl chloride ($0.58 \mathrm{~mL}, 7.5 \mathrm{mmol}$) was added to a round bottom flask containing alcohol precursor (5 mmol) in DCM $(15 \mathrm{~mL})$, followed by the addition of triethyl amine ($1.41 \mathrm{~mL}, 10 \mathrm{mmol}$). The precipitate was formed immediately. The reaction mixture was stirred at room temperature for 1 or 2 hours until the alcohol was fully consumed based on TLC. DCM (30 mL) was added and the reaction mixture was washed with water $(50 \mathrm{~mL})$. The aqueous solution was extracted by DCM $(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed and $\mathrm{CH}_{3} \mathrm{CN}$ $(20 \mathrm{~mL})$ was added, followed by the benzyl amine $(10 \mathrm{mmol})$ and the reaction was heated at $80{ }^{\circ} \mathrm{C}$ for 6 hours. Then the solvent was removed and the residue was purified by silica gel column chromatography (gradient elution: Hexanes/EtOAc 8:1 to 1:1) to give the desired amine products, which were used directly for the next step.

Procedure D2 (Reductive Amination)

Oven-dried $4 \AA$ molecular sieves (1.0 g) were added to a solution of primary amine (5 mmol) and benzaldehyde $(0.53 \mathrm{~mL}, 5 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{~mL})$. The reaction mixture was stirred for 2 hours at room temperature. Then the solvent was removed under reduced pressure and $\mathrm{MeOH}(25 \mathrm{~mL})$ was added into the residue. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, followed by the addition of NaBH_{4} ($570 \mathrm{mg}, 15 \mathrm{mmol}$) in several portions. After the reaction became less vigorous, the reaction was slowly warmed up to room temperature and stirred for another hour. Then the solvent was removed and the residue was purified by silica gel column chromatography (gradient elution: Hexanes/EtOAc 8:1 to 1:1) to give the desired amine products, which were used directly for the next step.

Procedure D3 (Amide Reduction)

$\mathrm{LiAlH}_{4}(1.5 \mathrm{mmol})$ was added to a sealed tube containing amide $(5 \mathrm{mmol})$ in newly distilled anhydrous THF (15 mL). The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 2 days. After quenching the excess amount of LiAlH_{4} following Fieser method, the reaction mixture was filtrated through a short pad of Celite. Then the solvent was removed and the residue was purified by silica gel column chromatography (gradient elution: Hexanes/EtOAc $8: 1$ to $1: 1$) to give the desired amine products, which were used directly for the next step.

Characterization of Amines

N-Benzyl-2-phenylethan-1-amine was prepared in 75% yield (790 mg) as yellow oil through General

Procedure D2 from 2-phenylethan-1-amine (commercially available, cas: 64-04-0) $(605 \mathrm{mg}, 5 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.44-7.24(\mathrm{~m}, 10 \mathrm{H}), 3.88(\mathrm{~s}, 2$ H), 3.03-2.96(m, 2 H), 2.94-2.87(m, 2 H), 1.50 (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ $140.4,140.1,128.8,128.5,128.1,127.0,126.2,54.0,50.7,36.5$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 212.1434$, Found: 212.1429; IR (neat, cm^{-1}): 2923, 2815, 1736, 1602, 1494, 1452, 1240, 733, 696.
N-Benzyl-2-(4-methoxyphenyl)ethan-1-amine was prepared in 82% yield (980 mg) as yellow oil
 through General Procedure D1 from 2-(4-methoxyphenyl)ethan-1-ol (commercially available, cas: $702-23-8)(760 \mathrm{mg}, 5 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.42$ $-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, 2.98-2.91 (m, 2 H), 2.87-2.80 (m, 2 H), 1.57 (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 158.1$, 140.4, 132.1, 129.7, 128.4, 128.2, 127.0, 113.9, 55.3, 53.9, 50.8, 35.5; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 242.1539$, Found: 242.1527; IR (neat, cm^{-1}): 2932, 2834, 1611, 1583, 1511, 1453, 1244, 907, 727, 697.
N-Benzyl-2-(4-chlorophenyl)ethan-1-amine was prepared in 86% yield (1.05 g) as yellow oil through General Procedure D1 from 2-(4-chlorophenyl)ethan-1-ol (commercially available,
 cas: $1875-88-3)(780 \mathrm{mg}, 5 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.41-7.20$ (m, 7 H), $7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 2$ H), 1.61 (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 140.1,138.5,131.9,130.1,128.6,128.4,128.1$, 127.0, 53.9, 50.3, 35.7; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClN}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 246.1044$, Found: 248.1041; IR (neat, cm^{-1}): 2925, 2817, 1668, 1599, 1491, 1453, 1089, 1014, 730, 697.
\boldsymbol{N}-Benzyl-2-(4-(trifluoromethyl)phenyl)ethan-1-amine was prepared in 70% yield (976 mg) as yellow oil through General Procedure D1 from 2-(4-(trifluoromethyl)phenyl) ethan-1-ol (commercially available, cas: 2968-93-6) (950 mg, 5 mmol$).{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 7 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 2.99-$ $2.92(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.84(\mathrm{~m}, 2 \mathrm{H}), 1.41$ (br. s., 1 H) ${ }^{13}{ }^{13} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 144.2, 140.1, $129.0,128.5(\mathrm{q}, J=32.5 \mathrm{~Hz}), 128.4,128.0,127.0,125.3(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.3(\mathrm{q}, J=270.0 \mathrm{~Hz}), 53.8$, 50.1, 36.2; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 280.1308$, Found: 280.1306; IR (neat, cm^{-1}): 2928, 1618, 1454, 1323, 1066, 907, 730, 698.
\boldsymbol{N}-Benzyl-2-(naphthalen-2-yl)ethan-1-amine was prepared in 74% yield (970 mg) as yellow oil through
 General Procedure D3 from N-benzyl-2-(naphthalen-2-yl)acetamide (1.37 g , 5 mmol) which was prepared using 2-(naphthalen-2-yl)acetic acid (commercially available, cas: 581-96-4) and benzylamine. ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.93$ -7.77 (m, 3 H), 7.66 ($\mathrm{s}, 1 \mathrm{H}$), $7.51-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.19(\mathrm{~m}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 4 \mathrm{H}), 1.55$ (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 140.2,137.5,133.5,132.1,128.4,128.1,128.0,127.6$,
127.4, 127.3, 127.0, 126.9, 126.0, 125.3, 53.9, 50.3, 36.4; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 262.1590, Found: 262.1589; IR (neat, cm^{-1}): 2924, 2853, 1728, 1601, 1552, 1260, 1077, 907, 730, 647.
\boldsymbol{N}-Benzyl-2-($\mathbf{1 H}$-indol-3-yl)ethan-1-amine was prepared in 83% yield (1.04 g) as yellow oil through

General Procedure D2 from Tryptamine (commercially available, cas: 61-54-1) ($800 \mathrm{mg}, 5 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.15$ (br. s., 1 H), 7.68 (d, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.15-3.01(\mathrm{~m}, 4 \mathrm{H}), 1.62($ br. s., 1 H$) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 140.3,136.3,128.3,128.1,127.4,126.8,122.0,121.9,119.2,118.9$, 114.0, 111.1, 53.9, 49.4, 25.8; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 251.1543, Found: 215.1543; IR (neat, cm^{-1}): 3457, 3055, 2917, 2836, 1618, 1454, 735, 696.
N-Benzyl-2-(2,3-dihydrobenzofuran-5-yl)ethan-1-amine was prepared in 65% yield (822 mg) as yellow oil through General Procedure D3 from N-benzyl-2-(2,3-dihydrobenzofuran- $5-\mathrm{yl})$ acetamide $(1.34 \mathrm{~g}, 5 \mathrm{mmol})$ which was prepared using 2-(2,3-dihydrobenzofuran-5-yl)acetic acid (commercially available, cas: 69999-16-2) and benzylamine following the literature procedure. ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.43-7.21(\mathrm{~m}, 5$ H), $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.99-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.51(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.77(\mathrm{~m}, 2 \mathrm{H})$, 3.28-3.12 (m, 2 H), 2.95-2.82 (m, 2 H), 2.81-2.69 (m, 2 H), 1.77 (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 159.7,140.2,131.8,128.5,128.4,128.1,127.5,127.4,125.2,109.1,71.4,53.9,50.9,35.7$, 29.7; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 254.1539$, Found: 254.1527; IR (neat, cm^{-1}): 2893, 2854, 1613, 1490, 1242, 982, 728, 698.
N-Benzyl-2-(benzo[b]thiophen-4-yl)ethan-1-amine was prepared in 59% yield (340 mg) as yellow oil
 through General Procedure D3 from N-benzyl-2-(benzo[b]thiophen-4-yl)acetamide ($600 \mathrm{mg}, 2.1 \mathrm{mmol}$) which was prepared using 2-(benzo[b]thiophen-4-yl)acetic acid (commercially available, cas: 2635-75-8) and benzylamine following the literature procedure. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.49($ br. s., 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 140.4,140.3,139.0,135.1,128.5,128.2,127.1,126.2,124.5,124.4,121.9$, 120.8, 54.0, 50.0, 34.7; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 268.1154$, Found: 268.1155; IR (neat, cm^{-1}): 2818, 1452, 1411, 1105, 907, 729, 698.
(\boldsymbol{E})- \boldsymbol{N}-Benzylhex-3-en-1-amine was prepared in 65% yield (614 mg) as yellow oil through General Procedure D1 from (E)-hex-3-en-1-ol (commercially available, cas: 928-97-2) (500
 $\mathrm{mg}, 5 \mathrm{mmol}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.28(\mathrm{~m}$, LK-II-285B $1 \mathrm{H}), 5.64-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.38(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 2 \mathrm{H})$, $2.28(\mathrm{dq}, J=1.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.74$ (br. s., 1 H$), 1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 140.3,134.3,128.4,128.2,127.0,126.4,53.9,48.9,33.0,25.7,13.9$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 190.1590$, Found: 190.1601; IR (neat, cm^{-1}): 2960, 2929, 1453, 1404, 1286, 966, 732, 697.

2-(But-3-yn-1-yloxy)tetrahydro-2H-pyran ($1.7 \mathrm{~g}, 11 \mathrm{mmol}$) was dissolved into THF (10 mL) under nitrogen atmosphere and cooled down to $-78^{\circ} \mathrm{C} . n-\mathrm{BuLi}(2.5 \mathrm{M}$ solution in Hexane) ($4.8 \mathrm{~mL}, 12.1 \mathrm{mmol}$) was added slowly into this solution and the reaction mixture was warmed up to room temperature and stirred for 30 min . Then the reaction solution was cooled down to $-78^{\circ} \mathrm{C}$. Pent-4-en-1-yl 4methylbenzenesulfonate ($2.9 \mathrm{~g}, 12.1 \mathrm{mmol}$) in THF (5 mL) was added slowly into the alkynyllithium solution and the reaction was heated up to reflux for 24 h . The solvent was removed and the residue was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 30:1), to give 2-(non-8-en-3-yn-1-yloxy)tetrahydro-2H-pyran as colorless oil, $\mathrm{TLC}_{f}=0.7$ (Hexanes/EtOAc 9:1) (1.0 g, 65\% yield).

2-(Non-8-en-3-yn-1-yloxy)tetrahydro-2H-pyran ($1.0 \mathrm{~g}, 4.5 \mathrm{mmol}$) was dissolved into ethanol (40 mL). PPTS ($150 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . The solvent was removed and the residue was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 8:1) to give non-8-en-3-yn-1-ol as colorless oil, TLC $\mathrm{R}_{f}=0.5$ (Hexanes/EtOAc 8:1) ($620 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 5.79(\mathrm{tdd}, J=6.6,10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{qd}, J=1.6,17.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00-4.95(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{tt}, J=2.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.16-$ $2.08(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}), 1.59$ (quin, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 137.9$, $115.1,82.3,76.6,61.4,32.8,28.1,23.2,18.1$.
(\boldsymbol{E})-Nona-3,8-dien-1-0l was prepared according to the following procedure. A solution of non-8-en-3-yn-$1-\mathrm{ol}(500 \mathrm{mg}, 3.62 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{LiAlH}_{4}(412 \mathrm{mg}, 10.8 \mathrm{mmol})$ in a mixture of digylme $(5.5 \mathrm{~mL})$ and THF $(1.6 \mathrm{~mL})$. The reaction mixture was heated to reflux for 72 h . The
reaction was quenched using $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ followed by $10 \% \mathrm{NaOH}(0.4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{~mL})$. Then the reaction mixture was poured into $10 \% \mathrm{HCl}$ and extracted with pentane $(3 \times 40 \mathrm{~mL})$. The combined organic layer was concentrated under high vacuum to give (\boldsymbol{E})-nona-3,8-dien-1-ol, as a colorless oil (450 $\mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 5.79$ (tdd, $J=6.7,10.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.59-5.47$ (m, $1 \mathrm{H}), 5.45-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{qd}, J=1.6,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.91(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 2 \mathrm{H})$, $2.26(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 2 \mathrm{H})$.
(\boldsymbol{E})- N -Benzylnona-3,8-dien-1-amine was prepared in 50% yield (300 mg) as yellow oil through General Procedure D1 from (E)-nona-3,8-dien-1-ol ($364 \mathrm{mg}, 2.6 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{tdd}, J=6.6$, $10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.34(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{qd}, J=1.6$, $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.92(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.10$ $-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.46$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.39 (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 140.5$, 138.8, 132.2, 128.4, 128.1, 127.9, 126.8, 114.5, 53.9, 48.9, 33.2, 33.1, 32.0, 28.7; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 230.1903$, Found: 230.1895; IR (neat, cm^{-1}): 2924, 2840, 1640, 1453, 968, 908, 730, 690.
N-Benzyl-2-(cyclohex-1-en-1-yl)ethan-1-amine was prepared in 84% yield (900 mg) as yellow oil through General Procedure D2 from 2-(cyclohex-1-en-1-yl)ethan-1-amine (commercially available, cas: 3399-73-3) ($625 \mathrm{mg}, 5 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.45(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $2 \mathrm{H}), 2.71(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.66-$ $1.59(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.47$ (br. s., 1 H$) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 140.5,135.4$, 128.4, 128.1, 126.8, 122.8, 53.9, 46.9, 38.3, 28.1, 25.3, 23.0, 22.5; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 216.1747$, Found: 216.1742; IR (neat, cm^{-1}): 2923, 2833, 2855, 1494, 1452, 1114, 907, 728, 697.

Under nitrogen atmosphere, p-toluenesulfonic acid ($63 \mathrm{mg}, 0.33 \mathrm{mmol}$) was added to a round-bottom flask containing but-3-yn-1-ol ($2.52 \mathrm{~mL}, 33 \mathrm{mmol}$) in DCM (36 mL) followed by the slow addition of dihydropyran ($3.2 \mathrm{~mL}, 35 \mathrm{mmol}$). The reaction mixture was stirred for 2 hours at room temperature until the consumption of but-3-yn-1-ol based on TLC. Then the solvent was removed and the residue was
purified by silica gel column chromatography (eluent: Hexanes/EtOAc 30:1) to give 2-(but-3-yn-1-yloxy)tetrahydro-2H-pyran as colorless oil, $\operatorname{TLC~}_{f}=0.3$ (Hexanes/EtOAc 9:1) ($5.1 \mathrm{~g}, 99 \%$ yield). ${ }^{4}$

The above DHP protected alkyne ($1.5 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved into THF (10 mL) under nitrogen atmosphere and cooled down to $-78^{\circ} \mathrm{C} . n-\mathrm{BuLi}(2.5 \mathrm{M}$ solution in Hexane) ($4.3 \mathrm{~mL}, 10.7 \mathrm{mmol}$) was added slowly into this solution and the reaction mixture was warmed up to room temperature and stirred for 30 min . Then the reaction solution was cooled down to $-78^{\circ} \mathrm{C}$. tert-Butyldimethylsilyl chloride (1.6 g , 10.6 mmol) in THF (5 mL) was added slowly into the alkynyllithium solution and the reaction was warmed up to room temperature and stirred for 3 h . The solvent was removed and the residue was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 30:1) to give tert-butyldimethyl(4-((tetrahydro-2H-pyran-2-yl)oxy)but-1-yn-1-yl)silane as colorless oil, TLC $\mathrm{R}_{f}=0.6$ (Hexanes/EtOAc 9:1) $\left(1.2 \mathrm{~g}, 46 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 4.66(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 (ddd, $J=2.9,8.7$, $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{td}, J=7.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{dd}, J=$ $3.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6$ H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 104.5,98.6,83.6,65.7,61.9,30.5,26.0,25.4,21.4,19.2,16.5,-$ 4.5.
tert-Butyldimethyl(4-((tetrahydro-2H-pyran-2-yl)oxy)but-1-yn-1-yl)silane (1.2 g, 4.4 mmol$)$ was dissolved into ethanol (40 mL). PPTS ($150 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added. The reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 16 h . The solvent was removed and the residue was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 16:1) to give 4-(tert-butyldimethylsilyl)but-3-yn-1-ol as colorless oil, TLC $\mathrm{R}_{f}=0.4$ (Hexanes/EtOAc $8: 1$) ($800 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $3.71(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 103.8,85.1,61.0,26.0,24.2,16.4,-4.52$.
N-Benzyl-4-(tert-butyldimethylsilyl)but-3-yn-1-amine was prepared in 36% yield (402 mg) as yellow
 oil through General Procedure D1 from the above synthesized 4-(tert-butyldimethylsilyl)but-3-yn-1-ol ($750 \mathrm{mg}, 4.1 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 7.40-7.29 (m, 4 H), 7.29-7.24 (m, 1 H), 3.83(s, 2 H), 2.80 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.88$ (br. s., 1 H), 0.93 (s, 9 H), $0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 140.0,128.4$, 128.1, 127.0, 105.5, 84.2, 53.3, 47.4, 26.1, 20.9, 16.5, -4.5; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NSi}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 274.1986$, Found: 274.1977; IR (neat, cm^{-1}): 2952, 2927, 2855, 2171, 1461, 1249, 809, 836, 824, 732, 697.
\boldsymbol{N}-Benzyl-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-inden-2-amine was prepared in 38% yield (420 mg) as yellow oil through General Procedure D1 from 2,3-dihydro-1H-inden-2-ol (commercially available, cas:

LK-III-238 4254-29-9) ($690 \mathrm{mg}, 5 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.38-7.29$ (m, 4 H), 7.28-7.22(m, 1 H$), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.68$ (quin, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.17(\mathrm{dd}, J=7.2,15.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{dd}, J=6.8,15.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.57$ (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 141.7,140.3,128.4,128.2,127.0,126.4,124.7,59.0,52.3,40.0$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 224.1434$, Found: 224.1430; IR (neat, cm^{-1}): 2932, 2835, 1603, 1453, 1124, 738, 697.
\boldsymbol{N}-Isopropyl-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-inden-2-amine was prepared in 50% yield (437 mg) as yellow oil through
 General Procedure D1 between 2,3-dihydro-1 H -inden-2-ol (commercially available, cas: 4254-29-9) ($690 \mathrm{mg}, 5 \mathrm{mmol}$) and propan-2-amine. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 7.24-7.18 (m, 2 H), 7.18-7.13 (m, 2 H), 3.76 (quin, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (dd, $J=7.3,15.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.00(\mathrm{td}, J=6.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=7.1,15.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.48$ (br. s., 1 H), 1.11 (d, $J=6.4 \mathrm{~Hz}, 6$ H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 141.8,126.4,124.7,57.0,46.6,40.3,23.2$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 176.1434$, Found: 176.1437; IR (neat, cm^{-1}): 2963, 2837, 1617, 1459, 1173, 908, 728, 640.
N-Phenethyl-3-phenylpropan-1-amine was prepared in 83% yield (1.0 g) as yellow oil through General
 Procedure D1 between 3-phenylpropan-1-ol (commercially available, cas: 122-97-4) ($680 \mathrm{mg}, 5 \mathrm{mmol}$) and 2-phenylethan-1-amine (commercially available, cas: 64-04-0) $(1.2 \mathrm{~g}, 10 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.39-7.11(\mathrm{~m}, 10 \mathrm{H}), 2.93-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.86-$ 2.79 (m, 2 H), 2.66 (td, $J=7.5,14.4 \mathrm{~Hz}, 4 \mathrm{H}$), 1.83 (td, $J=7.5,15.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.23 (br. s., 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 142.1,140.1,128.7,128.4,128.3,128.2,126.1,125.7,51.1,49.2,36.3,33.6$, 31.6; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 240.1747, Found: 240.1738; IR (neat, cm^{-1}): 2931, 2856, 1602, 1495, 1453, 908, 728, 697.
N-Benzyl-2-(furan-2-yl)ethan-1-amine was prepared in 57% yield as yellow oil through General
 Procedure D2 from 2-(furan-2-yl)ethan-1-amine ($222 \mathrm{mg}, 2 \mathrm{mmol}$) (synthesized according to the literature ${ }^{5}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.28-$ 7.22 (m, 1 H), 6.30 (dd, $J=2.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-6.01$ (m, 1 H$), 3.82(\mathrm{~s}, 2 \mathrm{H}), 2.97$ -
$2.91(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.61$ (br. s., 1 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 154.1, 141.2, $140.2,128.4,128.1,127.0,110.2,105.8,53.7,47.5,28.7$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 202.1226$, Found: 202.1205; IR (neat, cm^{-1}): 2923, 2821, 1496, 1453, 1157, 873, 729, 697, 599.
N-Benzyl-2-cyclopropylethan-1-amine was prepared in 58% yield $(1.02 \mathrm{~g})$ as yellow oil through General Procedure D1 from 2-cyclopropylethan-1-ol (commercially available, cas: 2566-44-1) ($500 \mathrm{mg}, 5.8 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.36-7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.43$ (dd, $J=14.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.40$ (br.s, $1 \mathrm{H}), 0.75-0.64(\mathrm{~m}, 1 \mathrm{H}), 0.48-0.40(\mathrm{~m}, 2 \mathrm{H}), 0.09-0.03(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $140.7,128.5,128.2,127.0,54.3,49.7,35.2,9.0,4.3$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 176.1434, Found: 176.1422; IR (neat, cm^{-1}): 2915, 1453, 751.

N-Methyl-1,3-diphenylpropan-2-amine was synthesized according to the following method: At room temperature, $\mathrm{Ti}\left(\mathrm{OiPr}_{4}(1.5 \mathrm{~mL}, 5.2 \mathrm{mmol})\right.$ was added to a 1,3-diphenylpropanone (commercially available, cas: 102-04-5) ($1.0 \mathrm{~g}, 4.7 \mathrm{mmol}$) DCM solution (20 mL), followed by the addition of $\mathrm{MeNH}_{2}(3.5 \mathrm{~mL}, 7 \mathrm{mmol}, 2 \mathrm{M}$ in MeOH$)$. The reaction mixture was stirred for 1 hour and the solvent was removed. The residue was dissolved into $\mathrm{MeOH}(20 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(0.53 \mathrm{~g}, 14.1 \mathrm{mmol})$ was added to this solution and the reaction mixture was slowly warmed up to room temperature and stirred for 2 hours. Then the solvent was removed and the residue was purified by silica gel column chromatography (gradient elution: Hexanes/EtOAc 8:1 to 1:1) to give the desired amine product as yellow oil ($600 \mathrm{mg}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.38-7.12(\mathrm{~m}, 10 \mathrm{H})$, 3.01-2.91(m, 1 H), 2.82-2.73(m, 2 H), 2.71-2.62(m, 2 H), 2.42(s, 3 H$) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 139.5,129.3,128.4,126.2,62.8,40.2,34.2$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 226.1590, Found: 226.1576; IR (neat, cm^{-1}): 2930, 2851, 1737, 1601, 1494, 1452, 748, 697.
N-Benzyl-2-(ferrocenyl)ethan-1-amine was prepared in 63% yield (340 mg) as yellow oil through (2) General Procedure D2 from 2-(ferrocenyl)ethan-1-amine ($390 \mathrm{mg}, 1.7 \mathrm{mmol}$) (synthesized according to the literature. ${ }^{6}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.10$ (br. s., 1 H) ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 140.3, 128.4, 128.1, 126.9, 86.5, 68.5, 68.3, 67.3, 53.9,
50.4, 30.1; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FeN}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 320.1102$, Found: 320.1110; IR (neat, cm^{-1}): 1739, 1365, 1229, 1217.

General Procedure E (Synthesis of Sulfamoyl Azide 1)

Sulphuryl Azide $\left(\mathrm{N}_{3} \mathrm{SO}_{2} \mathrm{~N}_{3}\right)$ was prepared according to our reported procedure without further optimization. ${ }^{7}$ Sulfuryl chloride $(9.72 \mathrm{~mL}, 120 \mathrm{mmol})$ was added dropwise for 1 h to a solution of sodium azide ($29.25 \mathrm{~g}, 450 \mathrm{mmol}$) and pyridine $(19.44 \mathrm{~mL}, 250 \mathrm{mmol})$ in acetonitrile $(600 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was stirred for one hour at room temperature followed by the addition of 100 mL DCM. The mixture was poured into ice-cold water and extracted with DCM ($3 \times 100 \mathrm{~mL}$). The combined organic layer was washed sequentially with hydrochloric acid ($1 \mathrm{~mol} / \mathrm{L}$ in $\mathrm{H}_{2} \mathrm{O}$), water, potassium hydroxide ($1 \mathrm{~mol} / \mathrm{L}$ in $\mathrm{H}_{2} \mathrm{O}$), hydrochloric acid ($1 \mathrm{~mol} / \mathrm{L}$ in $\mathrm{H}_{2} \mathrm{O}$), and water. After drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the sulphuryl azide solution was used directly for the further reaction. This solution (0.3 M in DCM) can be stored in the refrigerator at $-20^{\circ} \mathrm{C}$ for at least six months without significant decomposition.

A mixture of amine (1 equiv) and DBU (1.2 equiv) in DCM was added dropwise via pipette to a solution of $\mathrm{N}_{3} \mathrm{SO}_{2} \mathrm{~N}_{3}$ (2 equiv, 0.3 M in DCM) at $0{ }^{\circ} \mathrm{C}$. After the reaction was completed based on TLC ($\sim 1 \mathrm{~h}$), the majority of the solvent was removed under reduced pressure at room temperature. Purification of this mixture by silica gel column chromatography (Conditions were given below.) afforded the sulfamoyl azide. Note: Some azides could be explosive and should be handled carefully.

Characterization of Sulfamoyl Azides (1a-1u)

\boldsymbol{N}-Benzyl-2-phenylethan-1-sulfamoyl azide (1a) was obtained in 88% yield (560 mg) as colorless oil through General Procedure E from N-benzyl-2-phenylethan-1-amine starting from 2 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), $\mathrm{TLC} \mathrm{R}_{f}=0.6$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.44-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.43(\mathrm{~s}, 2 \mathrm{H}), 3.48-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 137.6,134.5$,
$129.0,128.8,128.7,128.6,128.5,126.8,53.0,50.0,34.4$; IR (neat, cm^{-1}): 2123, 1380, 1204, 1164, 734, 697.
N-Benzyl-2-(4-methoxyphenyl)ethan-1-sulfamoyl azide (1b) was obtained in 85% yield (294 mg) as
 colorless oil through General Procedure E from N-benzyl-2-(4-methoxyphenyl)ethan-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC $\quad \mathrm{R}_{f}=0.3$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.55-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.08-6.94(\mathrm{~m}, 2 \mathrm{H})$, 6.86-6.69(m, 2 H), 4.39 (s, 2 H), 3.76(s, 3 H), 3.44-3.26(m, 2 H), 2.87-2.66(m, 2 H); ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 158.4,134.5,129.7,129.5,128.9,128.6,128.5,114.1,55.2,53.0,50.2,33.4$; IR (neat, cm^{-1}): 2126, 1611, 1513, 1456, 1379, 1205, 1165, 905, 726, 699.
N-Benzyl-2-(4-chlorophenyl)ethan-1-sulfamoyl azide (1c) was obtained in 88% yield (310 mg) as
 colorless oil through General Procedure E from N -benzyl-2-(4-chlorophenyl) ethan-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC R ${ }_{f}=0.4$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.42-7.13(\mathrm{~m}, 7 \mathrm{H}), 7.06-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.50-$ $3.28(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.66(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 136.0,134.3,132.6,130.1,129.0$, $128.8,128.6,53.2,49.9,33.8$; IR (neat, cm^{-1}): 2128, 1493, 1380, 1264, 1167, 733, 703, 610, 593.
N-Benzyl-2-(4-(trifluoromethyl)phenyl)ethan-1-sulfamoyl azide (1d) was obtained in 90\% yield (355

mg) as colorless oil through General Procedure \mathbf{E} from N -benzyl-2-(4-(trifluoromethyl)phenyl)ethan-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC $\mathrm{R}_{f}=0.7$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 3 \mathrm{H})$, $7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.57-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.78(\mathrm{~m}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 141.6,134.2,129.2(\mathrm{q}, ~ J=32.0 \mathrm{~Hz}), 129.1,129.0,128.7,128.6$, $125.6(\mathrm{q}, ~ J=3.0 \mathrm{~Hz}), 124.1(\mathrm{q}, J=272.0 \mathrm{~Hz}), 53.4,49.8,34.3 ;{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CFCl}_{3}, \mathrm{CDCl}_{3}\right) \delta$ ppm -63.05 (s, 3F); IR (neat, cm^{-1}): 2128, 1619, 1380, 1325, 1264, 1123, 1067, 733, 702, 609, 593.
N-Benzyl-2-(naphthalen-2-yl)ethan-1-sulfamoyl azide (1e) was obtained in 80% yield (292 mg) as

colorless wax through General Procedure E from N-benzyl-2-(naphthalen-2-yl)ethan-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC R f_{f} $=0.7$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.88-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.53-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.13(\mathrm{~m}, 6 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 135.0,134.5,133.5,132.3,128.9,128.7,128.6,128.4,127.7,127.5$, $127.3,126.9,126.2,125.7,53.1,50.0,34.6$; IR (neat, cm^{-1}): $2124,1600,1496,1455,1378,1206,1164$, 907, 751,1 730, 609, 591.
\boldsymbol{N}-Benzyl-2-(1H-indol-3-yl)ethan-1-sulfamoyl azide was obtained in 87% yield (620 mg) as yellow wax
 through General Procedure \mathbf{E} from N-benzyl-2-(1H-indol-3-yl)ethan-1-amine starting from 2 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 8:1), TLC $\mathrm{R}_{f}=0.25$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \operatorname{ppm} 7.99(\mathrm{br} . \mathrm{s},. 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.21(\mathrm{dt}, J=1.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.61-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.10-2.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 136.2,134.6,128.9,128.7,128.5,127.0,122.3,122.2,119.6,118.5,111.8,111.2,53.1$, 49.1, 24.2 .

N-Benzyl-2-(1-(tert-butoxycarbonyl)-1H-indol-3-yl) ethan-1-sulfamoyl azide (1f) was obtained
 according to the following procedure. DMAP ($12 \mathrm{mg}, 0.1 \mathrm{mmol}$) and (Boc$)_{2} \mathrm{O}(231$ $\mathrm{mg}, 1.2 \mathrm{mmol})$ were added to a solution of N -benzyl-2-(1 H -indol-3-yl)ethan-1sulfamoyl azide ($355 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{DCM}(4 \mathrm{~mL})$. The reaction mixture was stirred for 2 h . The solvent was removed and the residue was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), to give N -benzyl-2-(1-(tert-butoxycarbonyl)-1H-indol-3yl) ethan-1-sulfamoyl azide as colorless wax, $\mathrm{TLC}_{\mathrm{f}}=0.7$ (Hexanes/EtOAc $8: 1$) ($450 \mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.24-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.19(\mathrm{~m}, 9 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.60-3.42$ (m, 2 H), 3.03-2.85 (m, 2 H), $1.68(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 149.6,135.4,134.4$, $129.9,128.9,128.6,124.5,123.4,122.5,118.6,116.2,115.3,83.7,53.4,48.5,28.2,24.0 ;$ IR (neat, $\left.\mathrm{cm}^{-1}\right)$: $2125,1728,1453,1369,1161,1095,906,727,698,609,592$.
N-Benzyl-2-(2,3-dihydrobenzofuran-5-yl)ethan-1-sulfamoyl azide (1g) was obtained in 95% yield
 (340 mg) as colorless wax through General Procedure E from N -benzyl-2-(2,3-dihydrobenzofuran-5-yl)ethan-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC $\mathrm{R}_{f}=0.6$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}) \delta \mathrm{ppm} 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.79$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.45-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{t}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.71(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 158.9,134.5,129.4,128.9$, $128.6,128.5,128.2,127.4,125.2,109.3,71.2,53.0,50.4,33.8,29.7$; IR (neat, cm^{-1}): 2126, 1735, 1614, 1492, 1264, 1165, 732, 701, 608, 593.
N-Benzyl-2-(benzo[b]thiophen-4-yl)ethan-1-sulfamoyl azide (1h) was obtained in 88\% yield (330 mg)
 as colorless wax through General Procedure E from N -benzyl-2-(benzo[b]thiophen4 -yl)ethan-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC $_{f}=0.55$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.15 (m, 2H), 7.24 (dd, $J=12.4,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (s, 2H), $3.47(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.145(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 140.4$, $138.7,134.6,132.5,129.1,128.9,128.8,126.9,124.8,124.5,121.5,121.4,53.6,49.6,33.3$; IR (neat, cm^{-} $\left.{ }^{1}\right): 2122,1454,1378,1164,760,592$.
(\boldsymbol{E})- \boldsymbol{N}-Benzylhex-3-en-1-sulfamoyl azide (1i) was obtained in 89% yield (265 mg) as colorless oil
 through General Procedure E from (E)- N-benzylhex-3-en-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), $\mathrm{TLC} \mathrm{R}_{f}=0.7$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.52-7.31$ (m, 5 H), 5.62 - $5.47(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{td}, J=6.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.36-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.21(\mathrm{~m}, 2 \mathrm{H})$, 2.06-1.92 (m, 2 H), 1.05-0.90(m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 135.6,134.7,128.8,128.5$, $128.4,124.0,52.6,48.5,30.8,25.5,13.5$; IR (neat, cm^{-1}): 2124, 1496, 1455, 1379, 1204, 1166, 906, 727, 697, 593.
(E)-N-Benzylnona-3,8-dien-1- sulfamoyl azide (1j) was prepared in 95% yield (317 mg) as colorless oil through General Procedure \mathbf{E} from (E)- N-benzylnona-3,8-dien-1-amine

starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC $\mathrm{R}_{f}=0.7$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.77(\mathrm{tdd}, J$ $=6.7,10.3,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{td}, J=6.7,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.45$ (s, 2 H), 3.35-3.12 (m, 2 H), $2.22(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08-1.84 (m, 4 H), 1.40 (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 138.6, 134.6, 133.7, 128.8, 128.5, 128.4, 125.2, 114.5, 52.6, 48.5, $33.1,31.9,30.8,28.4 ;$ IR (neat, cm^{-1}): 2123, 1640, 1496, 1455, 1379, 1204, 1165, 907, 728, 697, 592.
\boldsymbol{N}-Benzyl-2-(cyclohex-1-en-1-yl)ethan-1-sulfamoyl azide (1k) was obtained in 80% yield (255 mg) as colorless oil through General Procedure E from N-benzyl-2-(cyclohex-1-en-1-yl)ethan-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), $\mathrm{TLC} \mathrm{R}_{f}=0.7$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.48-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.52-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.41-3.22$ (m, 2 H), 2.26-2.16(m, 2H), 2.05-1.94 (m, 2 H), 1.92-1.80(m, 2 H), 1.65-1.59 (m, 2 H), 1.58-1.52 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta \mathrm{ppm}$ 134.7, 133.5, 128.8, 128.5, 128.4, 124.1, 52.3, 47.2, 35.8, 28.1, 25.2, 22.7, 22.1; IR (neat, cm^{-1}): 2122, 1381, 1205, 1165, 768, 735, 698.
N-Benzyl-4-(tert-butyldimethylsilyl)but-3-yn-1-sulfamoyl azide (11) was obtained in 82% yield (310
 mg) as colorless wax through General Procedure E from N-benzyl-4-(tert-butyldimethylsilyl)but-3-yn-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC $\mathrm{R}_{f}=0.7$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.43-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07$ (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 134.6, 129.0, 128.5, 103.1, 85.7, 53.2, 47.1, 26.0, 19.6, 16.4, -4.6; IR (neat, cm^{-1}): 2176, 2133, 1471, 1456, 1382, 1201, 1165, 837, 809, 774, 736, 596.
\boldsymbol{N}-Benzyl-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-inden-2-sulfamoyl azide (1m) was obtained in 70% yield (230 mg) as
 colorless oil through General Procedure E from N -benzyl-2,3-dihydro-1 H -inden-2amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent:
Hexanes/EtOAc 40:1), TLC R $_{f}=0.7$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta \mathrm{ppm} 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.05(\mathrm{~m}, 6 \mathrm{H}), 4.89-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.21-3.12(\mathrm{~m}, 2 \mathrm{H})$, 3.09-3.00 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 139.7,136.5,128.6,127.8,127.1,127.0,124.4$, 60.0, 49.4, 36.6; IR (neat, cm^{-1}): 2129, 1421, 1264, 1169, 908, 732, 703.
\boldsymbol{N}-Isopropyl-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-inden-2-sulfamoyl azide ($\mathbf{1 m}^{\prime}$) was obtained in 70% yield (196 mg) as colorless oil through General Procedure E from N -isopropyl-2,3-dihydro-1 H -inden-2amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), $\mathrm{TLC} \mathrm{R}_{f}=0.8$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 7.24-7.17 (m, 4 H), 4.45 (quin, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (td, $J=6.8,13.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=9.3$, $15.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.15(\mathrm{dd}, J=8.3,15.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 139.9, 127.0, 124.5, 57.6, 51.3, 37.2, 21.3; IR (neat, cm^{-1}): 2122, 1462, 1369, 1264, 1190, 1147, 733, 703, 642, 619.
N-Phenethyl-3-phenylpropan-1-azide (1n) was obtained in 90% yield (310 mg) as colorless oil through General Procedure E from N-phenethyl-3-phenylpropan-1-amine starting from 1 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), $\mathrm{TLC} \mathrm{R}_{f}=0.7$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.40-$ $7.30(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 3.60-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.00-$ $2.85(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 140.5$, $137.5,128.7,128.6,128.3,126.9,126.2,51.0,49.3,34.8,32.6,29.3$; IR (neat, cm^{-1}): 2122, 1603, 1496, 1454, 1379, 1203, 1163, 906, 727, 698, 598.
N-Benzyl-2-(vinyl)ethan-1-sulfamoyl azide was obtained in 85% yield (2.1 g) through General Procedure E from N -benzylbut-3-en-1-amine (commercially available, cas: 17150-62-
$\mathrm{N}_{3} \mathrm{O}_{2} \mathrm{~S}^{\mathrm{Bn}} \mathrm{N}^{\mathrm{Nn}}$ Hexanes/EtOAc 40:1), colorless oil, $\mathrm{TLC}_{f}=0.5$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 7.64-7.29 (m, 5H), 5.78-5.58 (m, 1H), 5.17-5.00 (m, 2H), 4.49 (s, 2H), 3.41-3.19 (m, 2H), 2.43$2.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 134.6,133.8,128.9,128.5,117.8,52.6,47.9,31.9$; IR (neat, cm^{-1}): 2122, 1377, 1204, 1165, 923, 763, 735, 698.

Sodium periodate ($2.6 \mathrm{~g}, 12 \mathrm{mmol}$) and ruthenium(III) chloride hydrate ($60 \mathrm{mg}, 0.25 \mathrm{mmol}$) were added to a solution of N-benzyl-2-(vinyl)ethan-1-sulfamoyl azide ($1.6 \mathrm{~g}, 6 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL}), \mathrm{CCl}_{4}$ (4 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. The reaction mixture was stirred for 48 h at room temperature until the consumption of starting material based on TLC. After addition of 50 ml of EtOAc, the reaction mixture was washed by water (80 mL) and the aqueous layer was extracted by EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic layer was dried over anhydrous sodium sulfate. The solvent was removed by vacuum and the residue was purified by silica gel column chromatography (gradient elution: Hexanes/EtOAc $3: 1$ to 1:1) to give the desired carboxylic acid azide intermediate as yellow oil ($1.28 \mathrm{~g}, 75 \%$ yield), $\mathrm{TLC}_{f}=0.3$ (Hexanes/EtOAc 1:1). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.73-2.56 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,134.3,129.1,128.7,128.5,53.6$, $44.0,32.7$; IR (neat, cm^{-1}): 2129, 1712, 1378, 1266, 1195, 1166, 733, 700.

EDC ($180 \mathrm{mg}, 1.1 \mathrm{mmol}$), DMAP ($12 \mathrm{mg}, 0.1 \mathrm{mmol}$) and ${ }^{i} \operatorname{PrOH}(0.8 \mathrm{~mL}, 10 \mathrm{mmol})$ were added to a solution of the above carboxylic acid azide ($284 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{DCM}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 16 h . The solvent was removed and the residue was purified by silica gel column chromatography (gradient elution: Hexanes/EtOAc $8: 1$ to $4: 1$) to give the desired product 1 to in 85% yield (277 mg), colorless oil, $\mathrm{TLC} \mathrm{R}_{f}=0.5$ (Hexanes/EtOAc 3:1). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \operatorname{ppm} 7.50-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.99(\mathrm{td}, J=6.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 170.3,134.5$, $129.0,128.6,128.5,68.5,53.3,44.4,33.2,21.8$; IR (neat, cm^{-1}): $2125,1726,1455,1375,1196,1164,753$, 591.
N-Benzyl-2-(furan-2-yl)ethan-1-sulfamoyl azide (1p) was obtained in 90% yield (275 mg) through General Procedure E from N-benzyl-2-(furan-2-yl)ethan-1-amine starting from 1

1p mmol scale. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 16:1), colorless oil TLC $\mathrm{R}_{f}=0.6$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
ppm 7.41-7.30 (m, 6H), $6.28(\mathrm{dd}, J=2.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=0.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 151.4,141.6,134.5,128.9$, $128.5,128.4,110.5,107.0,52.8,47.0,26.8$; IR (neat, cm^{-1}): 2126, 1379, 1194, 1165, 906, 727.

N-Benzyl-2-(thiophen-2-yl)ethan-1-sulfamoyl azide (1q) was obtained in 88% yield (283 mg) through
 General Procedure E from N-benzyl-2-(thiophen-2-yl)ethan-1-amine (Synthesized according to the known procedure ${ }^{8}$), starting from 1 mmol scale. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 16:1), colorless oil, $\mathrm{TLC}_{f}=0.55$ (Hexanes/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ - $7.32(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ - $6.91(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6,134.4,129.0,128.6,128.6,127.1,125.7,124.2,53.2,50.0,28.5$; IR (neat, cm^{-1}): 2126, 1380, 1204, 1167, 905, 727, 698.
N-Benzyl-2-(cyclopropyl)ethan-1-sulfamoyl azide (1r) was obtained in 75% yield (300 mg) through

General Procedure E from N-benzyl-2-cyclopropylethan-1-amine, starting from 1.4 mmol scale. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc
$1 r$ δ ppm 7.42-7.31 (m, 5 H), 4.46(s, 2 H), 3.32-3.28(m, 2 H), 1.45 (dd, $J=7.3,15.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.56$ (ddd, $J=5.1,7.8,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{dt}, J=5.1,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.03-0.04(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{H} \mathrm{NMR}(150 \mathrm{MHz}$, CDCl_{3}) $\delta \mathrm{ppm} 134.8,129.0,128.7,128.6,52.8,48.8,32.8,8.3,4.5$; IR (neat, cm^{-1}): 2127, 1383, 1166.
N-Methyl-1,3-diphenylpropan-2-sulfamoyl azide (1s) was obtained in 85% yield (280 mg) through General Procedure E from N-methyl-1,3-diphenylpropan-2-amine starting from 1 mmol scale. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 16:1), colorless oil TLC $\mathrm{R}_{f}=0.6$ (Hexanes/EtOAc 8:1); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.39$ $7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 4.54-4.40(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.84(\mathrm{~m}, 4 \mathrm{H}), 2.94$ (s, 3 H) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 137.2, 129.0, 128.7, 127.0, 62.9, 38.1, 30.0; IR (neat, cm^{-1}): 2126, 1496, 1454, 1370, 1264, 1201, 1162, 960, 933, 733, 700, 612.

Deoxyuridine-based sulfamoyl azide (1t) was synthesized according to the following procedure. tertButyl (azidosulfonyl)(but-3-yn-1-yl) carbamate ($800 \mathrm{mg}, 3.06 \mathrm{mmol}$), triethylamine ($0.42 \mathrm{~mL}, 3.06$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(105 \mathrm{mg}, 0.09 \mathrm{mmol})$ and $\mathrm{CuI}(35 \mathrm{mg}, 0.185 \mathrm{mmol})$ were added to a solution of $3-\mathrm{N}-$ benzoyl 3'5-di- O-benzoyl-5-iodo-2'-deoxyuridine ($1.0 \mathrm{~g}, 1.53 \mathrm{mmol}$) in anhydrous DMF (10 mL). The reaction was stirred at room temperature for 24 h . The solution was concentrated in vacuo and the residue was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 7:1) to obtain the product, R_{f} $=0.42\left(\right.$ Hexanes $/$ EtOAc 1:1) ($812 \mathrm{mg}, 68 \%$ yield) as yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $8.11-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.48 (td, $J=7.8,19.6 \mathrm{~Hz}, 7 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{dd}, J=5.4,8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.64(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.71$ (m, 2 H), 4.61 (br. s., 1 H), $4.54-4.46$ (m, 2 H), 3.32 (br. s., 1 H), 3.23 (br. s., 1 H), 2.80 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (d, $J=18.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.42-2.30$ (m, 2 H), 1.49 (br. s., 5 H), 1.44 (br. s., 4 H); HRMS (ESI) Calcd. for $\mathrm{C}_{46} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{NaO} 10^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 820.2841$, Found: 820.2855.

The deprotection of the Boc-substituted substrate was conducted according to the following procedure. The Boc-protected amine ($500 \mathrm{mg}, 1 \mathrm{mmol}$) was set to stir in $\mathrm{MeOH}(10 \mathrm{~mL})$ and $\mathrm{DCM}(5 \mathrm{~mL})$ in a round-bottom flask and put under a nitrogen atmosphere. The stirring solution was then cooled to $0^{\circ} \mathrm{C}$ in an ice bath and then TMSCl ($1.26 \mathrm{~mL}, 10 \mathrm{mmol}$) was added slowly over the course of 30 minutes. The reaction was allowed to slowly warm to room temperature and left to react for 3 h . After the reaction had completed, all volatiles were removed under reduced pressure. The non-volatile products dissolved in DCM (20 mL), $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{ml})$ and brine $(20 \mathrm{~mL})$, then extracted with DCM ($2 \times 20 \mathrm{~mL}$). The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to give crude amine (350 mg , Yield: about 80%) which was used directly in the next step (Note, this compound is unstable and needs to be converted immediately).

Deoxyuridine-based sulfamoyl azide (1t) was synthesized from above obtained crude amine through

General Procedure E, purified by silica gel column chromatography (gradient elution: $\mathrm{DCM} /$ EtOAc $20: 1$ to $10: 1$) to give the desired product in 65% yield,
white powder, TLC $\mathrm{R}_{f}=0.5$ (Hexanes/EtOAc 1:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.02(\mathrm{dt}, J=1.0$, $7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.92-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.38-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 6.37(\mathrm{dd}, J=5.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65-5.58(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.56(\mathrm{~m}, 1$ H), $4.52(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{ddd}, J=1.6,5.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 2 \mathrm{H})$, 2.37 (ddd, $J=6.6,8.1,14.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 167.6,166.0,165.8,160.3$, $148.2,140.9,135.3,134.4,133.8,133.6,131.1,130.5,129.7,129.5,129.2,129.1,128.9,128.8,128.6$, $128.5,100.7,91.2,86.1,83.3,77.2,74.8,72.8,64.3,53.2,46.8,38.6,19.3$; IR (neat, cm^{-1}): 2130, 1755, 1714, 1673, 1378, 1264, 1168, 1096, 733, 704.
N-Benzyl-2-(ferrocenyl)ethan-1-sulfamoyl azide (1u) was synthesized from N-benzyl-2$\begin{array}{ll} & \text { (ferrocenyl)ethan-1-amine (} 270 \mathrm{mg}, 0.85 \mathrm{mmol} \text {) through General Procedure E, } \\ \text { E }\end{array}$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.43-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.11-4.06$ (m, 7 H), $4.01(\mathrm{~s}, 2 \mathrm{H}), 3.43-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $134.5,128.9,128.6,128.5,84.2,68.7,68.2,67.8,52.9,49.2,27.9$; IR (neat, cm^{-1}): 2126, 1383, 1208, 1167, 740, 612.

General Procedure F (Co(II)-Catalyzed Intramolecular Radical 1,5-C-H Amination)

An oven dried Schlenk tube was charged with catalyst (0.002 mmol) or (0.005 mmol) and $4 \AA$ molecular sieves $(50 \mathrm{mg})$. This reaction vessel was evacuated and backfilled with nitrogen several times. The Teflon screw cap was replaced with a rubber septum and the azide substrate $(0.1 \mathrm{mmol})$ was added followed by the addition of 1.0 mL of methyl tert-butyl ether (HPLC plus, residue analysis 99.9% from Aldrich). The Schlenk tube was then purged with nitrogen for 2 minutes and the rubber septum was replaced with a Teflon screw cap. The Schlenk tube was then placed in an oil bath at the indicated temperature while stirring. After the indicated time, the reaction mixture was purified by silica gel column chromatography (Conditions were given below.). The fractions containing product were collected and concentrated by rotary evaporation to obtain the target compound. All the racemic products (for HPLC) were obtained
following the same procedure with achiral catalyst $[\mathbf{C o}(\mathbf{P 9})]\left[\mathbf{C o}\left(\mathbf{3}, 5-\mathbf{D i}^{\boldsymbol{t}} \mathbf{B u} \mathbf{- I b u P h y r i n}\right)\right]^{7}$ and please find the references therein ${ }^{7}$ for the synthesis for this catalyst.

[Co(P9)] (P9: 3,5-DitBu-IbuPhyrin)
Figure S5. Representative Survey of Open Catalysts for Asymmetric Radical 1,5-C-H Amination of Sulfamoyl Azide 2a

Our previous work has demonstrated the synthesis of the catalysts $[\mathrm{Co}(\mathrm{P} 12)]{ }^{1}{ }^{1}[\mathrm{Co}(\mathrm{P} 13)]^{1}$ and $[\mathrm{Co}(\mathrm{P} 14)] .{ }^{9}[\mathrm{Co}(\mathrm{P} 15)]$ was synthesized through a similar procedure.

Table S1. Systematic Control of Degree and Sense of Asymmetric Induction for Intramolecular Radical 1,5-C-H Amination of Sulfamoyl Azide 1a by [Co(HuPhyrin) $]^{a, b, c, d}$

Entry	$\begin{gathered} \hline\left[\operatorname{Co}\left(\text { Por* }^{*}\right)\right] \\ (2 \mathrm{~mol} \%) \\ \hline \end{gathered}$	meso-Substituent	Methylene Chain Length	Yield (\%) ${ }^{\text {b }}$	$(R) /(S)^{c}$	er $(R: S)^{d}$
1	$[\mathrm{Co}(\mathbf{P} 1)]$	3,5-Di ${ }^{t} \mathrm{Bu}$ Phenyl	4	85	R	52:48
2	$[\mathrm{Co}(\mathbf{P 2} 2)]$	2,6-DiMeO Phenyl	4	10	S	32:68
3	[Co(P3)]	3,5-Di ${ }^{t} \mathrm{Bu}$ Phenyl	6	89	S	30:70
4	$[\mathrm{Co}(\mathbf{P} 4)]$	2,6-DiMeO Phenyl	6	68	S	6:94
5	[Co(P5)]	3,5-Di ${ }^{\text {t }} \mathrm{Bu}$ Phenyl	8	92	R	97:3
6	$[\mathrm{Co}(\mathbf{P 6})]$	2,6-DiMeO Phenyl	8	76	R	62:38
7	[Co(P7)]	3,5-Di ${ }^{\text {t }}$ B Phenyl	10	90	R	87:13
8	[Co(P8)]	2,6-DiMeO Phenyl	10	95	S	36:64
9	[Co(P10)]	3,5-Di ${ }^{t} \mathrm{Bu}$ Phenyl	non-Bridged	95	R	54:46
10	[Co(P11)]	2,6-DiMeO Phenyl	non-Bridged	89	S	23:77

${ }^{a}$ All reactions were performed on a 0.1 mmol scale of sulfamoyl azides $\mathbf{1 a}$ using $2 \mathrm{~mol} \%$ of $\left[\mathrm{Co}\left(\mathbf{P o r}{ }^{*}\right)\right]$ in 1 mL of MTBE at $40{ }^{\circ} \mathrm{C} .{ }^{b}$ Isolated yields. ${ }^{c}$ Absolute stereochemistry assigned by X-ray crystal structure. ${ }^{d}$ Enantiomeric ratios (er) were determined by chiral HPLC analysis using ADH column. MTBE: Methyl t-butyl ether.

Characterization of Sulfamides ($\mathbf{2 a} \mathbf{a}-\mathbf{2 m}$)

2-Benzyl-4-phenyl-1,2,5-thiadiazolidine 1,1-dioxide (2a) was obtained through General Procedure F.
 Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.35$ (Hexanes/EtOAc 4:1); For [Co(3,5-Di'Bu-Hu(C) $\mathbf{C l}_{\mathbf{8}}$ Phyrin)] ([Co(P5)]), 2 $\mathrm{mmol} \%$ of catalyst was used (92% yield) and the reaction was run at $40{ }^{\circ} \mathrm{C}$ for 48 h ; for [$\left.\mathbf{C o}\left(2,6-\mathrm{DiMeO}-\mathrm{Hu}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P} 4)]), 2 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40^{\circ} \mathrm{C}$ for $48 \mathrm{~h}\left(68 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.44-7.26(\mathrm{~m}, 10 \mathrm{H})$, 4.85-4.74 (m, 1 H), $4.71(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35,3.98(\mathrm{AB} \mathrm{q}, J=13.3 \mathrm{~Hz}$, each 1 H$), 3.54(\mathrm{dd}, J=7.2$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.11(\mathrm{dd}, J=8.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 138.4,134.8,129.0$, 128.8, 128.7, 128.2, 126.4, 55.8, 55.1, 50.5; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 289.1005, Found: 289.0991; IR (neat, cm^{-1}): 1331, 1285, 1153, 1096, 1019, 753, 696, 684; Enantiomeric excess was determined by HPLC with an ADH column ($90: 10 n$-hexane: isopropanol, $0.8 \mathrm{~mL} / \mathrm{min}$); R enantiomer: $\mathrm{t}_{\mathrm{r}}=34.4 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=24.7 \mathrm{~min} ;$ Absolute configurations of both enantiomer products were confirmed by X-ray.

Both reactions were successfully scaled up to 2 mmol without any notable change for enantioselectivities. For [Co(3,5-DitBu-Hu(C)Phyrin)] ([Co(P5)]), $2 \mathrm{mmol} \%$ of catalyst was used (98 \% yield, $97: 3$ er) and the reaction was run at $40{ }^{\circ} \mathrm{C}$ for 48 h ; for $\left[\mathbf{C o}\left(\mathbf{2 , 6 - D i M e O}-\mathbf{H u}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})])$, $2 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40^{\circ} \mathrm{C}$ for $48 \mathrm{~h}(75 \%$ yield, $6: 94 \mathrm{er})$.

98\% (95\%) yield; er (R:S): 97 $[\alpha]_{\mathrm{D}}{ }^{25}=+89.1^{\circ}\left(\mathrm{c} 2.1, \mathrm{CHCl}_{3}\right)$

(R)-2a

75% (68\%) yield; er ($R: S$): 6:94
$[\alpha]_{\mathrm{D}}{ }^{25}=-87.6 .^{\circ}\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right)$

(S)-2a

2-Benzyl-4-(4-methoxyphenyl)-1,2,5-thiadiazolidine 1,1-dioxide (2b) was obtained through General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.32$ (Hexanes/EtOAc 4:1); For $\left[\mathbf{C o (3 , 5 - D i} \mathbf{i}^{\boldsymbol{t}} \mathbf{B u H u}-\right.$ (C8)Phyrin)] ([Co(P5)]), $2 \mathrm{mmol} \%$ of catalyst was used (97 \% yield) for 48 h ; for [Co(2,6-DiMeO-Hu(C6)Phyrin)] ([Co(P4)]), $2 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(88 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.32$ (m, 5 H), $7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{dd}, J=7.1,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36,4.02(\mathrm{AB} \mathrm{q}, J=13.6 \mathrm{~Hz}$, each 1 H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=7.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ - 3.09 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 160.1,135.1,130.4,128.9,128.8,128.3,127.9$, 114.5, 55.7, 55.5, 55.4, 50.6; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 319.1111$, Found: 319.1099; IR (neat, cm^{-1}): 1613, 1515, 1307, 1264, 1163, 896, 833, 731, 701; Enantiomeric excess was determined by HPLC with an ADH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: t_{r} $=42.0 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=25.0 \mathrm{~min}$; Absolute configurations of both enantiomer products were confirmed by X-ray.

(R)-2b

88\% yield; er ($R: S$): 4:96
$[\alpha]_{D}{ }^{25}=-84.5^{\circ}\left(\mathrm{c} \mathrm{0.6}, \mathrm{CHCl}_{3}\right)$

2-Benzyl-4-(4-chlorophenyl)-1,2,5-thiadiazolidine 1,1-dioxide (2c) was obtained through General

Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, $\mathrm{TLC}_{f}=0.3$ (Hexanes/EtOAc 4:1); For [Co(3,5-Di'BuHu-(C) $\mathbf{C}_{\mathbf{8}}$)Phyrin)] ($[\mathrm{Co}(\mathbf{P} 5)]), 2 \mathrm{mmol} \%$ of catalyst was used (98% yield) for 48 h ; for [Co(2,6-DiMeO$\left.\left.\mathbf{H u}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run for $72 \mathrm{~h}\left(55 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.38-7.30(\mathrm{~m}, 9 \mathrm{H}), 4.77$ (dd, $J=7.2$,
$14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72($ br. s, 1 H$), 4.383 .98(\mathrm{AB} \mathrm{q}, J=13.6 \mathrm{~Hz}$, each 1 H$), 3.56(\mathrm{dd}, J=7.3,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06(\mathrm{dd}, J=8.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 137.0,134.6,129.2,128.8,128.7$, 128.3, 127.8, 55.2, 54.8, 50.5; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 323.0616$, Found: 323.0595; IR (neat, cm^{-1}): 1493, 1455, 1339, 1264, 1153, 1059, 827, 733, 698; Enantiomeric excess was determined by HPLC with an ADH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: t_{r} $=31.2 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=19.5 \mathrm{~min}$; Absolute configurations of both enantiomer products were confirmed by X-ray.

2-Benzyl-4-(4-(trifluoromethyl)phenyl)-1,2,5-thiadiazolidine 1,1-dioxide (2d) was obtained through

General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.4$ (Hexanes/EtOAc 4:1); For [Co(3,5-
$\left.\left.\mathbf{D i}^{\boldsymbol{t}} \mathbf{B u - H u}\left(\mathbf{C}_{\mathbf{8}}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 5})]), 2 \mathrm{mmol} \%$ of catalyst was used (98\% yield) for 48 h ; ${ }_{2 d} \mathrm{CF}_{3}$ for $\left[\mathbf{C o}\left(2,6-\mathrm{DiMeO}-\mathrm{Hu}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run for $72 \mathrm{~h}(89 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.97-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.40,3.96(\mathrm{AB} \mathrm{q}, J=13.5 \mathrm{~Hz}$, each 1 H$)$, $3.63(\mathrm{dd}, J=5.6,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=5.8,11.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $142.7,134.7,131.1(\mathrm{q}, ~ J=33.0 \mathrm{~Hz}), 129.0,128.9,128.5,126.9,126.5(\mathrm{q}, J=4.5 \mathrm{~Hz}), 123.9(\mathrm{q}, J=$ 271.5 Hz), 55.4, 54.8, 50.7; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CFCl}_{3}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-63.27$ (s, 3F); HRMS (ESI) m/z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 379.0699$, Found: 379.0721; IR (neat, cm^{-1}): 1620, 1496, 1456, $1423,1400,1324,1286,1153,1110,1016,840,684,700,657$; Enantiomeric excess was determined by HPLC with an ADH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=28.1 \mathrm{~min} ; S$ enantiomer: $\mathrm{t}_{\mathrm{r}}=14.5 \mathrm{~min}$; Absolute configurations of the products were determined by analogy.

98\% yield; er (R:S): 98:2
$[\alpha]_{\mathrm{D}}{ }^{25}=+86.5^{\circ}\left(\mathrm{c} 1.7, \mathrm{CHCl}_{3}\right)$

89\% yield; er ($R: S$): 5:95
$[\alpha]_{\mathrm{D}}{ }^{25}=-74.2^{\circ}\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right)$

2-Benzyl-4-(naphthalen-2-yl)-1,2,5-thiadiazolidine 1,1-dioxide (2e) was obtained through General
 Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.5$ (Hexanes/EtOAc 4:1); For [Co(3,5-Di'BuHu$\left(\mathbf{C}_{8}\right)$ Phyrin)] ([Co(P5)]), $2 \mathrm{mmol} \%$ of catalyst was used (97% yield) for 48 h ; for [Co(2,6-DiMeO-Hu($\left.\mathbf{C}_{6}\right)$ Phyrin)] $([\mathrm{Co}(\mathbf{P} 4)]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(53 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.90-7.79(\mathrm{~m}, 5 \mathrm{H})$, 7.57-7.47 (m, 2 H), 7.43-7.30(m, 5H), 5.00-4.94(m, 1H), 4.93-4.88(m, 1 H), 4.42, 4.03 (AB q, $J=$ 13.7 Hz , each 1 H), $3.64(\mathrm{dd}, J=7.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=8.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 135.6,134.8,133.3,133.0,129.1,128.8,128.7,128.2,128.0,127.7,126.7,126.6,125.7$, 123.6, 56.1, 54.9, 50.6; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 361.0981$, Found: 361.0964; IR (neat, cm^{-1}): 1724, 1494, 1455, 1378, 1283, 1158, 1122, 1049, 1030, 904, 891, 821, 730, 594; Enantiomeric excess was determined by HPLC with an ADH column ($90: 10 n$-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=34.0 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=24.0 \mathrm{~min}$; Absolute configurations of the products were determined by analogy.

entry 9: $(R)-\mathbf{2 e}$
97\% yield; er ($R: S$): 99:1
$[\alpha]_{\mathrm{D}}{ }^{25}=+147.9^{\circ}\left(\mathrm{c} 2.1, \mathrm{CHCl}_{3}\right)$

entry 10: (S)-2e
53\% yield; er (R:S): 6:94
$[\alpha]_{\mathrm{D}}{ }^{25}=-151.1^{\circ}\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$
tert-Butyl 3-(5-benzyl-1,1-dioxido-1,2,5-thiadiazolidin-3-yl)-1H-indole-1-carboxylate (2f) was
 obtained through General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, $\mathrm{TLC} \mathrm{R}_{f}=0.2$ (Hexanes/EtOAc 4:1); For [$\left.\mathbf{C o}\left(\mathbf{3}, 5-\mathbf{D i}^{t} \mathbf{B u}-\mathbf{H u}\left(\mathbf{C}_{\mathbf{8}}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 5})]), 2 \mathrm{mmol} \%$ of catalyst was used (98% yield) for 48 h ; for $\left[\mathbf{C o}\left(\mathbf{2 , 6 - D i M e O}-\mathrm{Hu}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(92 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.18-$ $8.08(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{q}, ~ J$
$=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36,4.11(\mathrm{AB} \mathrm{q}, J=13.7 \mathrm{~Hz}$, each 1 H$), 3.55(\mathrm{dd}, J=7.0,9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=8.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 149.2, 135.8, $134.9,128.8,128.7,128.2,127.4,125.2,124.0,123.1,119.2,117.2,115.6,84.4,53.2,50.5,49.5,28.1$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 428.1639$, Found: 428.1623; IR (neat, cm^{-1}): 1732, 1608, 1571, 1476, 1452, 1368, 1256, 1150, 1093, 732, 697. Enantiomeric excess was determined by HPLC with an ODH column (85:15 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=25.6 \mathrm{~min} ; S$ enantiomer: $\mathrm{t}_{\mathrm{r}}=16.5 \mathrm{~min}$; Absolute configurations of the products were determined by analogy.

entry 11: $(R)-\mathbf{2 f}$
98\% yield; er (R:S): 97:3
$[\alpha]_{D}{ }^{25}=+73.3^{\circ}\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$

entry 12: (S)-2f
92\% yield; er ($R: S$): 8:92
$[\alpha]_{D}{ }^{25}=-67.1^{\circ}\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$

2-Benzyl-4-(2,3-dihydrobenzofuran-5-yl)-1,2,5-thiadiazolidine 1,1-dioxide (2g) was obtained through

General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.5$ (Hexanes/EtOAc 4:1); For [Co(3,5$\left.\left.\mathbf{D i}^{\boldsymbol{t}} \mathbf{B u - H u}\left(\mathbf{C}_{8}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 5})]), 2 \mathrm{mmol} \%$ of catalyst was used (96\% yield) for 48h; for $\left[\mathbf{C o}\left(\mathbf{2 , 6}-\mathrm{DiMeO}-\mathbf{H u}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P} 4)]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run for $72 \mathrm{~h}\left(71 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.43-7.30(\mathrm{~m}$, $5 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.38,4.02(\mathrm{AB} \mathrm{q}, J=13.7 \mathrm{~Hz}$, each 1 H$), 3.50(\mathrm{dd}, J=7.1,9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=8.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $160.6,134.9,130.2,128.8,128.7,128.2,126.7,123.2,109.4,71.5,55.9,55.3,50.5,29.5$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 331.1111, Found: 331.1135; IR (neat, cm^{-1}): 1615, 1493, 1455, 1264, 1162, 731, 697, 597; Enantiomeric excess was determined by HPLC with an ADH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}} 43.8 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=31.6 \mathrm{~min}$; Absolute configurations of the products were determined by analogy.

entry 13: $(R)-\mathbf{2 g}$
96% yield; er (R:S):97:3
$[\alpha]_{D}{ }^{25}=+99.0^{\circ}\left(\right.$ c 1.2, $\left.\mathrm{CHCl}_{3}\right)$

71\% yield; er ($R: S$):5:95
$[\alpha]_{\mathrm{D}}{ }^{25}=-92.2^{\circ}\left(\mathrm{c} 1.5, \mathrm{CHCl}_{3}\right)$;

2-Benzyl-4-(benzo[b]thiophen-4-yl)-1,2,5-thiadiazolidine 1,1-dioxide (2h) was obtained through

$2 h$

General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.5$ (Hexanes/EtOAc 3:1); For [Co(3,5-
 for $\left[\mathbf{C o}\left(\mathbf{2}, \mathbf{6}-\mathrm{DiMeO}-\mathbf{H u}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(52 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- D_{6}) $\delta \mathrm{ppm} 7.95(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}$, $J=7.7,15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35,3.98(\mathrm{AB} \mathrm{q}, J=13.8 \mathrm{~Hz}$, each 1 H$), 3.91-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 141.1,136.8,134.9,132.5,129.0,128.9,128.4,128.0,124.6$, 123.3, 122.5, 120.7, 54.9, 54.2, 50.7; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 345.0726$, Found: 345.0726 ; IR (neat, cm^{-1}): 1214, 1164, 750, 668; Enantiomeric excess was determined by HPLC with an ADH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}} 32.6 \mathrm{~min} ; S$ enantiomer: $\mathrm{t}_{\mathrm{r}}=28.7 \mathrm{~min}$; Absolute configurations of the products were determined by analogy.

entry $15:(R)-2 \mathrm{~h}(+)$
97% yield; $93: 7 \mathrm{er}$
$[\alpha]_{\mathrm{D}}{ }^{25}=+46.0^{\circ}\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right)$

entry 16: (S)-2h (-)
52\% yield; 11:89 er
$[\alpha]_{\mathrm{D}}{ }^{25}=-38.2^{\circ}\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$;
(\boldsymbol{E})-2-Benzyl-4-(but-1-en-1-yl)-1,2,5-thiadiazolidine 1,1-dioxide (2i) was obtained through General Bn Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.4$ (Hexanes/EtOAc 4:1); For [Co(3,5-DitBu-Hu(C $\left.\mathbf{8}\right) \mathbf{P h y r i n}$)] ([Co(P5)]), $2 \mathrm{mmol} \%$ of catalyst was used (93% yield) for 48 h ; for $[\mathbf{C o (2 , 6 - D i M e O - ~}$ $\left.\left.\mathbf{H u}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at 40 ${ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(57 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.45-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.79(\mathrm{td}, J=6.2,15.5$
$\mathrm{Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=7.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28,4.05(\mathrm{AB} \mathrm{q}, J=13.7 \mathrm{~Hz}$, each 1 H), 4.19 (quin, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (dd, $J=6.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.99(\mathrm{dd}, J=8.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ $1.98(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 138.1,135.1,128.8,128.6$, 128.1, 125.4, 54.8, 53.4, 50.4, 25.1, 13.0; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 267.1162$, Found: 267.1170; IR (neat, cm^{-1}): 1671, 1496, 1455, 1299, 1265, 1163, 1055, 1027, 773, 731, 697; Enantiomeric excess was determined by HPLC with an ADH column (90:10 n-hexane: isopropanol, 0.8 $\mathrm{mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=19.9 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=15.9 \mathrm{~min}$; Absolute configurations of the products were determined by analogy.

(\boldsymbol{E})-2-Benzyl-4-(hepta-1,6-dien-1-yl)-1,2,5-thiadiazolidine 1,1-dioxide (2j) was obtained through

General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes /EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.4$ (Hexanes/EtOAc 4:1); For [Co(3,5-Di'Bu-Hu $\left.\left.\left(\mathbf{C}_{8}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 5})]), 2 \mathrm{mmol} \%$ of catalyst was used (98% yield) for 48 h ; for $[\mathbf{C o (2 , 6 -}$ DiMeO-Hu($\left.\mathbf{C}_{6}\right)$ Phyrin)] ([Co(P4)]), $5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(58 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.38(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$), 7.34 ($\mathrm{td}, J=3.8,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.83-5.70(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{dd}, J=7.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1$ H), $4.29,4.06(\mathrm{AB} \mathrm{q}, J=14.2 \mathrm{~Hz}$, each 1 H$), 4.24-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=6.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (dd, $J=7.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13-1.95 (m, 4 H), 1.45 (quin, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 138.2,136.2,135.1,128.8,128.6,128.2,126.7,114.9,54.7,53.4,50.4,33.1,31.4,27.9$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 307.1475$, Found: 307.1464; IR (neat, cm^{-1}): 1639, 1496, 1455, 1395, 1303, 1266, 1162, 731, 969, 613; Enantiomeric excess was determined by HPLC with an ADH column (95:5n-hexane: isopropanol, $0.8 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=40.2 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=$ 30.6 min ; Absolute configurations of the products were determined by analogy.

entry 20: (S)-2i
58% yield, er ($R: S$): 20:80
$[\alpha]_{D}{ }^{25}=-24.1^{\circ}$ (c $0.7, \mathrm{CHCl}_{3}$)

2-Benzyl-4-(cyclohex-1-en-1-yl)-1,2,5-thiadiazolidine 1,1-dioxide (2k) was obtained through General (s) Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.4$ (Hexanes/EtOAc 4:1); For [Co(3,5-Di'Bu-Hu (C8)Phyrin)] ($[\mathrm{Co}(\mathbf{P 5})]), 2 \mathrm{mmol} \%$ of catalyst was used (97% yield) for 48 h ; for $[\mathbf{C o}(2,6-\mathbf{D i M e O}-$ $\left.\left.\mathbf{H u}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at 40 ${ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(68 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.40-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H})$, $5.79-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.33,3.99(\mathrm{AB} \mathrm{q}, J=13.7 \mathrm{~Hz}$, each 1 H$), 4.33-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1$ H), $3.30(\mathrm{dd}, J=7.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.49(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta \mathrm{ppm} 135.1,133.9,128.8,128.6,128.1,126.3,57.8,51.8,50.5,24.9,23.7$, 22.3, 22.1; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 293.1318, Found: 293.1320; IR (neat, cm $\left.{ }^{1}\right): 1323,1276,1152,909,755,698,684$; Enantiomeric excess was determined by HPLC with an ADH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=17.7 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=15.8$ min; Absolute configurations of the products were determined by X-ray and analogy.

entry 21: (R)-2k
97\% yield; er ($R: S$): 98:2 $[\alpha]_{D}{ }^{25}=+70.8^{\circ}\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$

(R)-2k

68\% yield; er ($R: S$): 15:85
$[\alpha]_{D}{ }^{25}=-49.6^{\circ}\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$

2-Benzyl-4-((tert-butyldimethylsilyl)ethynyl)-1,2,5-thiadiazolidine 1,1-dioxide (21) was obtained
 through General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.5$ (Hexanes/EtOAc 4:1); For [Co(3,5$\left.\left.\mathbf{D i}^{\mathbf{t}} \mathbf{B u}-\mathbf{H u}\left(\mathbf{C}_{\mathbf{8}}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 5})]), 2 \mathrm{mmol} \%$ of catalyst was used for $48 \mathrm{~h}(88 \%$ yield); for $\left[\mathbf{C o}\left(\mathbf{2 , 6}-\mathrm{DiMeO}-\mathrm{Hu}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(55 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.39-7.27(\mathrm{~m}, 5 \mathrm{H})$, 4.50-4.44 (m, 1 H), 4.43-4.38 (m, 1 H), 4.26-4.14 (m, 2 H), 3.43 (dd, $J=6.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34-3.22$ $(\mathrm{m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 134.8,128.8,128.5,128.2$,
$100.7,90.5,53.8,50.5,44.4,25.9,16.3,-4.9$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 351.1557, Found: 351.1541; IR (neat, cm^{-1}): 1496, 1455, 1471, 1330, 1265, 1168, 839, 824, 810, 777, 733, 698, 622; Enantiomeric excess was determined by HPLC with an ADH column (98:2 n-hexane: isopropanol, $0.8 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=46.1 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=40.2 \mathrm{~min}$; Absolute configurations of the products were determined by analogy.

entry 23: (R)-2I
88\% yield; er ($R: S$): 91:9
$[\alpha]_{\mathrm{D}}{ }^{25}=+78.5^{\circ}\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right)$

55\% yield; er ($R: S$): 8:92 $[\alpha]_{D}{ }^{25}=-68.8^{\circ}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$

3-Benzyl-3,3a,8,8a-tetrahydro-1H-indeno[1,2-c][1,2,5]thiadiazole 2,2-dioxide (2m) was obtained
 through General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.4$ (Hexanes/EtOAc 4:1); For [Co(3,5-
 for $\left[\mathbf{C o}\left(\mathbf{2 , 6}-\mathbf{D i M e O}-\mathbf{H u}\left(\mathbf{C}_{6}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})]), 5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run for $72 \mathrm{~h}(79 \%$ yield $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.48-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.33-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.75(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 141.5, 138.0, 135.1, 130.0, 129.2, 128.8, 128.3, 127.9, 125.5, 125.2, 63.3, 61.0, 50.2, 38.1; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 301.1005$, Found: 301.1001; IR (neat, cm^{-1}): 1727, 1496, 1480, 1403, 1321, 1303, 1154, 1029, 786, 738, 701, 620; Enantiomeric excess was determined by HPLC with an ODH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); $(1 R, 2 S)$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=27.0 \mathrm{~min}$; $(1 S, 2 R)$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=36.2 \mathrm{~min}$; Absolute configurations of the products were determined by X-ray and analogy.

1-Isopropyl-3,3a,8,8a-tetrahydro-1H-indeno[1,2-c][1,2,5]thiadiazole 2,2-dioxide ($2 \mathrm{~m}^{\prime}$) was obtained

through General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.4$ (Hexanes/EtOAc 4:1); For [Co(3,5$\left.\left.\mathbf{D i}^{t} \mathbf{B u}-\mathbf{H u}\left(\mathbf{C}_{8}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 5})]), 2 \mathrm{mmol} \%$ of catalyst was used (61% yield) for 48 h . ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.44-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.33 (dt, $J=5.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{td}, J=6.6,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=8.1$, $16.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22 (dd, $J=5.1,16.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.39 (dd, $J=2.2,6.6 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 142.1,137.6,130.1,127.8,125.6,125.5,60.9,60.2,48.4,40.9,22.2,20.6$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 253.1005$, Found: 253.1011; IR (neat, cm^{-1}): 1627, 1483, 1461, 1391, 1325, 1285, 1175, 1144, 1046, 874, 1017, 751; Enantiomeric excess was determined by HPLC with an ODH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=29.0 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=18.2 \mathrm{~min}$; Absolute configurations of the products were determined by analogy.

Table S2. Ligand Effect on Co(II)-Catalyzed Selective Formation of 5-Membered Ring Structures (Open vs Bridged Catalysts)

		$\xrightarrow[-\mathrm{N}_{2}]{\left[\mathrm{Co}\left(\text { Por }^{*}\right)\right]}$			 $3 n$
entry	cat	$\begin{gathered} 2 \mathrm{n}: 3 \mathrm{n} \\ (1,5 / 1,6) \\ \hline \end{gathered}$	$\begin{gathered} \text { er of } 2 \mathrm{n} \\ (R: S)^{b} \\ \hline \end{gathered}$	er of $3 n$	yield (\%)
1	[Co(P4)]	>98:2	8:92	ND	65
2	[Co(P5)]	>96:4	87:13	ND	94
3	[Co(P10)]	74:26	44:56	59:41	94
4	[Co(P11)]	81:19	22:78	23:77	90
5	[Co(P9)]	70:30	-	-	98

${ }^{a}$ Reactions were performed at room temperature with $5 \mathrm{~mol} \%[\operatorname{Co}(\operatorname{Por} *)] .{ }^{b}$ Absolute configuration determined by analogy.

Characterization of Sulfamides ($2 \mathrm{n}-\mathbf{2 u}$)

4-Phenyl-2-(3-phenylpropyl)-1,2,5-thiadiazolidine 1,1-dioxide (2n) was obtained through General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes /EtOAc
 4:1), white solid, TLC $\mathrm{R}_{f}=0.3$ (Hexanes/EtOAc 4:1); For [Co(3,5-Di'Bu-Hu $\left(\mathbf{C}_{8}\right)$ Phyrin) $]([\mathrm{Co}(\mathbf{P 5})]), 5 \mathrm{mmol} \%$ of catalyst was used for $48 \mathrm{~h}(94 \%$ yield); for [Co(2,6-DiMeO-Hu(C6)Phyrin)] ([Co(P4)]), $5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run for $72 \mathrm{~h}\left(65 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.48-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.28$ (m, 2 H), 7.24-7.17 (m, 3 H), 4.88-4.77 (m, 1 H), $4.61(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=6.8,9.3 \mathrm{~Hz}, 1$ H), 3.22 (dd, $J=8.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.16(\mathrm{td}, J=7.3,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{td}, J=7.1,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 141.0,138.5,129.1,128.8$, $128.5,128.4,126.4,126.1,56.0,55.8,46.3,32.9,29.3$; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 317.1318$, Found: 317.1330; IR (neat, cm^{-1}): 1602, 1496, 1454, 1286, 1265, 1155, 1028, 733, 698; Enantiomeric excess was determined by HPLC with an ODH column ($90: 10 n$-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=63.0 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=97.1 \mathrm{~min}$; Absolute configurations of product were determined by analogy.

entry 27: $(R)-\mathbf{2 n}$ 94\% yield, $(R)-2 \mathrm{n}:$ er ($R: S$): 87:13

$$
\begin{gathered}
\mathbf{2 n} / \mathbf{3 n}:>96: 4 \\
{[\alpha]_{D}^{25}=+32.5^{\circ}\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)}
\end{gathered}
$$

entry 28: (S)-2n 65\% yield, (S)-2n: er (R:S): 8:92

$$
\begin{gathered}
\mathbf{2 n} / \mathbf{3 n}:>98: 2 \\
{[\alpha]_{D}^{25}=-33.8^{\circ}\left(\mathrm{c} \mathrm{0.9}, \mathrm{CHCl}_{3}\right)}
\end{gathered}
$$

2-Phenethyl-5-phenyl-1,2,6-thiadiazinane 1,1-dioxide (3n) was obtained through General Procedure

\mathbf{F} together with 2n-a using $\left[\mathbf{C o (3 , 5 - D i} \mathbf{B u}^{t} \mathbf{B u}-(\boldsymbol{n B u})\right.$ TaoPhyrin)] ([Co(P10)]) (5 $\mathrm{mol} \%$) for 48 h and $\mathbf{[C o (2 , 6 - D i M e O - (n P r) T a o P h y r i n)})]([\operatorname{Co}(\mathbf{P 1 1})])(5 \mathrm{~mol} \%)$ for 72h (Table S2). Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.5$ (Hexanes/EtOAc 4:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.43-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.77-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{dt}, J=3.1,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.31-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.85(\mathrm{~m}, 2 \mathrm{H})$, 2.05-1.88(m, 1 H), 1.87-1.77 (m, 1 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 139.3,138.5,129.0,128.8$, 128.6, 126.6, 126.3, 59.7, 50.8, 49.6, 35.1, 29.5; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 317.1318, Found: 317.1331; IR (neat, cm^{-1}): 1728, 1603, 1495, 1456, 1425, 1324, 1295, 1145, 1026, 950, 774, 744, 694; Enantiomeric excess was determined by HPLC with an ODH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); enantiomer $A: \mathrm{t}_{\mathrm{r}}=28.5 \mathrm{~min}$; enantiomer: $B \mathrm{t}_{\mathrm{r}}=33.7 \mathrm{~min}$.

Isopropyl (S)-5-benzyl-1,2,5-thiadiazolidine-3-carboxylate 1,1-dioxide ((R)-20) was obtained through

entry 29: (R)-20 53\% yield; er ($R: S$): 93:7

General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.3$ (Hexanes/EtOAc 3:1) with [$\left.\mathbf{C o}\left(3,5-\mathrm{Di}^{\boldsymbol{t}} \mathbf{B u}-\mathrm{Hu}\left(\mathrm{C}_{8}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 5})]) .5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}(53 \%$ yield, er $(R: S)=93: 7)$. For $[\mathbf{C o}(\mathbf{2 , 6}-$ DiMeO-Hu(C6) Phyrin)] ([Co(P4)]), $5 \mathrm{mmol} \%$ of catalyst was used at $40^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(<10 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.41-7.31$ (m, 5 H), 5.20 (br. s., 1 H), 5.12 (td, $J=$ $6.4,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33,3.97(\mathrm{AB} \mathrm{q}, J=13.7 \mathrm{~Hz}$, each 1 H$), 4.13$ (br. s., 1 H), $3.48-3.38(\mathrm{~m}, 2 \mathrm{H}), 1.27$ (dd, $J=1.0,6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{dd}, J=1.0,6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 169.3$, 134.6, 128.8, 128.4, 128.3, 71.3, 52.9, 50.2, 49.7, 21.6, 21.5; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 321.0879$, Found: 321.0856; IR (neat, cm^{-1}): 1736, 1455, 1332, 1264, 1170, 1102, 896, 732, 702; Enantiomeric excess was determined by HPLC with an ODH column (97:3 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=94.7 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=80.8 \mathrm{~min}$; Absolute configurations of product were determined by analogy.
(R)-2-Benzyl-4-(furan-2-yl)-1,2,5-thiadiazolidine 1,1-dioxide ((R)-2p) was obtained through General

entry 30:(R)-2p
94\% yield; er ($R: S$): 98:2 $[\alpha]_{\mathrm{D}}{ }^{25}=+103.5^{\circ}\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)$

Procedure F. Purified by silica gel column chromatography (eluent:
Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.3$ (Hexanes/EtOAc 4:1) with $\left[\mathbf{C o}\left(\mathbf{3}, 5-\mathbf{D i}^{t} \mathbf{B u}-\mathbf{H u}\left(\mathbf{C}_{8}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 5})]) .2 \mathrm{mmol} \%$ of catalyst was used for 48h (94\% yield, er $(R: S)=98: 2)$. For [Co(2,6-DiMeO-Hu(C6) Phyrin)] ([Co(P4)]), $5 \mathrm{mmol} \%$ of catalyst was used at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(<10 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.55-7.30(\mathrm{~m}, 6 \mathrm{H}), 6.45-6.31(\mathrm{~m}, 2 \mathrm{H}), 4.86$ (q, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34,4.14(\mathrm{AB} \mathrm{q}, J=13.7 \mathrm{~Hz}$, each 1 H$), 3.59-3.48(\mathrm{~m}, 1$ H), 3.46-3.33 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0,143.2,134.9,128.8,128.6,128.2,110.7$, 108.5, 52.1, 50.5, 49.7; IR (neat, cm^{-1}): 1332, 1304, 1265, 1166, 731, 699; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 301.0623$, Found: 301.0610; Enantiomeric excess was determined by HPLC with an ADH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=20.7 \mathrm{~min} ; S$ enantiomer: $\mathrm{t}_{\mathrm{r}}=26.5 \mathrm{~min}$; Absolute configurations of product were determined by analogy.
(R)-2-Benzyl-4-(thiophen-2-yl)-1,2,5-thiadiazolidine 1,1-dioxide ((R)-2q) was obtained through O, General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.25$ (Hexanes/EtOAc 4:1) with $\left[\mathbf{C o}\left(3,5-\mathbf{D i}^{\boldsymbol{t}} \mathbf{B u} \mathbf{- H u}\left(\mathbf{C}_{8}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P} 5)]) .2 \mathrm{mmol} \%$ of catalyst was used for 48h (95\% yield, er $(R: S)=97: 3)$. For [Co(2,6-DiMeO-Hu(C6) Phyrin)] ($[\mathrm{Co}(\mathbf{P 4})]$), $5 \mathrm{mmol} \%$ of catalyst was used at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}\left(<10 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32,4.13(\mathrm{AB}$ $\mathrm{q}, J=14.0 \mathrm{~Hz}$, each 1 H$), 3.58(\mathrm{dd}, J=7.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 141.2,134.8,128.8,128.7,128.3,127.1,126.3,126.0,55.1,51.9,50.4$; IR (neat, cm^{-1}): 1455, 1387, 1367, 1300, 1285, 1265, 1155, 1126, 1017, 727; HRMS (ESI) m/z Calcd. For $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 295.0575$, Found: 295.0570; Enantiomeric excess was determined by HPLC with an ODH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=33.3 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=45.6 \mathrm{~min}$; Absolute configurations of product were determined by analogy.
(R)-2-Benzyl-4-cyclopropyl-1,2,5-thiadiazolidine 1,1-dioxide ((R)-2r) was obtained through General

entry 32: (R)-2r 95\% yield; er ($R: S$): 93:7 $[\alpha]_{\mathrm{D}}{ }^{24}=+15.0^{\circ}\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)$ Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), colorless oil, TLC $\mathrm{R}_{f}=0.30$ (Hexanes/EtOAc 3:1) with [Co(3,5-Di'Bu-Hu(C8)Phyrin)] ([Co(P5)]). $5 \mathrm{mmol} \%$ of catalyst was used for 48h (95\% yield, er $(R: S)=93: 7$). For [Co(2,6-DiMeO-Hu(C6) Phyrin)] ([Co(P4)]), $5 \mathrm{mmol} \%$ of catalyst was used at $40^{\circ} \mathrm{C}$ for $72 \mathrm{~h}(98 \%$ yield, er $(R: S)$ $=58: 42) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.57(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23,4.09$ (AB q, $J=13.7 \mathrm{~Hz}$, each 1 H), $3.37-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.07-0.97(\mathrm{~m}, 1 \mathrm{H}), 0.63-0.55(\mathrm{~m}$, $1 \mathrm{H}), 0.56-0.48(\mathrm{~m}, 1 \mathrm{H}), 0.36(\mathrm{td}, J=4.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.24-0.17(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta \mathrm{ppm} 135.3,128.9,128.7,128.3,57.4,53.2,50.5,14.7,3.1,2.5$; IR (neat, cm^{-1}): 3247,1289 , 1165; HRMS (ESI) m / z Calcd. For $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 253.1005$, Found: 253.1002; Enantiomeric excess was determined by HPLC with an ODH column ($90: 10 n$-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); R enantiomer: $\mathrm{t}_{\mathrm{r}}=70.9 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=76.1 \mathrm{~min}$; Absolute configurations of product were determined by analogy.
(3S,4S)-3-Benzyl-2-methyl-4-phenyl-1,2,5-thiadiazolidine 1,1-dioxide ((S, S)-2s) was obtained through
 General Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC R f_{f} $=0.35$ (Hexanes/EtOAc 4:1) with $\left[\mathbf{C o}\left(\mathbf{2 , 6} \mathbf{- D i M e O}-\mathbf{H u}\left(\mathbf{C}_{6}\right)\right.\right.$ Phyrin)] ([Co(P4)]), ($2 \mathrm{~mol} \%$) at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}(80 \%$ yield, er $(1 R, 2 R: 1 S, 2 S)=7: 93)$. For $\left[\mathbf{C o}\left(3,5-\mathbf{D i}^{t} \mathbf{B u} \mathbf{- H u} \quad\left(\mathbf{C}_{8}\right) \mathbf{P h y r i n}\right)\right]$ ($[\mathrm{Co}(\mathbf{P} 5)]), 2 \mathrm{mmol} \%$ of catalyst was used for $72 \mathrm{~h}(98 \%$ yield, er $(1 R, 2 R: 1 S, 2 S)=58: 42) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.56-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 2 \mathrm{H})$, $4.64(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{ddd}, J=4.9,6.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.03(\mathrm{~m}, 1$ H), 3.00-2.93(m, 1 H), $2.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 138.2,135.9,129.6,128.9$, 128.7, 127.2, 127.1, 69.8, 60.5, 36.9, 32.8; IR (neat, cm^{-1}): $1603,1495,1454,1298,1266,1153,1028,750$, 735, 698; HRMS (ESI) m / z Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 303.1162$, Found: 303.1148; Enantiomeric excess was determined by HPLC with an ODH column (90:10 n-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); $(1 R, 2 R)$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=27.7 \mathrm{~min} ;(1 S, 2 S)$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=35.6 \mathrm{~min}$; Absolute configurations of product were determined by analogy.

Product ((S)-2t) was obtained through General Procedure F. Purified by silica gel column
 chromatography (eluent: Hexanes/EtOAc 2:1), white solid, TLC $\mathrm{R}_{f}=0.45$ (Hexanes/EtOAc 1:1) with [Co(2,6-DiMeO-Hu(C6)Phyrin)] ([Co(P4)]), (2 $\mathrm{mol} \%$) for $96 \mathrm{~h}(88 \%$ yield, $\mathrm{dr}=10: 90)$. For [Co(3,5-Di'Bu-Hu (C8)Phyrin)] ([Co(P5)]), $2 \mathrm{mmol} \%$ of catalyst was used for $72 \mathrm{~h}(82 \%$ yield, $\mathrm{dr}=60: 40$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.09-8.01(\mathrm{~m}, 4 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 5 \mathrm{H})$, $6.36(\mathrm{dd}, J=5.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.38(\mathrm{dd}, J=7.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=5.4,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{td}, J=7.3$, 14.3 Hz, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 167.4,166.0,165.8,160.1,148.0,142.5,135.4,134.7$, $133.8,133.7,130.9,130.5,129.7,129.6,129.2,129.1,128.8,128.6,128.2,99.1,89.3,86.5,83.4,76.5$, $74.7,64.2,53.4,50.6,44.1,38.6$; The diastereomeric ratio was determined by both ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic integration; IR (neat, cm^{-1}): 1754, 1712, 1671, 1450, 1315, 1266, 1167, 1095, 1070, 907, 727, 712; HRMS (ESI) m/z Calcd. For $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{NaO} 10 \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 797.1888$, Found: 797.1842.
(S)-2-Benzyl-4-(ferrocenyl)-1,2,5-thiadiazolidine 1,1-dioxide ((S)-2u) was obtained through General Procedure F. Purified by silica gel column chromatography (eluent:

entry 35 : $(S)-2 \mathbf{u}$ 41\% yield; er ($R: S$): 9:91 $[\alpha]_{D}{ }^{25}=-27.4^{\circ}\left(\mathrm{c} \mathrm{0.3}, \mathrm{CHCl}_{3}\right)$ Hexanes/EtOAc 4:1), yellow solid, TLC $\mathrm{R}_{f}=0.35$ (Hexanes/EtOAc 4:1) with [Co(2,6-DiMeO-Hu(C $\mathbf{6}$)Phyrin)] ([Co(P4)]), (5 mol \%) at $40{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h}(41 \%$ yield). For [Co(3,5-Di'Bu-Hu (C8)Phyrin)] ([Co(P5)]), $2 \mathrm{mmol} \%$ of catalyst was used for $48 \mathrm{~h}(73 \%$ yield, er $(R: S)=58: 42) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, acetone- $\left.D_{6}\right) \delta$ $6.29(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.23,4.07(\mathrm{AB} \mathrm{q}, J=15.0$ Hz, each 1 H$), 4.18(\mathrm{~s}, 5 \mathrm{H}), 4.17-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=7.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=8.1,9.5 \mathrm{~Hz}$, $1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (150 MHz , acetone- D_{6}) 127.3, 119.6, 118.8, 78.4, 59.6, 59.3, 59.0, 58.1, 57.4, 45.6, 42.5, 41.4; IR (neat, cm^{-1}): 3263, 2921, 2852, 1709, 1576, 1317, 774; HRMS (DART) m/z Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FeN}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 397.0668 , Found: 397.0679; Enantiomeric excess was determined by HPLC with an ADH column ($90: 10 n$-hexane: isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$); S - enantiomer: $\mathrm{t}_{\mathrm{r}}=42.0 \mathrm{~min} ; R$ enantiomer: $\mathrm{t}_{\mathrm{r}}=56.8 \mathrm{~min}$; Absolute configurations of product were determined by analogy.

Table S3. KIE Studies on Catalytic C-H Amination of Enantiopure Isotopomeric Azides via Co(II)Based MRC ${ }^{a b, c}$

${ }^{a}$ Reactions were performed on a 0.10 mmol scale of sulfamoyl azide $(R)-\mathbf{1 a}_{\mathbf{D}}$ or $(S)-\mathbf{1} \mathbf{a}_{\mathbf{D}}$ using $2 \mathrm{~mol} \%$ of [Co(Por)] in 1 mL of MTBE at $40{ }^{\circ} \mathrm{C}$; Isolated Yield; ${ }^{b}$ Ratio of $\mathrm{H}: D$ determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy (see the following spectrum section for detail). ${ }^{c}$ Calculated based on the ratio of H:D. ${ }^{d}$ Calculated on the basis of stereoretentive RS. ${ }^{e}$ Determined by chiral HPLC analysis, which offered no separation of $(R) \mathbf{- 2} \mathbf{a}_{\mathbf{H}}$ from $(R)-\mathbf{2} \mathbf{a}_{\mathbf{D}}$ and $(S) \mathbf{- 2} \mathbf{a}_{\mathbf{H}}$ from $(S)-\mathbf{2} \mathbf{a}_{\mathbf{D}} \cdot{ }^{f} 5 \mathrm{~mol} \%[\operatorname{Co}(\mathbf{P 4})]$.
(For NMR spectra and HPLC, see the following section for the details). (Note: there was an overlap of $\mathrm{N}-\mathrm{H}$ proton and chiral benzylic proton for $\mathrm{H}-\mathrm{vs}$. D-derivative analysis. This issue was solved by simply adding one drop of $\mathrm{D}_{2} \mathrm{O}$ to the CDCl_{3} solution for NH proton exchange. The complete
disappearance of NH proton allowed accurate integration (500 MHz machine with cryogenically cooled probe) of benzylic proton and calculation of the ratios of $\mathbf{H}: \mathbf{D}$. Please see the following spectrum section. for the detailed spectra.)

Key Information of Asymmetric Induction Process Obtained from the Results in

Table S3

1. For bridged catalysts $[\mathrm{Co}(\mathrm{P} 4)]$ and $[\mathrm{Co}(\mathbf{P 5})], \mathrm{HAA}$ is highly enantioselective, radical substitution is stereoretentive due to either the stereochemistry retention of facial chirality through cavity-like ligand environments or the cavity-favored rapid radical substitution before the rotation/racemization occurs, or the combined effects.
2. For the achiral open catalyst $[\mathrm{Co}(\mathbf{P 9})]$, high values of intramolecular KIE (23.0) were consistently obtained from both isotopic enantiomers $(S) \mathbf{1 a}_{\mathbf{D}}$ or $(R)-\mathbf{1 a}_{\mathbf{D}}$, generating the highly enantio-enriched radical intermediates $(R e)-\mathbf{I I a}_{\mathbf{D}}$ or $(\mathrm{Si})-\mathrm{IIa}_{\mathbf{D}}$. However, the facile rotation of $\alpha-\mathrm{C}-\mathrm{C}$ bond of radical (Re)$\mathbf{I I a}_{\mathbf{D}}$ or (Si)-IIa $\mathbf{a}_{\mathbf{D}}$ inside such flexible cavity led to the erosion of enantiopurity in radical intermediates $(R e)-\mathbf{I I a}_{\mathbf{D}}$ or $(\mathrm{Si})-\mathbf{I I} \mathbf{a}_{\mathbf{D}}$. Therefore, the cyclization product $\mathbf{2 a}_{\mathbf{H}}$ was obtained with poor enantiomeric ratios.

Synthesis and Characterization of Deuterated Azides $(S)-1 \mathbf{1 a}_{\underline{\underline{b}}}^{\underline{2}}(\boldsymbol{R})-1 \mathbf{a}_{\underline{\underline{b}}} \underline{\text { and Products }}$

$\underline{\mathbf{2 a}} \underline{\underline{H}}$

(\boldsymbol{R})- \boldsymbol{N}-Benzyl-2-phenylethan-2-d-1-amine was prepared in 65% yield (550 mg) through General
 Procedure D1 from (R)-2-phenylethan-2-d-1-ol which was prepared according to the reported procedure ${ }^{10}$ from (R)-mandelic acid (commercially available, cas: 611-71-2).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.36-7.16(\mathrm{~m}, 10 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 140.3,140.0,128.7,128.4,128.1$, $126.9,126.1,53.9,50.5,36.0\left(\mathrm{t}, J=18.8 \mathrm{~Hz}\right.$); HRMS (ESI) m / z Calcd. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{DN}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 213.1497$, Found: 213.1503.
(\boldsymbol{S})- \boldsymbol{N}-Benzyl-2-phenylethan-2-d-1-amine was prepared in 45% yield (350 mg) through General
 Procedure D1 from (S)-2-phenylethan-2-d-1-ol which was prepared according to the reported procedure ${ }^{10}$ from (S)-mandelic acid (commercially available, cas: 17199-29$0)$.
(R)-N-Benzyl-2-phenylethan-2-d-1-sulfamoyl azide was obtained in 67% yield (160 mg) as colorless oil

$(R)-1 \mathrm{a}_{\mathrm{D}}$ through General Procedure E from (R) - N-Benzyl-2-phenylethan-2-d-1-amine starting from 0.75 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC $\mathrm{R}_{f}=0.6$ (Hexanes/EtOAc 8:1). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12-$ $7.05(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 137.5,134.5,128.9,128.7,128.6,126.8,53.0,49.9,34.0(\mathrm{t}, J=19.0 \mathrm{~Hz})$. Enantiopurity $>$ 99% based on the method used and the product ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{t}=35 ; \mathrm{T} 1=66 ; \varnothing=45^{\circ} \mathrm{C}\right)$ on a 600 MHz machine. Non-deuterated 1a is $<1 \%$, falling into the ${ }^{1} \mathrm{H}$ NMR integration error. Therefore, it is a reasonable approximation for the above KIE studies by assuming that the isotopomeric sulfamoyl azides are the only component.
(S)-N-Benzyl-2-phenylethan-2-d-1-sulfamoyl azide was obtained in 79% yield (250 mg) as colorless oil

(S) $-1 \mathrm{a}_{\mathrm{D}}$ through General Procedure E from (S)- N -Benzyl-2-phenylethan-2-d-1-amine starting from 1.0 mmol scale, purified by silica gel column chromatography (eluent: Hexanes/EtOAc 40:1), TLC $_{f}=0.6$ (Hexanes/EtOAc 8:1).

2-Benzyl-4-phenyl-1,2,5-thiadiazolidine 1,1-dioxide-4d (2a $\mathbf{a}_{\mathbf{H}}$) was obtained through General
 Procedure F. Purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), white solid, TLC $\mathrm{R}_{f}=0.35$ (Hexanes/EtOAc 4:1); For [Co(3,5-Di'Bu-Hu(C) $\mathbf{C}_{\mathbf{8}}$)Phyrin)] ($[\mathrm{Co}(\mathbf{P 5})]), 2 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40^{\circ} \mathrm{C}$ for $48 \mathrm{~h}(98 \%$ yield with both $(R) \mathbf{- 1} \mathbf{a}_{\mathbf{D}}$ and $(S)-\mathbf{1 a}_{\mathbf{D}}$ as starting azides); for $\left[\mathbf{C o}\left(\mathbf{2 , 6} \mathbf{- D i M e O H u}-\left(\mathbf{C}_{\mathbf{6}}\right) \mathbf{P h y r i n}\right)\right]([\mathrm{Co}(\mathbf{P 4})])$, $5 \mathrm{mmol} \%$ of catalyst was used and the reaction was run at $40^{\circ} \mathrm{C}$ for 48 h (80% yield for $(R)-1 \mathbf{a}_{\mathbf{D}} ; 64 \%$ yield for $\left.(S) \mathbf{- 1} \mathbf{a}_{\mathbf{D}}\right)$; for $\left[\mathbf{C o (3 , 5 - D \mathbf { D } ^ { t } \mathbf { B u } - I b u P h y r i n)] ~ ([C o (P 9)]) , ~} 2 \mathrm{mmol} \%\right.$ of catalyst was used and the reaction was run at $40{ }^{\circ} \mathrm{C}$ for $48 \mathrm{~h}\left(85 \%\right.$ yield for $(R)-\mathbf{1} \mathbf{a}_{\mathbf{D}} ; 80 \%$ yield for $\left.(S)-\mathbf{1} \mathbf{a}_{\mathbf{D}}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta \mathrm{ppm} 7.48-7.28(\mathrm{~m}, 10 \mathrm{H}), 4.87$ (br. s., 1 H), $4.38,4.01(\mathrm{AB} \mathrm{q}, J=15.0 \mathrm{~Hz}$, each 1 H$), 3.56(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 138.3,134.8,129.0,128.8$, 128.7, 128.2, 126.4, 55.8-55.1 (m); 55.0, 50.5; HRMS (ESI) m / z Calcd. For $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{DN}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 290.1068, Found: 290.1055; Enantiomeric excess was determined by HPLC with an ADH column (90:10 n-hexane: isopropanol, $0.8 \mathrm{~mL} / \mathrm{min}$); R - enantiomer: $\mathrm{t}_{\mathrm{r}}=34.4 \mathrm{~min} ; S$ - enantiomer: $\mathrm{t}_{\mathrm{r}}=24.7 \mathrm{~min}$.

$(R)-\mathbf{2} \mathbf{a}_{\mathbf{H}}(+): \operatorname{er}(R: S): 97: 3$
$[\alpha]_{\mathrm{D}}^{25}=+86.0^{\circ}\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right)$

$(S)-\mathbf{2} \mathbf{a}_{\mathrm{H}}(-):$ er $(R: S): 3: 97$
$[\alpha]_{D}{ }^{25}=-85.4^{\circ}\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$

Experimental Evidence for Radical Mechanism

1. TEMPO Trapping Experiment

An oven dried Schlenk tube was charged with catalyst $[\mathrm{Co}(\mathbf{P 9})](0.002 \mathrm{mmol})$ and $4 \AA$ molecular sieves
 $(50 \mathrm{mg})$. This reaction vessel was evacuated and backfilled with nitrogen several times. The Teflon screw cap was replaced with a rubber septum and azide $\mathbf{1 a}(0.1 \mathrm{mmol})$ was added followed methyl tert-butyl ether (0.5 mL), TEMPO (1 mmol) and the remaining methyl tert-butyl ether $(0.5 \mathrm{~mL})$. The Schlenk tube was then purged with nitrogen for 2 minutes and the rubber septum was replaced with a Teflon screw cap. The Schlenk tube was then placed in an oil bath at $40{ }^{\circ} \mathrm{C}$ while stirring. After 48 h , the reaction mixture was purified by silica gel column chromatography (eluent: Hexanes/EtOAc 4:1), to give the TEMPO-trapped product in 15% yield as yellow solid ($\mathrm{TLC}_{f}=0.15$ (Hexanes/EtOAc 1:1)) together with amination product $\mathbf{2 a}(\pm)$ in 75% yield. For TEMPO-trapped product: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.45-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.28(\mathrm{~m}$, 6 H), 4.86 (dd, $J=5.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.64(\mathrm{~m}, 1 \mathrm{H})$, $3.45(\mathrm{~s}, 2 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.17-0.93(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 141.9$, $135.6,128.7,128.5,128.3,128.1,128.0,84.4,77.2,51.5,50.6,40.4,29.7,17.1$; IR (neat, cm^{-1}): 2925, 1554, 1495, 1454, 1333, 1361, 1155, 1132, 1008, 940, 756, 733, 700, 547; HRMS (ESI) m/z Calcd. For $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 446.2472$, Found: 446.2459.

2. EPR Experiment

An oven-dried EPR tube was cooled down under nitrogen atmosphere and charged with catalyst $[\mathrm{Co}(\mathbf{P 1 4})]$ (0.002 mmol mmol). This EPR tube was then capped with a red rubber septum, which was fastened with parafilm. The tube was evacuated and backfilled with nitrogen three times. Then the sulfamoyl azide 1a (0.1 mmol in 0.4 mL of anhydrous toluene) was added into this tube through a gas-tight syringe. The cap of the EPR tube was further sealed with vacuum grease. The reaction mixture was shaken well followed by the reaction at $40{ }^{\circ} \mathrm{C}$ for 30 minutes. Then the sample was ready for EPR experiment at room temperature.

X-band EPR spectra were recorded on a Bruker EMX-Plus spectrometer (Bruker BioSpin). Simulations of the EPR spectra were performed by using the EPR simulation program SpinFit in Xenon. Experimental X-band EPR spectra of α-Co(III)-Aminyl Radical \mathbf{I} in toluene were recorded at room temperature. (Freq $=$ 9.42731 GHz; mod. amp. $=1 \mathrm{G}$; microwave power $=63.25 \mathrm{~mW})($ Figure S-6 $)$.

Figure S6. Experimental and Simulated X-Band EPR Spectra for α-Co(III)-Aminyl Radical I in Toluene at RT

$\alpha-\mathrm{Co}$ (III)-aminyl radical I
From Experimental: $\mathrm{g}_{\text {iso }}: 2.00753$

A second species (minor) was also observed in this spectrum based on $2^{\text {nd }}$ Harmonic spectrum
From simulation: $\mathrm{g}_{\text {iso(major) }}$: 2.00772;
From simulation: $\mathrm{g}_{\text {iso(minor) }}$: 1.99725;

3. HRMS Experiment

Through a gas-tight syringe, the same EPR solution was transferred to a sealed HRMS sample vial, which was pre-evacuated and backfilled with nitrogen. The high-resolution mass spectra $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$ as solvent for LC-HRMS) (ESI) in the absence of any additives such as formic acids that commonly act as electron carriers for ionization allowed for the detection of the molecular ion signals corresponding to the α -$\mathrm{Co}(\mathrm{III})$-aminyl radical I ([M] $]^{+} \mathrm{m} / \mathrm{z}=1875.8391$ (observed), by the loss of one electron (Figure S-7).
sCLIPS Report - F:IAgilent6220_1054.dVAcqDatalMSProfile.bin
Self-Calibration Mass Range (Da)

Start:	-0.55
End:	0.55

RT Windows
Scan 35 at 0.576
sCLIPS Parameters
Accurate Mass:
Charge:
Mass Tolerance (mDa):
1875.8391

Electron State:
1
250.00

Double Bond Equivalent Range
Minimum: $\quad-1.00$
Maximum: 150.00
Profile Mass Range (Da)
-2.00

Start:	-2.00
End:	5.50

Empirical Rules: Enabled
Empirical Elemental Limits: Wiley
H/C Ratio:
Heteroatom Ratios: Extended

Element		Minimum		
			Maximum	
C		115		120
H		115		125
N		9		10
O		5		6
Co		1		1
S		1		1

sCLIPS Search Results

| | Formula | Mono Isotope | Mass Error (mDa) | Mass Error
 (PPM) | Spectral
 Accuracy | RMSE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | DBE

Figure S7. Observed and Simulated ESI-MS Spectra with Isotope Distribution (Corresponding to $[\alpha-$ Co (III)-aminyl radical $\left.\mathbf{I}-\mathrm{e}^{-1}\right]^{+}\left([\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}=1875.8391\right)$

Assigned as the neutral $\alpha-\mathrm{Co}(\mathrm{III})$-aminyl radical I with catalyst $[\mathrm{Co}(\mathbf{P 1 4})]$, by the loss of one electron, from electrospray ionization mass spectrometry (ESI-MS).

X-ray Crystallography and Data Interpretation

The X-ray diffraction data for (R)-2a (LK-3-247C-0m), (S)-2a (lk-3-186c), (R)-2c (LK-3-68B), (S)-2c (LK-3-68C), (S, R)-2m (LK-3-237B-0m), (S, S)-2s (LK_4_13c), P4 (lk_3_95_2 ${ }^{\text {nd }}$) and P5 (LK-3-74A) were measured on a Bruker D8 Venture PHOTON 100 CMOS system equipped with a $\mathrm{Cu} \mathrm{K}_{\alpha}$ INCOATEC Imus micro-focus source $(\lambda=1.54178 \AA$). X-ray diffraction data for $(R) \mathbf{- 2 b}(\mathbf{L K - 3 - 2 9 A})$, (S)-2b (LK-3-36-3rd) and (R)-2k (LK-3-198B), were collected using Bruker-AXS SMART-APEXII CCD diffractometer) using $\mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA$). Indexing was performed using APEX2 [1] (Difference Vectors method). Data integration and reduction were performed using SaintPlus 6.01 [2]. Absorption correction was performed by multi-scan method implemented in SADABS [3]. Space groups were determined using XPREP implemented in APEX2 [1]. The structure was solved using SHELXS-97 (direct methods) and refined using SHELXL-2013 [7] (full-matrix least-squares on F^{2}) contained in APEX2 [1,7], WinGX v1.70.01 [4,5,6,7] and OLEX2 [7,8]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms of $-\mathrm{CH},-\mathrm{CH}_{2},-\mathrm{CH}_{3}$ groups were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: $\operatorname{Uiso}(\mathrm{H})=1.2 \mathrm{Ueq}\left(-\mathrm{CH},-\mathrm{CH}_{2}\right)$ and $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}\left(-\mathrm{CH}_{3}\right)$. For CIF-check files, please see the following sections together with the compound NMR spectra and HPLC.

(R)-2a (LK_3_247C_0m): Hydrogen atom of -NH group has been found from difference Fourier map and was freely refined. The remaining hydrogen atoms were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: $\operatorname{Uiso}(\mathrm{H})=$ 1.2Ueq(-CH). Crystal data and refinement conditions are shown in Table 1.

Table 1 Crystal data and structure refinement for (R)-2a (LK-3-247C-0m).	
Identification code	$(R)-\mathbf{2 a}(\mathrm{LK}-3-247 \mathrm{C}-0 \mathrm{~m})$
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	288.36
Temperature/K	99.97
Crystal system	monoclinic

Space group	$\mathrm{P} 21 / \mathrm{c}$
a / \AA	$14.6858(3)$
b / \AA	$5.83800(10)$
c / \AA	$17.4091(4)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$110.6117(5)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}{ }^{3}$	$1397.04(5)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.371
μ / mm^{-1}	2.085
$\mathrm{~F}(000)$	608.0
Crystal size $/ \mathrm{mm}^{3}$	$0.32 \times 0.05 \times 0.05$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ}$	6.43 to 137.95
Index ranges	$-17 \leq \mathrm{h} \leq 17,-6 \leq \mathrm{k} \leq 7,-21 \leq 1 \leq 21$
Reflections collected	16268
Independent reflections	$2561\left[\mathrm{R}_{\text {int }}=0.0554, \mathrm{R}_{\text {sigma }}=0.0356\right]$
Data/restraints/parameters	$2561 / 0 / 185$
Goodness-of-fit on F^{2}	1.063
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0376, \mathrm{wR}_{2}=0.0961$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0401, \mathrm{wR}_{2}=0.0982$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.68 /-0.41$

(S)-2a (lk-3-186c): The crystal was a twin with two components related by ($\left.\begin{array}{llllllll}1 & 0 & 0 & 0 & -1 & 0 & -0.88 & 0\end{array}\right)$ symmetry operation. Two crystal lattices were identified in RLAT [1] and the data have been integrated with SAINT [2] using two different orientation matrices. Subsequently the TWINABS was used to perform scaling and absorption corrections and HKLF5 type reflection file has been used for structure refinement $(\mathrm{BASF}=0.179(3))$. Hydrogen atom of -NH group has been found from difference Fourier map and was freely refined. The remaining hydrogen atoms were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: $\operatorname{Uiso}(H)=1.2 \mathrm{Ueq}(-\mathrm{CH})$. Crystal data and refinement conditions are shown in Table 2.

Table 2 Crystal data and structure refinement for (S)-2a (lk-3-186c-0m).	
Identification code	(S)-2a (lk-3-186c-0m)
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	288.36
Temperature/K	100.01
Crystal system	monoclinic
Space group	P2 ${ }_{1}$
a/Å	9.4266(2)
b/Å	6.1137(2)
c/ \AA	13.0269(3)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	108.7061(9)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	711.10(3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.347
μ / mm^{-1}	2.048
$\mathrm{F}(000)$	304.0
Crystal size $/ \mathrm{mm}^{3}$	$0.12 \times 0.04 \times 0.01$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	7.164 to 138.148
Index ranges	$-11 \leq \mathrm{h} \leq 11,-7 \leq \mathrm{k} \leq 7,-15 \leq 1 \leq 15$
Reflections collected	2435
Independent reflections	$2435\left[\mathrm{R}_{\text {int }}=\right.$? , $\left.\mathrm{R}_{\text {sigma }}=0.0520\right]$
Data/restraints/parameters	2435/1/186
Goodness-of-fit on F^{2}	1.076
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0471, \mathrm{wR}_{2}=0.1261$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0476, \mathrm{wR}_{2}=0.1266$
Largest diff. peak/hole / e \AA^{-3}	0.54/-0.43
Flack parameter	0.087(16)

(R)-2b (LK_3_29A): Hydrogen atom of -NH group have been found from difference Fourier map and were refined with $\operatorname{Uiso}(H)=1.2 \mathrm{Ueq}(-\mathrm{NH})$. Crystal data and refinement conditions are shown in Table 3.

Table 3 Crystal data and structure refinement for (R)-2b (LK-3-29A-0m).	
Identification code	(R)-2b (LK-3-29A-0m)
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}$
Formula weight	636.77
Temperature/K	296.15
Crystal system	monoclinic
Space group	P21
a/Å	10.25630(10)
b/Å	$11.77610(10)$
c/A	13.42920(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	101.6400(10)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1588.61(2)
Z	2
$\rho_{\text {calcmg }} / \mathrm{mm}^{3}$	1.331
$\mathrm{m} / \mathrm{mm}^{-1}$	1.933
F(000)	672.0
Crystal size $/ \mathrm{mm}^{3}$	$0.32 \times 0.1 \times 0.02$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection	6.72 to 141.798°
Index ranges	$-12 \leq \mathrm{h} \leq 11,-14 \leq \mathrm{k} \leq 13,-15 \leq 1 \leq 15$
Reflections collected	19445
Independent reflections	5527 [$\left.\mathrm{R}_{\text {int }}=0.0309, \mathrm{R}_{\text {sigma }}=0.0326\right]$
Data/restraints/parameters	5527/1/405
Goodness-of-fit on F^{2}	1.025
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0324, \mathrm{wR}_{2}=0.0826$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0350, \mathrm{wR}_{2}=0.0842$
Largest diff. peak/hole / e \AA^{-3}	0.13/-0.23
Flack parameter	0.041(8)

(S)-2b (LK-3-36-3rd): Hydrogen atom of -NH group have been found from difference Fourier map and were freely refined. Crystal data and refinement conditions are shown in Table 4.

Table 4 Crystal data and structure refinement for (S)-2b (LK-3-36-3rd_0m).	
Identification code	(S)-2b (LK-3-36-3rd-0m)
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	318.38
Temperature/K	296.15
Crystal system	monoclinic
Space group	P2 ${ }_{1}$
a / \AA	10.2613(3)
b/Å	11.7758(3)
c/Å	13.4262(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	101.6390(10)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1589.00(8)
Z	4
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.331
$\mathrm{m} / \mathrm{mm}^{-1}$	1.933
F(000)	672.0
Crystal size $/ \mathrm{mm}^{3}$	$0.24 \times 0.14 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection	6.722 to 137.448°
Index ranges	$-12 \leq \mathrm{h} \leq 11,-14 \leq \mathrm{k} \leq 13,-16 \leq 1 \leq 15$
Reflections collected	14363
Independent reflections	$5466\left[\mathrm{R}_{\text {int }}=0.0266, \mathrm{R}_{\text {sigma }}=0.0352\right]$
Data/restraints/parameters	5466/1/407
Goodness-of-fit on F^{2}	1.066
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0289, \mathrm{wR}_{2}=0.0760$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0309, \mathrm{wR}_{2}=0.0773$

Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.12 /-0.26$
Flack parameter	$0.039(6)$

(R)-2c (LK-3-68B): Hydrogen atom of -NH group have been found from difference Fourier map and was freely refined. Disordered phenyl group has been refined with RIGU restraint. Crystal data and refinement conditions are shown in Table 5.

Table 5 Crystal data and structure refinement for (R)-2c (LK-3-68B_0m).

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$
$\mathrm{m} / \mathrm{mm}^{-1}$
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 σ (I)]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
(R)-2c (LK-3-68B-0m)
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$
322.80
99.98
orthorhombic
$\mathrm{P} 2_{1} 2_{1} 2_{1}$
4.97110(10)
11.8495(2)
25.3307(5)

90
90
90
1492.11(5)

4
1.437
3.625
672.0
$0.15 \times 0.04 \times 0.02$
$\mathrm{CuK} \alpha(\lambda=1.54178)$
6.98 to 137.846°
$-5 \leq h \leq 5,-14 \leq \mathrm{k} \leq 14,-30 \leq 1 \leq 30$
19052
$2720\left[\mathrm{R}_{\text {int }}=0.0843, \mathrm{R}_{\text {sigma }}=0.0448\right]$
2720/90/225
1.039
$\mathrm{R}_{1}=0.0430, \mathrm{wR}_{2}=0.1010$
$\mathrm{R}_{1}=0.0509, \mathrm{wR}_{2}=0.1053$
0.34/-0.24
Flack parameter 0.076(13)

(S)-2c (LK-3-68c-2nd): Hydrogen atom of -NH group have been found from difference Fourier map and was freely refined. Disordered phenyl group has been refined with RIGU, SIMU restraints. Crystal data and refinement conditions are shown in Table 6.

Identification code	(S)-2c (LK-3-68c-2nd-0m)
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	322.80
Temperature/K	100.0
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a/Å	4.96390 (10)
b/Å	11.8448(3)
c/Å	25.3491(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1490.44(6)
Z	4
$\rho_{\text {calcm }} \mathrm{mg} / \mathrm{mm}^{3}$	1.439
$\mathrm{m} / \mathrm{mm}^{-1}$	3.629
F(000)	672.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.24 \times 0.12 \times 0.02$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection	6.974 to 137.818°
Index ranges	$-5 \leq \mathrm{h} \leq 5,-14 \leq \mathrm{k} \leq 14,-30 \leq 1 \leq 30$
Reflections collected	19015
Independent reflections	$2715\left[\mathrm{R}_{\text {int }}=0.0568, \mathrm{R}_{\text {sigma }}=0.0341\right]$
Data/restraints/parameters	2715/78/225
Goodness-of-fit on F^{2}	1.065
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0348, \mathrm{wR}_{2}=0.0855$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0388, \mathrm{wR}_{2}=0.0878$

Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.32 /-0.23$
Flack parameter	$0.066(9)$

$(R) \mathbf{- 2 k}$ (LK-3-198b-0m): Non-aromatic ring is conformationally disordered over two positions with 3:1 occupancy ratio and has been refined using SADI restraint. Hydrogen atom of -NH group has been found from difference Fourier map and was freely refined. The remaining hydrogen atoms were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: $\operatorname{Uiso}(\mathrm{H})=1.2 \mathrm{Ueq}(-\mathrm{CH})$. Crystal data and refinement conditions are shown in Table 7.

Table 7 Crystal data and structure refinement for $(R)-\mathbf{2 k}(\mathbf{L K - 3 - 1 9 8 b}-0 \mathrm{~m})$.	
Identification code	$(R)-\mathbf{2 k}(\mathrm{LK}-3-198 \mathrm{~b}-0 \mathrm{~m})$
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	292.39
Temperature/K	296.15
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a / \AA	$5.06640(10)$
b / \AA	$11.9606(3)$
c / \AA	$24.9189(6)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1510.02(6)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.286
μ / mm^{-1}	1.930
$\mathrm{~F}(000)$	624.0
Crystal size $/ \mathrm{mm}^{3}$	$0.18 \times 0.18 \times 0.02$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ}$	7.094 to 142.914
Index ranges	$-5 \leq \mathrm{h} \leq 6,-13 \leq \mathrm{k} \leq 14,-29 \leq 1 \leq 29$
Reflections collected	18700

Independent reflections	$2870\left[\mathrm{R}_{\text {int }}=0.0466, \mathrm{R}_{\text {sigma }}=0.0285\right]$
Data/restraints/parameters	$2870 / 1 / 204$
Goodness-of-fit on F^{2}	1.040
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0449, \mathrm{wR}_{2}=0.1150$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0507, \mathrm{wR}_{2}=0.1195$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.53 /-0.30$
Flack parameter	$0.044(13)$

(S, R)-2m (LK-3-237B-0m): Hydrogen atom of -NH group has been found from difference Fourier map and was freely refined. Crystals did not diffract past approximately $0.9 \AA$ resolution. The remaining hydrogen atoms were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: Uiso(H) $=1.2 \mathrm{Ueq}(-\mathrm{CH})$. Crystal data and refinement conditions are shown in Table 8.

Table 8 Crystal data and structure refinement for (S, R)-2m (LK-3-237B_0m).	
Identification code	(S, R)-2m (LK-3-237B-0m)
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	300.37
Temperature/K	298(2)
Crystal system	orthorhombic
Space group	P22 ${ }_{1}{ }_{1}$
a/Å	5.0613(4)
b/Å	13.3347(10)
c/ \AA	22.6731(18)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1530.2(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.304
μ / mm^{-1}	1.927
$\mathrm{F}(000)$	632.0
Crystal size $/ \mathrm{mm}^{3}$	$0.21 \times 0.05 \times 0.01$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ}$	7.692 to 117.802

Index ranges	$-5 \leq \mathrm{h} \leq 5,-14 \leq \mathrm{k} \leq 14,-25 \leq 1 \leq 25$
Reflections collected	10778
Independent reflections	$2206\left[\mathrm{R}_{\text {int }}=0.0793, \mathrm{R}_{\text {sigma }}=0.0543\right]$
Data/restraints/parameters	$2206 / 0 / 194$
Goodness-of-fit on F^{2}	1.044
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0515, \mathrm{wR}_{2}=0.1183$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0671, \mathrm{wR}_{2}=0.1273$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.15 /-0.23$
Flack parameter	$0.14(2)$

(S, S)-2s (LK_4_13c): Hydrogen atoms of - $\mathrm{CH},-\mathrm{CH}_{2}$ and $-\mathrm{CH}_{3}$ groups were placed in geometrically calculated positions and were included in the refinement process using riding model with isotropic thermal parameters: $\operatorname{Uiso}(\mathrm{H})=1.2(1.5) \mathrm{Ueq}\left(-\mathrm{CH},-\mathrm{CH}_{2},\left(-\mathrm{CH}_{3}\right)\right)$. Hydrogen atoms of -NH groups have been found from difference Fourier map and were freely refined. Crystal data and refinement conditions are shown in Table 9.

Table 9 Crystal data and structure refinement for (S, S)-2s (LK_4_13c_0m).	
Identification code	$(S, S)-2 s($ LK_4_13c)
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	302.38
Temperature/K	100.01
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{2} 2_{1} 2_{1}$
a / \AA	$5.6293(2)$
b / \AA	$7.4200(2)$
c / \AA	$34.2745(11)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1431.63(8)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.403
μ / mm^{-1}	2.060

$\mathrm{F}(000)$	640.0
Crystal size $/ \mathrm{mm}^{3}$	$0.08 \times 0.04 \times 0.02$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection ${ }^{\circ}$	10.324 to 137.944
Index ranges	$-6 \leq \mathrm{h} \leq 6,-8 \leq \mathrm{k} \leq 8,-41 \leq 1 \leq 41$
Reflections collected	17701
Independent reflections	$2635\left[\mathrm{R}_{\text {int }}=0.0886, \mathrm{R}_{\text {sigma }}=0.0505\right]$
Data/restraints/parameters	$2635 / 0 / 195$
Goodness-of-fit on F^{2}	1.056
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0374, \mathrm{wR}_{2}=0.0813$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0472, \mathrm{wR}_{2}=0.0854$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.22 /-0.38$
Flack parameter	$0.055(15)$

P4 (lk_3_95_2nd): There are total two porphyrin molecules in an asymmetric unit (1 full and 2 halves located on 2- fold and 2-fold screw rotation axes). In all porphyrin molecules the $\mathrm{NHCOO}(\mathrm{C})_{6} \mathrm{NHCOO}$ chains are disordered with $0.85: 0.15$ occupancy ratio. There also exists disorder of $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right) 2$ groups. The major part of disorder has been refined anisotropically, whereas minor part was refined isotropically and using restraints to keep the geometry within reasonable range. Targeted values of bond and angular 13 distances were taken from CSD search of similar fragments. Disordered chloroform molecules in the structure were refined using restraints as well. It has been noticed, that there exists pseudotranslation in the structure, along [100] or a direction. Processing the data with the smaller unit cell however, leads to 50:50 disorder of $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{OCH}_{3}\right)_{2}$ group and much worse R -factor. It was concluded therefore, that the pseudo translation is caused by the disorder of side chains and structure was analyzed using larger unit cell. All hydrogen atoms were placed in geometrically calculated positions and included in the refinement
process using riding model with isotropic thermal parameters: Uiso $(\mathrm{H})=1.2(1.5) \mathrm{Ueq}\left(-\mathrm{CH},-\mathrm{CH}_{2},-\mathrm{NH}(-\right.$ CH_{3})). Crystal data and refinement conditions are shown in Table 10.

Table 10 Crystal data and structure refinement for $\mathbf{P 4}$ (1 lk _3_95_2 ${ }^{\text {nd }}$).
Identification code \quad P4 (lk_3_95_2 ${ }^{\text {nd }}$)

Empirical formula
Moiety formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/ \AA
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
$\mathrm{C}_{331.89} \mathrm{H}_{325.58} \mathrm{Cl}_{34.75} \mathrm{~N}_{32} \mathrm{O}_{65}$
$4\left(\mathrm{C}_{80} \mathrm{H}_{78} \mathrm{~N}_{8} \mathrm{O}_{16}\right) \cdot 11.6\left(\mathrm{CHCl}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$
7034.32

100
orthorhombic
P2 2_{2} 2
37.7211(9)
20.6072(5)
21.3384(5)

90
90
90
16586.9(7)

2
1.408
3.282
7303.0
$0.11 \times 0.04 \times 0.03$
$\operatorname{CuK} \alpha(\lambda=1.54178)$
4.758 to 138.154
$-44 \leq \mathrm{h} \leq 45,-23 \leq \mathrm{k} \leq 22,-25 \leq 1 \leq 25$
115894
$30115\left[\mathrm{R}_{\text {int }}=0.0824, \mathrm{R}_{\text {sigma }}=0.0685\right]$
30115/336/2497
1.010
$\mathrm{R}_{1}=0.0624, \mathrm{wR}_{2}=0.1527$
$\mathrm{R}_{1}=0.0844, \mathrm{wR}_{2}=0.1675$
0.87/-0.39
0.034(5)

P5 (LK_3_74A): The disordered chloroform molecules have been refined using restraints (DFIX, DANG, SIMU) and occupancy factors have been refined as free variables. Crystal data and refinement conditions are shown in Table 11.

Table 11 Crystal data and structure refinement for P5 $(\mathbf{L K}-3-74-0 \mathrm{~m})$.	
Identification code	P5 $(\mathrm{LK}-3-74-0 \mathrm{~m})$
Empirical formula	$\mathrm{C}_{99.18} \mathrm{H}_{133.18} \mathrm{Cl}_{9.53} \mathrm{~N}_{8} \mathrm{O}_{12}$
Moiety Formula	$\mathrm{C}_{96} \mathrm{H}_{110} \mathrm{~N}_{8} \mathrm{O}_{12}, 3.17\left(\mathrm{CHCl}_{3}\right)$,
Formula weight	1947.03
Temperature $/ \mathrm{K}$	100.0
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
a / \AA	$14.8069(3)$
b / \AA	$23.9156(5)$
c / \AA	$15.4586(3)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$108.2750(10)$
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	$5198.03(18)$
Z	2
$\mathrm{p}_{\text {calc }} \mathrm{mg} / \mathrm{mm}^{3}$	1.244
$\mathrm{~m} / \mathrm{mm}^{-1}$	2.827
$\mathrm{~F}(000)$	2044.0
Crystal size $/ \mathrm{mm}{ }^{3}$	$0.09 \times 0.09 \times 0.01$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection	6.02 to 133.212°
Index ranges	$-17 \leq \mathrm{h} \leq 17,-28 \leq \mathrm{k} \leq 27,-18 \leq 1 \leq 18$
Reflections collected	45025
Independent reflections	$16669\left[\mathrm{R}_{\text {int }}=0.0495, \mathrm{R}_{\text {sigma }}=0.0563\right]$
Data/restraints $/$ parameters	$16669 / 38 / 1242$

Goodness-of-fit on F^{2}	1.030
Final R indexes [I>=2 (I)]	$\mathrm{R}_{1}=0.0593, \mathrm{wR}_{2}=0.1475$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0720, \mathrm{wR}_{2}=0.1571$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$1.01 /-0.35$
Flack parameter	$0.045(6)$

[1] Bruker (2013). APEX2 (Version 2013.6-2). Bruker AXS Inc., Madison, Wisconsin, USA.
[2] Bruker (2013). SAINT-V8.32A. Data Reduction Software.
[3] Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption
Correction. University of Gottingen, Germany.
[4] Farrugia L.J. Appl. Cryst. (1999). 32, 837 ± 838
[5] Sheldrick, G.M. (1997) SHELXL-97. Program for the Refinement of Crystal
[6] Sheldrick, G.M. (1990) Acta Cryst. A46, 467-473
[7] Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
[8] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339-341.

General Procedure for CD Spectra Study

A stock solution of $\left[\mathrm{Co}(\mathrm{II})\left(D_{2}-\mathrm{Por}^{*}\right)\right]$ in $\mathrm{CH}_{3} \mathrm{CN}\left(6.7 \times 10^{-5} \mathrm{M}\right)$ was prepared. This solution was used for CD study at $25^{\circ} \mathrm{C}$. The nearly identical CD spectra between $[\mathrm{Co}(\mathbf{P 3})]$ and $[\mathrm{Co}(\mathbf{P 5})]$ or between $[\mathrm{Co}(\mathbf{P 4})]$ and $[\mathrm{Co}(\mathbf{P 6})]$ likely suggested the similar type of chiral conformations taken by these catalysts.
Figure S-8. CD Spectra of (a) $[\mathrm{Co}(\mathbf{P 3})]$, (b) $[\mathrm{Co}(\mathbf{P 5})]$ at $25^{\circ} \mathrm{C}$.

Figure S-9. CD Spectra of (a) $[\mathrm{Co}(\mathbf{P 4})]$, (b) $[\mathrm{Co}(\mathbf{P 6})]$ at $25^{\circ} \mathrm{C}$.

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left(3,5-\right.$ Di＇Bu－Hu$^{\prime}\left(\mathrm{C}_{4}\right)$ Phyrin $)$

$\left.\left.\begin{array}{rr}168.05 \\ 170.60\end{array}\right] \quad \begin{array}{r}139.40 \\ 149.57\end{array}\right] \quad \begin{aligned} & -122.97 \\ & -122.06 \\ & -118.60\end{aligned}$
Gl゙とてし

${ }^{13} \mathrm{C}$ NMR， $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

checkCIF/PLATON report
You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary	Interpreting this report
Datablock: I	

wR2 (reflections) $=0.1675(30115)$
Npar $=2497$

The following ALERTS were generated. Each ALERT has the format
Click on the hyperlinka for more detaila of the teat.

 00%
00%
20%
Angle Restraints on AtSite N8O
a
6 © 영ㅇㅇㅇ
 PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-h ALORT_5 Co iucr_refine_inatructions_details in the CIF PLAT033_ALERT_4 Flack x Value Deviatea $>2^{*}$ aigma from Zero PLAT042-ALERT-G Cale. and Reported MoietyFormula Strings Differ PLAT083_ALERT_2_G SHELXL Second Parameter in WCITT Unuaually Large.
PLAT301_ALERT_3_G Main Residue Disorder Percentage $=$ PLAT302 ALERT_4 Anion/Solvent Disorder Percentage =
PLAT311 ALERT 2 G Isolated Disordered Oxygen Atom (No H's ?).... PLAT311_ALERT_2_G Isolated Disordered Oxygen Atom (No H's ?)

 PLAT432-ALERT 2-G Short Inter X...Y Contact C115 ... C173 PLAT432_ALERT_2_G Short Inter X...Y Contact C115 .. C26

 PLAT432_ALERT_2_G Short Inter X...Y Contact 01 .. C173

 \# 'pwoy : ttos 7tun utuatm zou Kวtave j 30 ox G Centre of Gravity not Within Unit Cell: Read.

狤。
 LXATV-06LIVId

 PLAT790_ALERTT - $x a 3 \cdot T V^{-} 06$ L.IVId
 PLAT790_ALERT PLAT790_ALERTT PLAT790_ALERT PLAT790_ALERT_ PLAT791_ALERT_4

R Verify
! Info
336 Note

 (Chiral SPGR)
(Chiral SPGR) (Chiral SPGR) (Chiral SPGR)
(Chiral SPGR)
 (\&๖dS โExTYD) (4D.d5 โextuD) (\&ปdS [exఛ4D) (घDdS โЕлฑ丩D)

ALBRT level $\mathrm{A}=$ Most likely a serious problem - resolve or explain
3 ALBRT level $\mathrm{B}=\mathrm{A}$ potentially aerious problem, consider carefully
27 ALBRT level $\mathrm{C}=$ Check. Ensure it is not caused by an omisaion or oversight
67 ALBRT level $\mathrm{G}=$ General information/check it is not something unexpected
6 ALERT type 1 CIF conatruction/syntax error, inconaistent or miasing data
47 ALERT type 2 Indicator that the structure model may be wrong or deficient
7 ALERT type 3 Indicator that the structure quality may be low
34 ALERT type 4 Improvement, methodology, query or suggestion
3 ALERT type 5 Informative message, check

checkCIF publication errors

Publication of your CIF
You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and
 not guarantee there are no aspects of the results needing attention. It is up to the individual to

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using
he Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.
Validation response form
Please find below a validation response form (VRF) that can be filled in and pasted into your CIF. \# start Validation Reply Form
vrf_pUBLOO2_GLOBAL

_vrf_PUBLO05_GLORAL
pRORLEM: _publ_contac
PRORLEM: _publ_contact_author_email, publ_contact_author_fax and
RESPONSE:...
;
_vrf_pUBL006_GLOBAL.
PROBLEN: publ_requested_journal is migaing
RESPONSE: ...

vrf_pUBL008_GLOBAL
PROBLEN: ,publ_section_title is miasing. Title of paper.
vrf pugL 009 GLORAL
_vrf_pURL009_GLORAL.
PRORLEN: publ_author_name is misaing. Liat of author(a) name (a).
RESPONSE: ...
_vrf_pURL010_GLORAL
PROBLEX: publ_author
RESPONSE,
PRORLEM: \quad publ_author_address is missing. Author(s) address(es).
RESPONSE:
${ }_{\text {i }}^{\text {i }}$ vrf_pUBLO12_GLORAL

checkCIF/PLATON report
You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALIOGRAPHIC REFEREE.
No syntax errors found. CIF dictionary Interpreting this report
Datablock: I

Correction method= MULTI-SCAN
Theta $(\max)=66.606$

The following ALERTS were generated. Hach ALERT has the format
click on the hyperlinks for more detalls of the test.

[^0]

3 ALaRT type 1 CIF construction/syntax error, inconsiatent or misaing data allty may be low or suggestion ure moda ndicator that the structur
$\rightarrow \mathrm{Nm} v$ ALRRT type 4 Improvement, methodology,
1 ALERT type 5 Informative message, check
checkCIF publication errors

7 ALERT level A - Data missing that is essential or data in wrong format
0 ALERT level G - General alerts. Data that may be required is missing

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor
alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so
attention to these fine details can be worthwhile. In order to resolve some of the more serious
problems it may be necessary to carry out additional measurements or structure refinements.
However, the nature of your study may justify the reported deviations from journal submission
requirements and the more serious of these should be commented upon in the discussion or
experimental section of a paper or in the "special details" fields of the CIF. checkCIF was
carefully designed to identify outliers and unusual parameters, but every test has its limitations and
alerts that are not important in a particular case may appear. Conversely, the absence of alerts does
not guarantee there are no aspects of the results needing attention. It is up to the individual to
critically assess their own results and, if necessary, seek expert advice.
If level A alerts remain, which you believe to be justified deviations, and you intend to submit this
CIF for publication in a joumal, you should additionally insert an explanation in your CIF using
the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part
of the review process. \# start Validation Reply Form
_vrf_pubLoon_GLOBAL.
\# start Validation
vrf_PUBLOO2_GLOBAL
PROBLEM: The contact
PROBLRM: The contact author's address 18 m 1 ss 1 ng ,
RESPONSE:. .
_vrf_PUBLOOS_GLOBAL

PROBLEM: :publ_contact_author_ema11, _publ_contact_author_fax and
RRSPRNSE: ...
_Vrf_pUBLOO6_GLOBAL
PROBLEM:
RESPONSE: - publ_requested_journal 1 m missing
_vrf_pUBLOO8_GLOBAL
PROBLEM: publ_section_title 1 s misaing. Title of paper.
RESPONSE:
; vrf PUBLOO9 GLOBAL
PROBLEM: publ_author_name 1s misaing. List of author(s) name(s). RESPONSE: ...
_Vrf_pUBL010_GLOBAL
PROBLEM: publ_author_address 1s misaing. Author(s) address (es). RESPONSE: ...
_vrf_pUBLO12_GLOBAL
PROBLEM: _publ_section_abstract 1 m misaing. RESPONSE: ...
\# end Validation Reply Form
If you wish to submit your CIF for publication in Acta Crystallographica Section C or E , you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.
PLATON version of $05 / 02 / 2014$; check.def file version of $05 / 02 / 2014$

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$77.027-76.77$

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(2,6-DiMeO-Tao(nPr)Phyrin)

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

100

${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$
ik

$$
\begin{aligned}
& 133.48 \\
& 134.66
\end{aligned}
$$

${ }^{1} \mathrm{H} \mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
{ }^{13} \mathrm{C} \mathrm{NMR}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}
$$

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

10

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\underbrace{\mathrm{Ph}}_{\substack{\mathrm{MeN}}}$

Totals
100.000

3: $219 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Name	Retention Time	Area Percent	Pk \#
24.684	2.792	1	
	34.348	97.208	2

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALIOGRAPHIC REFEREE

(R)-2a (+)

No syntax errors found. CIF dictionary Interpreting this report
Datablock: I

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0027 \mathrm{~A}$	Wavelength=1.54178
Cell:	$a=14.6858$ (3)	$\mathrm{b}=5.8380$ (1) $\mathrm{c}=17.4091(4)$
	alpha=90	bet $a=110.6117(5) \quad$ gamma=90
Temperature:	100 K	
	Calculated	Reported
Volume	1397.04 (5)	1397.04 (5)
Space group	P 21/c	P $121 / \mathrm{c} 1$
Hall group	-P 2ybc	-P 2ybc
Moiety formula	C15 H16 N2 O2 S	C15 H16 N2 O2 S
Sum formula	C15 H16 N2 O2 S	C15 H16 N2 O2 S
Mr	288.36	288.36
Dx, g cm-3	1.371	1.371
Z	4	4
Mu (mm-1)	2.085	2.085
F000	608.0	608.0
F000'	610.97	
h, k, 1max	17, 7, 21	17, 7, 21
Nref	2588	2561
Tmin, Tmax	$0.882,0.901$	$0.370,0.753$
Tmin'	0.513	
Correction method= MULTI-SCAN		
Data completeness= 0.990		Theta $(\max)=68.975$
R (reflections) $=0.0376(2375)$		wR2 (reflections) $=0.0982(2561)$
$S=1.063$	Npar= 185	

The following ALERTS were generated. Wach ALERT has the format test-name ALERT alert-type alert-level
Click on the hyperlinka for more detaila of the teat.

(R)-2a (+)

0 ALBRT level $A=$ Most likely a serious problem - resolve or explain
0 ALBRT level $B=A$ potentially serious problem, consider carefully
0 ALBRT level $C=$ Check. Ensure it is not caused by an omission or oversight
1 ALBRT level $G=$ General information/check it is not something unexpected
0
checkCIF publication errors

Q Alert level A

PUBL002_ALERT_1_A The contact author's address is missing,
_̄publ_contact_author_address.
PUBL005_ALERTT_1 A ${ }^{-}$publ_contact_author_email, _publ_contact_author_fax and _ publ_contact_author_phone are all missing.
$\overline{\text { At }}$ least one \bar{o} f these should be present.
PUBL006_ALERT_1_A _publ_requested_journal is missing
e.g. 'Acta Crystallographica Section C'
pUBL008_ALERT_1_A publ_section_title is missing. Title of paper.
pUBL009_ALERT_1_A _publ_author_name is misaing. List of author(s) name(s).
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERT_1_A _publ_section_abstract is misaing.
Abstract of paper in English.

[^1]
(R)-2a (+)

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a joumal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

```
# start Validation Reply Form
_vrf_PURL002_GLORAL
i
PROBLSM; The contact author's address is missing,
RESPONSE: ...
_(vrf_PURL,005_GLORAL
PROBLEM: publ_contact_author_email, publ_contact_author_fax and
RESPONSE: ...
;
_vrf_pUBL006_GLORAL
;
PROBLEN: _publ_requested_journal is misaing
RESPONSE: ...
;
_vrf_pUBLOO8_GLORAL
PROBLEN; publ section title is missing. Title of paper.
RESPONSE: ...
;
vrf pUBL009 GLOBAL
i
PROBLEM: publ_author_name is miasing. List of author(a) name(s).
RESPONSE: ...
z
_vrf_pURL010_GLORAL
i
PROBLEM: publ author address is missing. Author(s) address(ea).
RESPONSE: ...
_vrf_pUBLO12_GLOBAL
#v
PROBLEK: publ_section_abstract is misaing.
RESPONSE: ...
z
# end Validation Reply Form
```


checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run. THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

(S)-2a (-)

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

The following ALERTS were generated. Each ALERT has the format
teat-name ALERT alert-type alert-level.
Click on the hyperlinks for more detaila of the test.

- Alert level C

PLAT340_ALERT_3_C Low Bond Preciaion on C-C Bonds 0.0 . 0.0066 Ang.

(S)-2a (-)

- Alert level G	
PLAT033_ALERT_4_G Flack x Value Deviates > 2*sigma from Zero	0.087
PLAT791_ALERT_4_G The Model has Chirality at C7	

[^2]
checkCIF publication errors

```
Q Alert level A
pUBL002_ALERT_1_A The contact author's address is misaing,
    publ_contact_author_address.
PURL005_ALERTT_1_A- _publ_contact_author_email, _publ_contact_author_fax and
    publ contact author phone are all missing.
    At least one of these should be present.
PURL006_ALERT_1_A _publ_requested_journal is missing
    e.g. 'Acta Crystallographica Section C'
PUBLOO8_ALERT_1_A _publ_section_title is missing. Title of paper.
pUBL009_ALERT_1_A _publ_author_name is missing. List of author(s) name(s).
pURL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERTT_1_A _publ_section_abstract is missing.
    Abstract of paper in English.
```

 7 ALBRT level \(A=\) Data misaing that is essential or data in wrong format
 0 ALBRT level \(G=\) General alerts. Data that may be required is missing

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

```
# atart Validation Reply Form
_vrf_PUBL002_GLORAL
;
PROBLEM; The contact author's address is missing,
RESPONSE: ...
*
#
PROBLEN: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBLOO6_GLORAL
,
PRORLEM: _publ_requeated_journal is misaing
RESPONSE: ...
;
_vrf_PUBLO08_GLORAL
;
PRORLEM: _publ_section_title is misaing. Title of paper.
RESPONSE: ...
;
_vrf_pUBL009_GLORAL
PROBLEN: _publ_author_name is misaing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_pUBLO10_GLORAL
PROBLEM: _publ_author_address is missing. Author(a) address(cs).
RESPONSE: ...
;
vrf pUBL012 GLOBAL
;
PROBLEX: publ_section_abstract is misaing.
RESDONSE: ...
z
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

(S)-2a (-)

PLATON version of 24/07/2014; check.def file version of 24/07/2014

 Amination of Sulfamovl Azide

E

3: $196 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Name	Retention Time	Area Percent	Pk \#
26.456	49.157	1	
	42.124	50.843	2

Totals	100.000

(R)-2b (+)

3: $226 \mathrm{~nm}, 4 \mathrm{~nm}$
Results
Name Retention Time
Area Percent
Pk \#
26.528
42.020
1.644
98.356

1
2

Totals
100.000

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found CIF dictionary Interpreting this report
Datablock: I

Bond precision:	$C-C=0.0048 \mathrm{~A}$	Wavelen	1. 54178
Cel1:	$a=10.2563$ (1)	$\mathrm{b}=11.7761$ (1)	$\mathrm{C}=13.4292$ (1)
	alpha=90	beta=101.640 (1)	gamma=90
Temperature:	296 K		
	Calculated	Report	
Volume	1588.61 (2)	1588.6	
Space group	P 21	P 121	
Hall group	P 2yb	P 2yb	
Moiety formula	C16 H18 N2 O3 S	2 (C16	$\mathrm{N} 2 \mathrm{O} 3 \mathrm{~S})$
Sum formula	C16 H18 N2 O3 S	C32 H3	06 S 2
Mr	318.39	636.77	
Dx,g cm-3	1. 331	1.331	
Z	4	2	
Mu (mm-1)	1. 933	1.933	
F000	672.0	672.0	
F000'	675.23		
h, k, 1max	12,14, 16	12, 14	
Nref	6140[3229]	5527	
Tmin, Tmax	$0.793,0.962$	0.581	
Tmin'	0.539		
Correction method= MULTI-SCAN			
Data completeness=1.71/0.90		Theta $(\max)=70.899$	
R (reflections) $=0.0324$ (5145)		wR2 (reflections) $=0.0842(5527)$	
$S=1.025$	Npar $=$ Npar $=405$		

The following ALERTS were generated. Each ALART has the format test-name_aLERT_alert-type_alert-level.
Click on the hyperlinks for more details of the teat.

	Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.0049 Ang.
	Alert level G
	PLAT033_ALERT_4_G Flack x Value Deviates $>$ 2*81gma from Zero 0.041
	PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check
	PLAT045_ALERT_1_G Calculated and Reported Z Differ by 2.00 Ratio
	PLAT142_ALRRT_4_ ${ }^{-}$a ${ }^{-}$on D - Axis Small or M1ssing 0.00010 Ang.
	PLAT143_ALERT_4_G su on c - Axis Small or M1ssing 0.00010 Ang.
	PLAT791_ALERT_4_G The Model has Cnirality at C8 R Verify
	PLAT791_ALERT_4_G The Model has Chirality at C11 R Verify
	0 ALERT level A - Most likely a serious problem - resolve or explain
	0 ALERT level B - A potentially serious problem, consider carefully
	1 ALERT level C - Check. Ensure it is not caused by an omission or oversight
	7 ALERT level G - General information/check it is not something unexpected
(R)-2b (+)	2 ALERT type 1 CIF construction/syntax error, inconsistent or misaing data
	0 ALERT type 2 Indicator that the structure model may be wrong or deficient
	1 ALERT type 3 Indicator that the structure quality may be low
	5 ALERT type 4 Improvement, methodology, query or suggestion
	0 ALERT type 5 Informative message, check

checkCIF publication errors

```
4 Alert level A
pUBLO02_ALERT_1_A The contact author's address is m1ssing,
    \overline{pu\overline{b}1_contact_author_address.}
PUBL005_ALERT_1_A _pub1_contact_author_ema11, _publ_contact_author_Iax and
    publ_contact_author_phone are all miss1ng.
    At least one or these should be present.
PUBL006_ALERT_1_A _pub1_requested_journal 1s m1ssing
    e.g. 'Acta Crystallographica Section C'
PUBLOOB_ALERT_1_A publ_section_title 1s missing. T1t1e or paper.
PUBL009_ALERT_1_A pub1_author_name 1s misa1ng. L1st of author(s) name(s).
PUBL010_ALERT_1_A pub1_author_address is m1ss1ng. Author(s) address(es).
```



```
    nbstract of paper 1n English.
```

[^3]
(R)-2b (+)

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categonies. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from joumal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a joumal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

```
* start Validation Reply Form
_VIT_PUBL.002_GLOBAL
7
PROBLRM: The contact author's address is migsing,
RHSPONSE| ...
;
_VIT_PURLO05_GLORNL
;
PROBLFM1 pub1_contact_author_ema11, pub1_contact_author_rax and
RRSPONSE: ...
;
_VIT_PUBL.006_GL.ORAL
;
PRORLFM: publ_requested_journal is missing
RESPONSE: ...
_vII_PUBLOOB GLORAL
#
PROBLMM: publ_section_title 1a miasing. Title of paper.
RHSPONSE, ...
;
_VIT_PUBL009 GLORAL
;
PRORLRM, pub1_author_name is missing. List of author(s) name (s).
RESSPONSE: ...
;
_VIT_PURL010_GLORAL
;
PROBLHM: publ_author_address 1s missing. Author(s) address(es).
RESPONSE: ...
VIT_PUBL012 GLOBAL
i
PROBLEM: publ_section_abatract 1s misaing.
RHSPONSE, ...
i
& end validation Reply Form
```


1: $196 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Totals
100.000

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

(S)-2b (-)

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision:	$C-C=0.0042 \mathrm{~A}$	Wavelength=1.54178
Cell:	$\mathrm{a}=10.2613$ (3)	$\mathrm{b}=11.7758$ (3) $\mathrm{C}=13.4262$ (4)
	alpha=90	beta=101.639(1) gamma=90
Temperature:	296 K	
	Calculated	Reported
Volume	1589.00 (8)	1589.00 (8)
Space group	P 21	P 1211
Hall group	P 2 yb	P 2Yb
Moiety formula	C16 H18 N2 O3 S	C16 H18 N2 O3 S
Sum formula	C16 H18 N2 O3 S	C16 H18 N2 O3 S
Mr	318.39	318.38
Dx,g cm-3	1.331	1.331
Z	4	4
Mu (mm-1)	1.933	1.933
F000	672.0	672.0
F000'	675.23	
h, k, 1max	12,14,16	12,14,16
Nref	5892[3102]	5466
Tmin, Tmax	$0.759,0.944$	$0.573,0.753$
Tmin'	0.599	
Correction method= MULTI-SCAN		
Data completeness $=1.76 / 0.93$		Theta $(\max)=68.724$
R (reflections) $=0.0289(5145)$		wR2 (reflections) $=0.0773(5466)$
$S=1.066$	Npar $=$ Npar $=407$	

The following ALERTS were generated. Each ALERT has the format
test-name ALERT alert-type alert-level.
Click on the hyperlinks for more detalls of the test.

	Alert level C PLAT340_ALRRT_3_C Low Bond Precision on C-C Bonds 0.0042 Ang.
$\mathrm{HN}^{-} \mathrm{S}^{\prime \prime}{ }_{\mathrm{N}} \mathrm{O}-\mathrm{Bn}$	Alert level G PLAT033_ALERT_4_g Flack x Value Deviates > 2*s1gma from zero 0.039 PLAT791_ALERT_4_G The Model has Cnirality at cll PLAT791_ALERT_4_G The Model has Chirality at C15
	```ALERT level A - Most likely a serious problem - resolve or explain ALERT level B - A potentially serious problem, consider carefully l ALERT level C - Check. Ensure it is not caused by an omission or oversight 3 ALERT level G - General 1nformation/check it 1s not someth1ng unexpected```
MeO $(S)-2 \mathbf{b}(-)$	0 ALERT type 1 CIF construction/syntax error, inconsistent or misaing data   0 ALERT type 2 Indicator that the atructure model may be wrong or dericient   1 ALERT type 3 Indicator that the structure quality may be low   3 ALERT type 4 Improvement, methodology, query or suggestion   0 ALERT type 5 Informative message, check

## checkCIF publication errors

```
4. Alert level A
PUBL002_ALERT_1_A The contact author's address is missing,
 publ_contact_author_address.
PUBL005_ALERT_1_A _pub1_contact_author_ema11, _publ_contact_author_fax and
 pu\overline{DI_contact_author_phone are all miss1ñg.}
 At least one of these should be present.
PUBL006_ALERT_1_A publ_requested_journal is m1sa1ng
 e.g. 'Acta Crystallographica Section C'
PUBLOOB ALERT 1 A publ section t1tle 1s m1ssing. T1tle of paper.
PUBLO09_ALERT___A _pub1_author_name 1s m1ssing. L1st of author(s) name(s).
PUBL010_ALERT_1_A pub1_author_address 1s missing. Author(s) address(es).
PUBL012_ALERT_1_A publ_section_abstract 1s missing.
 A\overline{bstract of paper 1n English.}
```

7 ALERT level A - Data missing that $1 s$ essential or data 1 n wrong format
0 ALERT level G - General alerts. Data that may be required 1 s missing

(S) -2b (-)

## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a joumal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

```
start Validation Reply Form
_vII_PUBLO02_GLOBAL
;
PROBLEM: The contact author's address 1s m1ssing,
RESPONSE: ...
;
_vrI_PUBL005_GLOBAL
;
PROBLEM: _publ_contact_author_ema11, publ_contact_author_rax and
RESPONSE: -..
vII PUBL006 GLOBAL
;
PROBLEM: _publ_requested_Journal 1s m1saing
RESPONSE: ...
_ vII_PUBLO08_GLOBAL
PROBLEM: publ_section_title 1s m1asing. T1tle of paper.
RESPONSE: ...
;
_VII_PUBL009_GLOBAL
;
PROBLEM: _publ_author_name 1s m1ss1ng. List of author(s) name(s).
RESPONSE: ...
;
_vII_PUBL010_GLOBAL
PROBLEM: _publ_author_address 1s m1ssing. Author(s) address(es).
RESPONSE: ...
_vII_PUBL012_GLOBAL
FROBLEM: _publ_section_abstract 1s misaing.
RESPONSE: ...
end Validation Reply Form
```


(S)-2b (-)


If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr joumal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of $05 / 02 / 2014$; check.def file version of $05 / 02 / 2014$

$1 \mathrm{NMMR}, 60 \mathrm{MHz}, \mathrm{CDCl}$

$77.31-76.99$

 छ

$2 \mathrm{c}( \pm)$

4: $230 \mathrm{~nm}, 4$
nm Results

$\mathrm{Pk} \#$	Retention Time	Area Percent
1	19.508	50.446
2	31.200	49.554




4: $230 \mathrm{~nm}, 4$ nm Results

$\mathrm{Pk} \#$	Retention Time	Area Percent
1	19.516	1.738
2	31.212	98.262

Totals 100.000

## checkCIF/PLATON report

You have not supplied any structure factors. As a result the fill set of tests cannot be run
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

(R)-2c (+)

No syntax errors found. CIF dictionary Interpreting this report
Datablock: I

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0063 \mathrm{~A}$	Wavelength=1.54178	
Cell:	$a=4.9711$ (1)	$b=11.8495$ (2)	$\mathrm{C}=25.3307$ (5)
	alpha=90	beta=90	gamma $=90$
Temperature:	100 K		



The following ALzRTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level.
Click on the hyperlinks for more detalls of the teat.


## checkCIF publication errors

```
4 Alert level A
PUBL002_ALERT_1_A The contact author's address is missing,
 publ_contact author address.
PUBL005_ALRRT_1_A publ_contact_author_ema11, publ_contact_author_rax and
 _\overline{publ_contac\overline{t}_author_phone a}re all missiñg.
 At least one of these should be present.
PUBL006 ALERT 1 A publ requested_journal 1s misaing
 e.g.' 'Acta Cr̄ystallographica Section C'
PUBLOOB_ALKRT_1_A publ_gection_title 1s miss1ng. T1tle of paper.
PUBL009_ALERT_1_A publ_author_name 1s m1saing. List of author(s) name(s).
PUBL010 ALERT 1 A publ author address 1s missing. Author(s) address(es).
pUBL012_ALERT_1_A publ_section_abstract 1s misaing.
 Abstract of paper 1n E}\mathrm{ English.
```

[^4]
## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to canry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from joumal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a joumal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

```
atart Valldation Reply Form
_VII_PURL002_GLOBAL
#
PROBt:M, The contact author's address is missing,
PESPONSE: ..
7
vII_PUBL005_GLORAL
;
PRORLEM: pub1_contact_author_ema11, pub1_contact_author_rax and
RESPCNSE: ...
_VII_PUBLOO6_GLOBAL
z
PROBLEM: publ requeated jourmal 1s m1asing
RESPONSE: ..
;
_vrI_PURLOOB_GLOBAL
PROBLEM, publ section_title 1s m1ssing. T1tle of paper.
RESPCNSE: ...
;
_VIT_PURL009_GLOBAL
#
PROBLEM; _publ_author_name 1s m1gsing. L1st or author(s) name(s).
RESPCNSE: ...
%
_VIT_PURL010_GLOBAL
\
PROBLEM: publ_author_addreas 1a missing. Author(s) addreas(eas).
RESPCNSE, ...
;
_VII_PUBLO12_GLORAL
PRORLEM, pub1 section abstract 1s m1ssing.
RESPONSE: ...
end Validation Reply Form
```


(R)-2c (+)

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E , you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr joumal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 05/02/2014; check.def file version of 05/02/2014





4: $230 \mathrm{~nm}, 4$
nm Results

$$
\begin{array}{rrr}
\text { Pk \# } & \text { Retention Time } & \text { Area Percent } \\
\hline 1 & 19.536 & 92.031 \\
2 & 31.268 & 7.969
\end{array}
$$

Totals

## checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found CIF dictionary Interpreting this report

(S)-2c (-)

Datablock: I

Bond precision:	$C-C=0.0049 \mathrm{~A}$	Wavelength=1.54178
Cell:	$\mathrm{a}=4.9639$ (1)	$\mathrm{b}=11.8448$ (3) $\mathrm{C}=25.3491$ (6)
	alpha=90	beta=90 gamma=90
Temperature:	100 K	
	Calculated	Reported
Volume	1490.44 (6)	1490.44 (6)
Space group	p 212121	P 212121
Hall group	P 2ac 2ab	P 2ac 2ab
Molety formula	C15 H15 Cl N2 O2	S C15 H15 Cl N2 O2 S
Sum formula	C15 H15 Cl N2 O2	$\mathrm{S} \quad \mathrm{Cl} \mathrm{H}^{\text {H15 Cl N2 O2 S }}$
Mr	322.81	322.80
Dx,g cm-3	1.439	1.439
Z	4	4
Mu (mm-1)	3.629	3.629
F000	672.0	672.0
F000'	676.45	
h, k, 1max	6,14,30	5,14,30
Nref	2747[ 1637]	2715
Tmin, Tmax	$0.623,0.930$	$0.583,0.753$
Tmin'	0.399	

Correction method= MULTI-SCAN

Data completeness $=1.66 / 0.99$	Theta $($ max $)=68.909$
$R($ reflections $)=0.0348(2547)$	wR2 (reflections) $=0.0878(2715)$

$S=1.065 \quad$ Npar $=$ Npar $=225$

The following ALERTS were generated. Each ALRRT has the format
test-name aLERT_alert-type_alert-level.
click on the hyperlinks for more details of the teat.


## checkCIF publication errors

```
Alert level A
PUBL002 ALERT 1 A The contact author's address is m1ssing,
 \overline{pub̄1_contact_author_address.}
PUBL005_ALERT_1_A publ_contact_author_ema11, publ_contact_author_rax and
 publ contact author phone are all miss1ng.
 At least one or these should be present.
PUBL006_ALERT_1_A publ_requested_journal 1s m1ssing
 e.g. 'Acta Crystallographica Section C'
PUBLOOB_ALERT_1_A publ_section_title 1s m1ssing. T1tle of paper.
pUBL009_ALERT_1_A publ_author_name 1s m1ssing. L1st of author(s) name(s).
pUBL010 ALRRT 1 A publ author address 1s m1ss1ng. Author(s) address(es).
PUBL012_ALKRT_1_A publ_section_abstract 1s missing.
 Abstract of paper in English.
```

[^5]0 ALERT level G - General alerts. Data that may be required $1 s$ missing

## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a joumal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

```
start Validation Reply Form
_vII_PUBL002_GLOBAL
*
PROBLEM: The contact author's address 1s misa1ng,
RESPONSE: ...
;
_vII_PUBLO05_GLOBAL
;
PROBLEM: publ_contact_author_ema11, publ_contact_author_fax and
RESPONSE: ...
;
_vII_pUBLO06_GLOBAL
;
PROBLEM: publ_requested_journal 1s m1ssing
RESPONSE: ...
;
_VII_PUBL008_GLOBAL
;
PROBLEM: publ section title 1s mlasing. T1tle of paper.
RESPONSE: ...
;
_vII_pUBL009_GLOBAL
;
PROBLEM: publ_author_name 1s missing. List of author(s) name(s).
RESPONSE: ...
;
_vrI_PUBL010_GLOBAL
;
PROBLEM: publ_author_address 1s missing. Author(s) address(es).
RESPONSE: ...
;
_vII_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract 1s m1ssing.
RESPONSE: ...
;
end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr joumal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

(S)-2c (-)

PLATON version of 05/02/2014; check.def file version of $05 / 02 / 2014$






(R)-2d (+)


羿

4: $220 \mathrm{~nm}, 4$ nm Results

$\mathrm{Pk} \#$	Retention Time	Area Percent
1	14.540	1.913
2	28.136	98.087


Totals	100.000



(S)-2d (-)


छ

4: $220 \mathrm{~nm}, 4$
nm Results

Pk \#	Retention Time	Area Percent
1	14.532	94.836
2	28.236	5.164

Totals
100.000

$L_{8 \angle 8 \text { \& }}$
$77.007-76.75$
 ${ }^{\varepsilon}$ IDのכ 'zHWSZT 'УWN $J_{\varepsilon \tau}$
128.70 - 128.70



1: $232 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

Name	Retention Time	Area Percent	Pk
24.008	49.777	1	
	33.952	50.223	2

Totals 100.000

灵

(R)-2e (+)

1: $223 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Name	Retention Time	Area Percent	1.236
24.076	98.764	$\#$	
33.984	2		

Totals
100.000


(S)-2e (-)

1: $232 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

Name	Retention Time	Area Percent	93.924
23.956	6.075	Pk \#	
34.112	2		

Totals
100.000






4: $235 \mathrm{~nm}, 4$ nm Results

PK \#	Retention Time	Area Percent
1	16.632	49.895
2	26.240	50.105

Totals



(S)-2f (-)


4: $235 \mathrm{~nm}, 4$
nm Results

Pk \#	Retention Time	Area Percent
1	16.548	91.544
2	26.232	8.456

Totals 100.000






(R)-2g (+)


1: $222 \mathrm{~nm}, 4$
nm Results

| Pk \# | Retention Time | Area Percent |
| ---: | ---: | ---: | ---: |
| 1 | 30.812 | 3.303 |
| 2 | 43.772 | 96.697 |


Totals	100.000



1: $222 \mathrm{~nm}, 4$ nm Results

Pk \#	Retention Time	Area Percent
1	31.596	95.022
2	45.152	4.978


Totals	100.000





$2 h( \pm)$

4: $284 \mathrm{~nm}, 4$
nm Results

$$
\begin{array}{rrr}
\text { Pk \# } & \text { Retention Time } & \text { Area Percent } \\
\hline 1 & 28.132 & 50.191 \\
2 & 31.988 & 49.809
\end{array}
$$

Totals

है

4: $284 \mathrm{~nm}, 4$
nm Results

| Pk \# Retention Time | Area Percent |  |
| ---: | ---: | ---: | ---: |
| 1 | 28.748 | 7.495 |
| 2 | 32.592 | 92.505 |


Totals	100.000





4: $284 \mathrm{~nm}, 4$
nm Results

Pk \#	Retention Time	Area Percent
1	28.732	88.814
2	32.788	11.186


Totals	100.000


77.00 - 76.74




5: $201 \mathrm{~nm}, 4 \mathrm{~nm}$
Results
Name Retention Time
Area Percent 49.935 50.065
PK $\%$ 19.976
100.000


5: $196 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Name	Retention Time	Area Percent	Pk \#
	15.880	5.814	1
	19.932	94.186	2


Totals	100.000	



Totals





3: $205 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Name	Retention Time	Area Percent	Pk \#
30.824	49.697	1	
	40.556	50.303	2


Totals	100.000



Totals
100.000


(S)-2j(-)

3: $193 \mathrm{~nm}, 4 \mathrm{~nm}$   Results	Retention Time	Area Percent	Pk
Name	30.632	79.990	1
	40.752	20.010	2

Totals
100.000


${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$2 k$





4: $214 \mathrm{~nm}, 4$
nm Results

| Pk $\#$ | Retention Time | Area Percent |
| ---: | ---: | ---: | ---: |
| 1 | 15.724 | 49.866 |
| 2 | 17.808 | 50.134 |



## checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

## Datablock: I



Bond precision:	$C-C=0.0072 \mathrm{~A}$	Wavelength=1.54178
Cell:	$a=5.0664$ (1)	$\mathrm{b}=11.9606$ (3) $\mathrm{C}=24.9189$ (6)
	alpha=90	beta=90 gamma=90
Temperature:	296 K	
	Calculated	Reported
Volume	1510.02 (6)	1510.02 (6)
Space group	P 212121	P 212121
Hall group	P 2ac 2ab	P 2ac 2ab
Moiety formula	C15 H20 N2 O2 S	C15 H20 N2 O2 S
Sum formula	C15 H20 N2 O2 S	C15 H20 N2 O2 S
Mr	292.39	292.39
Dx,g cm-3	1.286	1.286
Z	4	4
$\mathrm{Mu}(\mathrm{mm}-1)$	1.930	1.930
F000	624.0	624.0
F000'	626.97	
h, k, 1max	6,14,30	6,14,29
Nref	2941 [ 1746]	2870
Tmin, Tmax	$0.742,0.962$	$0.576,0.753$
Tmin'	0.673	
Correction method= MULTI-SCAN		
Data completenes	$s s^{=}=1.64 / 0.98$	Theta $(\max )=71.457$
R (reflections) =	0.0449 ( 2559)	wR2 (reflections) $=0.1195(2870)$
$S=1.040$	Npar $=$	204

The following ALERTS were generated. Each ALERT has the format
test-name ALBRT alert-type alert-level.
Click on the hyperlinka for more detaila of the teat.

```
 Alert level C
PLAT241 ALERT 2 C High Ueq as Compared to Neighbors for..... C7 Check
PLAT241_ALERT_2_C High Ueq as Compared to Neighbors for Cl4 Check
MNT242 ALEDT 2C
Ueq as Compared to Neighbors for
 S1 Check
PLAT242 ALERT 2 C Low Ueq as Compared to Neighbors for..... C8 Check
PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C8 -C15 1.37 Ang.
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.0072 Ang.
```


$(R)-2 \mathrm{k}(+)$

```
- Alert level C
```



## Alert level $G$

```
PLAT033_ALERT_4_G Flack x Value Deviates > 2*sigma from Zero 0.044
PLAT176_ALERT_-_-G The CIF-Embedded .res File Contains SADI Records
1 Report
PLAT301 ALERT 3 G Main Residue Disorder Percentage \(=\)
10 Note
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 8 Note
PLATT91_ALERT_4_G The Model has Chirality at C5
R Verify
PLAT860 ALERT 3 G Number of teast Salares Restraints
```

```
0 ALBRT level A = Most likely a serious problem - resolve or explain
```

0 ALBRT level A = Most likely a serious problem - resolve or explain
0 ALBRT level B = A potentially serious problem, consider carefully
0 ALBRT level B = A potentially serious problem, consider carefully
6 ALBRT level C = Check. Ensure it is not caused by an omission or oversight
6 ALBRT level C = Check. Ensure it is not caused by an omission or oversight
6 ALBRT level $G=$ General information/check it is not something unexpected
6 ALBRT level $G=$ General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
5 ALERT type 2 Indicator that the atructure model may be wrong or deficient
5 ALERT type 2 Indicator that the atructure model may be wrong or deficient
3 ALERT type 3 Indicator that the atructure quality may be low
3 ALERT type 3 Indicator that the atructure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
4 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check

```
 0 ALERT type 5 Informative message, check
```


## checkCIF publication errors

## Q Alert level A

PUBL002_ALERT_1_A The contact author's address is missing, publ_contact_author_address.
PUBL005_ALERT_1_A ${ }^{-}$_publ_contact_author_email, _publ_contact_author_fax and publ contact author phone are all missing.
At least one of these should be present.
PUBL006 ALERT 1 A publ requested_journal is missing
e.g. 'Acta Crystallographica Section C'

PUBLOOB_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL009_ALERT_1_A _publ_author_name is missing. List of author(s) name(s).
pUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERT_1_A _publ_section_abstract is missing. Abstract of paper in English.

[^6]
## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

(R)-2k (+)

If level $A$ alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

```
start Validation Reply Form
_vrf_PUBL002_GLORAL,
#
PROBLEM: The contact author's address is missing,
RESPONSE: ...
;
_vrf_pUBL005_GLORAL
z
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_pUBL006_GLORAL,
;
PRORLEN: _publ_requeated_journal is misaing
RESPONSE: ...
;
_vrf_PUBLO08_GLOBAL
7
PROBLEN: publ_gection_title is missing. Title of paper.
RESPONSE: ...
7
_vrf_PURL009_GLORAL
7
PROBLEN: _publ_author_name ia misaing. Liat of author(a) name(a).
RESPONSE: ...
;
_vrf_PUBL010_GLORAL
;
PROnLEM: _publ_author_address is misaing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLORAL
i
PROBLEN: publ_section_abstract is misaing.
RESPONSE: ...
;
end Validation Roply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

(R)-2k (+)

PLATON version of 24/07/2014; check.def file version of 24/07/2014



Totals	100.000






है

(R)-21 ${ }^{+}$)


4: $220 \mathrm{~nm}, 4$
nm Results
Pk \# Retention Time
Area Percent 9.089 90.911

Totals	100.000



${ }^{13} \mathrm{C}$ NMR, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$






4: $222 \mathrm{~nm}, 4$
nm Results

Pk \#	Retention Time	Area Percent
1	27.008	50.185
2	36.040	49.815


Totals	100.000




## checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

$(S, R)-\mathbf{2 m}(-)$

## Datablock: I

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0103 \mathrm{~A}$	Wavelength=1.54178
Cell:	$a=5.0613$ (4)	$\mathrm{b}=13.3347(10) \quad \mathrm{C}=22.6731$ (18)
	alpha=90	beta=90 gamma=90
Temperature:	298 K	
	Calculated	Reported
Volume	$1530.2(2)$	$1530.2(2)$
Space group	P 22121	P 22121
Hall group	P 2bc 2	P 2bc 2
Moiety formula	C16 H16 N2 O2 S	C16 H16 N2 O2 S
Sum formula	C16 H16 N2 O2 S	C16 H16 N2 O2 S
Mr	300.37	300.37
Dx,g cm-3	1. 304	1.304
Z	4	4
Mu (mm-1)	1.927	1.927
P000	632.0	632.0
F000'	635.04	
h, k, 1max	5,14,25	5,14,25
Nref	2207[ 1328]	2206
Tmin, Tmax	0.891, 0.981	$0.485,0.753$
Tmin'	0.667	
Correction method= MULTI-SCAN		
Data completeness $=1.66 / 1.00$		Theta $(\max )=58.901$
R (reflections) $=$	$0.0515(1792)$	$w R 2$ (reflections) $=0.1273(2206)$
$S=1.044$	Npar=	194

The following ALERTS were generated. Each ALERT has the format
test-name ALBRT alert-type alert-level.
Click on the hyperlinks for more detaila of the teat.


## checkCIF publication errors

```
A Alert level A
pUBLO02_ALERT_1_A The contact author's address is misaing,
 publ_contact_author_address.
PUBL005_ALERT_1_A _pub1_contact_author_emal1, publ_contact_author_fax and
 _publ_contact_author_phone are all misaing.
 At least one of these should be present.
pUBL006_ALERT_1_A _publ_requested_journal is miasing
 0.g. 'Acta Cryatallographica Section C'
pURL008_ALERT_1_A publ_section_title is misaing. Title of paper.
pUBL009_ALERT_1_A _publ_author_name is misaing. List of author(s) name(s).
PURLO10_ALERT_1_A publ_author_address is misaing. Author(s) address(es).
pUBL012_ALERT_1_A publ_zection_abatract is miasing.
 Abatract of paper in English.
```

7 ALSRT level $\mathbf{A}=$ Data missing that is essential or data in wrong format
0 ALERT level $G=$ General alerts. Data that may be required is missing

(S, R)-2m (-)

## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level $A$ alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.
\# atart Validation Reply Form
_vrf_pUBLOO2_GLORAL
i
PROBLEM: The contact author'a address is missing,
RESPONSE: ...
;
_vrf_pUBL005_GLORAL
PRORLEX: _publ_contact_author_email, _publ_contact_author_fax and RESPONSE: . . .
;
_vrf_pUBL006_GLOBAL
;
PROBLEN: publ_requested_journal is misaing
RESPONSE: ...
?
_vrf_pUBL008_GLORAL
PRORLEM: publ_section_title ia misaing. Title of paper.
RESPONSE: ...
_Vrf_PUBL009_GLOBAL
;
PRORLEM: publ_author_name is missing. List of author(s) name(s). RESPONSE: ...
$t$
_vrf_pUBLO10_GLORAL
PROBLEM: publ_author_address ia misaing. Author(a) address(es).
RESPONSE: ...
;
_vrf_pUBL012_GLOBAL
PRORLEN: publ_section_abstract is missing.
RESPONSE: ...
;
\# end Validation Reply Form

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

$(S, R)-2 \mathbf{m}_{(-)}$

PLATON version of 24/07/2014; check.def file version of 24/07/2014
Datathork I - allipoid plot





${ }^{1} \mathrm{H} \mathrm{NMR}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$
Product Crude Mixture
by $[\mathrm{Co}(\mathbf{P} 5)]$

$\mathbf{2 n}$ major
$\mathbf{3 n}$ trace amount

 Product Crude Mixture by
[Co(P5)]
2n major
$3 n$ trace amount








```
2:216 nm, 4 nm
 Results
```

| Pk \# Name | Retention Time | Area Percent |
| ---: | ---: | ---: | ---: |
| 1 | 66.268 | 50.249 |
| 2 | 100.704 | 49.751 |


Totals	100.000




4: $195 \mathrm{~nm}, 4$
nm Results

Pk $\#$	Retention Time	Area Percent
1	63.072	87.304
2	104.188	12.696


Totals	100.000



12: $219 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Pk \# Name	Retention Time	Area Percent
1	71.996	7.992
2	97.124	92.008


Totals	100.000


${ }^{77.01}-76.75$



S278



4: $210 \mathrm{~nm}, 4 \mathrm{~nm}$ Name
Retention Time Area Percent

29.412	49.812
33.764	50.188

$\mathrm{Pk} \#$
3. 764
50.188
2

## Totals



o(P10)
er $=59: 41$


7: $210 \mathrm{~nm}, 4 \mathrm{~nm}$
Results
Pk \# Name
Retention Time
Area Percent
28.328
28.328
34.032
34.032
59.374

Totals	100.000




1: $217 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Name	Retention Time	Area Percent	Pk \#
28.572	77.405	1	
	34.572	22.595	2


Totals	100.000	





1: $212 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Name	Retention Time	Area Percent	Pk \#
79.796	50.117	1	
	94.800	49.883	

Totals
100.000

灵

(R)-20 (-)

1: $212 \mathrm{~nm}, 4 \mathrm{~nm}$ Results
Name
Retention Time
Area Percent
Pk \# $80.816 \quad 7.501$
94.760
92.499 2

## Totals

100.000

77.00 亿－76．75


衾


1: $214 \mathrm{~nm}, 4 \mathrm{~nm}$
Results

Pk \# Name	Retention Time	Area Percent
1	20.672	50.256
2	26.448	49.744


Totals	100.000



(R)-2p (+)

1: $214 \mathrm{~nm}, 4 \mathrm{~nm}$
Results
Pk \# Name Retention Time
Area Percent
20.740
2.145
97.855
Totals
${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$





4: $210 \mathrm{~nm}, 4 \mathrm{~nm}$ Results

Name	Retention Time	Area Percent	Pk \#
	32.420	50.288	1
	42.760	49.712	2



है

(R)-2q (+)


4: $210 \mathrm{~nm}, 4 \mathrm{~nm}$
Results
Name
Retention Time
Area Percent
97.466
2.534

Pk \# 33.328
45.588
$\#$
1
2

Totals
100.000



ほ


ほ
4: $220 \mathrm{~nm}, 4$
nm Results

$\mathrm{Pk} \#$	Retention Time	Area Percent
1	71.576	50.315
2	76.476	49.685


Totals	100.000


き


き
4: $220 \mathrm{~nm}, 4$ nm Results

$$
\begin{array}{rrr}
\text { Pk \# } & \text { Retention Time } & \text { Area Percent } \\
\hline 1 & 70.856 & 93.188 \\
2 & 76.100 & 6.812
\end{array}
$$

Totals 100.000



き

4: $224 \mathrm{~nm}, 4$
nm Results

Pk \#	Retention Time	Area Percent
1	27.384	49.830
2	36.008	50.170

Totals
100.000



## checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run. THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report
Datablock: I


The following alERTE were generated. Each ALPBT has the format teat-name_ALERT_alert-type_alert-level.
click on the hyperlinks for more details of the test.

```
 Alert level C
DLAT340_ALEKT_3_C LOw Bond Dreciaion on C-C Bonds 0.0. 0.043 Ang.
```


(S, S)-2s (-)

```
 Alert level G
DLATOOS ALEST 5 a No iucr refine inatructiona detaila in the CIY Dleage Do :
DLAT033_ALERT_4_a Flack x Value Deviates > 2*aigma from Zero..... 0.055 Note
DLAT791 AtEET 4 G The Model has Chirality at C7 (Chiral SDGR) S Verify
DLAT791_ALERT_4_a The Model has Chirality at cs (Chiral spaR) (C)
 O ALERT lovel A - Mont likely a merioun problem - renolve or explain
 ALERT levol B - A potentially aerious problen, consider carefully
 aLERT level C = Check. Hnsure it ia not caused by an omimsion or oversight
 ALERT level G - General information/check it ia not momething unexpected
 ALERT type 2 CIF conatruction/ayntax error, inconsimtent or miaming data
 ALERRT type 2 Indicator that the atructure model may be wrong or deficient
 ALERT type 3 Indicator that the structure quality may be low
 ALgRT type 4 Improvement, methodology. query or auggention
 1 ALERT type 5 Informative menaage, check
```


## checkCIF publication errors

```
alert level A
pUBL002_MLERT_2_A The contact author'n addrema in misaing,
 publ_contact_author_addresa.
pUaL.005_AIERT_1_A - publ_contact_author_email, publ_contact_author_fax and
 publ_contact_author phone are all miaaing.
 at least one of theae ahould be present.
ptraL006_ALERT_1_A publ_requented_journal is mimaing
 e.g. 'Acta Cryatallographica Section C'
ptraL00s_ALEKT_1_A _publ_aection_title is missing. Title of paper.
pUSL009_ALEXT_2_A publ_author_name ia miasing. Liat of author(a) name(m).
pUsL010_ALERT_1_A publ_author_address ia misaing. Author(m) addrese(es).
purL012_ALERT_1_A publ_mection_abutract is miasing.
 Nbatract of paper in Engliah.
```

7 aLsRT lovol A - Data mimsing that in emsential or data in wrong format
0 aLsRT lovel $G$ - General alerta. Data that may be required ia misaing

## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the abseace of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level $A$ alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a joumal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

## Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
atart Validation Reply Form
_vrf_DURL002_GLOBAL.
#
pROBLEM: The contact author's address is misaing,
REspONSg: ...
;
_vrf_DURLOO5_GLOBAL.
proaLrM, publ_contact_author_email, publ_contact_author_fax and
RESDONSE: ...
;
_vrf_DUBLO06_GLOBAL
z
DROBLESM publ_requested_journal ia misaing
RESDONSE: ...
;
_vrf_DURLOOB_GLOBAL.
z
DROaLEM: publ_mection_title ia miasing. Title of paper.
RESDONSE: ...
;
_vrf_DURLO09_GLOBAL
;
pROaL_EM: _publ_author_name is misaing. Liat of author(a) name(a).
RESDONSE: ...
7
_vIf_DUBL010_GLOBAL.
;
DNOaLEM: _publ_author_address is miseing. Author(a) addresa(es).
RESDONSE: ...
z
_vrf_DURL012_aLORAL.
```

```
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
end Validation Reply Form
```


(S, S)-2s (-)

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

## PLATON version of 21/06/2015; check.def file version of 21/06/2015

Datablork I-clipaid plok


${ }^{1} \mathrm{H}$ NMR, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(S)-2t

~8 8

$-\infty$
$-\infty$
$-$



${ }^{13} \mathrm{C}$ NMR, 150 MHz , acetone-D6



Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Area	Area\%
1	42.226	3951498	50.405
2	56.653	3888058	49.595
Total		7839556	100.000



${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

.

$$
77.00 \text { 7 76.68 }
$$



## Table 2, entry 1



## Table 2, entry 4




## Table 2, entry 2







$$
\text { Table 2, entry } 3
$$




Table 2, entry 3





## Table 2, entry 5



Totals	100.000




Table 2, entry 6


Table 2, entry 6





5: $218 \mathrm{~nm}, 4 \mathrm{~nm}$   Results	Retention Time	Area Percent	
Name	24.620	33.837	Pk
	34.316	66.163	2

Totals 100.000




## Density Functional Theory (DFT) Calculations

## 1. Methods

Initial screening of conformational space. Calculations were performed on a truncated model system, wherein the linker on the bottom side of the porphyrin ring has been reduced to methyl groups $\left([\mathbf{C o}(\mathbf{P 4})]_{\text {model }}\right.$ and $[\mathbf{C o ( P 5 )}]_{\text {model }}$, Scheme S 1$)$ in order to reduce conformational complexity and cost. Initial screening of the conformational space was performed with molecular mechanics (MMFF) implemented in the Spartan04 software. The critical distances to the hydrogen radical in the HAA transition states have been constrained during the force field calculations ( $1.30 \AA$ for $\mathrm{C}^{\cdots} \mathrm{H}$ and $\mathrm{N}^{\cdots} \mathrm{H}$ distances). From the initial global screening, a number of relevant modes have been identified (A1-D2, Schemes S2-S3) and these have been subjected to a second round of conformational screening with frozen hydrogen bonds between the amide proton of the bridge and one of the $O(=S)$ atoms of the substrate ( $\mathrm{O}^{1}$ or $\mathrm{O}^{2}$ ). A selection of conformers thus obtained has been subjected to DFT calculations ${ }^{11-21}$ performed with the Gaussian 09 suite of programs. ${ }^{22}$ Geometries of the radical species (doublet spin state) were optimized in gas phase with the M06L ${ }^{23}$ functional in combination with the LANL2DZ basis set, which has been chosen due to the large size of the system. Stationary points were probed through vibrational analysis (1 negative frequency for transition states) and Gibbs free energy corrections were performed under standard conditions ( $298.15 \mathrm{~K}, 1.0 \mathrm{~atm}$ ). Additionally, we probed the performance of various density functionals through single point energy calculations at the geometries optimized at the levels described above by means of the SMD solvation model ${ }^{24}$ with benzene as solvent and the larger Def2TZVPP ${ }^{25}$ basis set. Since the optimal density functional for the current system is not known we tested three additional state of the art approaches that have been developed over the past decade: ${ }^{11-21,26-31}$ $\omega$ B97XD, ${ }^{32}$ M $06^{23}$ and MN12SX. ${ }^{33}$ The Gibbs free energies for all conformers are provided in Figs. S10-1 to S10-4.

Calculations on smaller model systems. To gain a better understanding of the conformational preferences during HAA in absence of the bridge (i.e., by eliminating any strain induced by the bridge), additional model calculations have been performed on a further truncated model system at the M06L/Def2SVP level ([Col $]_{\text {model11 }}$, Scheme S4, below).

Calculation of free energy surface. In order to construct the free energy surface, we reoptimized the three most stable transition state conformers of the preferred reaction mode (obtained with M06L/LANL2DZ) for both catalyst systems ( $[\mathbf{C o}(\mathbf{P 4})]_{\text {model }}$ and $\left.[\mathbf{C o ( P 5 )}]_{\text {model }}\right)$ with M06L/Def2SVP. From the optimized transition state structures, we performed Intrinsic Reaction Coordiante calculations (IRC) employing the L (ocal) Q (uadratic) A (approximation) method ${ }^{34,35}$ and reoptimized the end points with M06L/Def2SVP. The lowest of the three values after single point calculations with $\omega$ B97XD/Def2TZVPP ${ }_{\text {benzene(SMD) }} / \mathrm{M} 06 \mathrm{~L} /$ Def2SVP was chosen to construct the graph in Scheme S5.

Calculations of HAA transition states leading to 5- or 6-membered ring product. Finally, we investigated the kinetic selectivity between HAA transition states leading to the 5 - or 6 -membered ring products, also at the M06L/Def2SVP level ([Col model02, Scheme S6).

Coordinates file. A file for convenient viewing of computed geometries with the program Mercury 3.3 (or higher) is appended as separate "coordinates.xyz" file. ${ }^{36}$

Scheme S1. Truncated catalyst models $[\mathbf{C o}(\mathbf{P} 4)]_{\text {model }}$ and $[\mathbf{C o ( P 5 )}]_{\text {model }}$

$[\mathrm{Co}(\mathrm{P} 4)]_{\text {model }}$
$\boldsymbol{c}_{6}$-linker $=-\left(\mathrm{CH}_{2}\right)_{6}-$

$\boldsymbol{C}_{8}$-linker $=-\left(\mathrm{CH}_{2}\right)_{8}-$

Scheme S2. Investigated transition state conformations for HAA with $[\mathbf{C o ( P 4 )}]_{\text {model }}$ and substrate 1a


HAA transtion state (Mode A1)


HAA transtion state (Mode C1)


HAA transtion state (Mode A2)


HAA transtion state (Mode C2)


HAA transtion state (Mode B1)


HAA transtion state (Mode D1)

Scheme S3. Investigated transition state conformations for HAA with $[\mathbf{C o ( P 5 )}]$ model and substrate 1a


HAA transtion state (Mode A1)


HAA transtion state (Mode B2)


HAA transtion state (Mode D1)



HAA transtion state (Mode A2)


HAA transtion state (Mode C1)



HAA transtion state (Mode C2)


HAA transtion state (Mode D2)

## 2. Challenges and Simplifications

(1) Considering the large complexity of the system under investigation we assumed that the second bridge on the bottom side of the porphyrin ring has little influence on HAA occurring at the top side (i.e., we used a truncated model system; cf. Scheme S1).
(2) Due to the large size of the system under investigation we used the small LANL2DZ basis set for geometry optimization, which will lead to significant basis set superposition error. The optimized structures have been subjected to single point energy calculations with the larger Def2TZVPP basis set and four density functionals ( $\omega$ B97XD, M06, MN12SX and M06L).
(3) As a consequence of the above uncertainties we also focus on chemically meaningful trends rather than relying solely on exact free energy differences between the transition states leading to the major and minor enantiomer (on the order of $2 \mathrm{kcal} / \mathrm{mol}$ ). That is, the resulting stereochemical model has to be in agreement with characteristic selectivity trends arising from variations of the substrates. In particular the model should account for:
(a) Reactions of sterically hindered substrates (i.e., $\mathbf{1 s}, \mathbf{1 t}$ and $\mathbf{1 u}$ ) are selective only with $[\mathbf{C o}(\mathbf{P} 4)]$ (cf. Fig. 3C). They are facile but nonselective with $[\mathbf{C o}(\mathbf{P 5})]$.
(b) Low yields are obtained when substrates containing moieties with heteroatoms (ester, 10; furyl, $\mathbf{1 p}$; and thienyl, $\mathbf{1 q}$ ) are used in reactions with $[\mathbf{C o}(\mathbf{P} 4)]$. These reactions proceed smoothly with [Co(P5)] (cf. Fig. 3B).
(c) Significantly higher levels of enantioselectivity are obtained when reactions with substrates containing small alkenyl moieties ( $\mathbf{1 i}$ and $\mathbf{1 j}$ ) or a cyclopropyl group (1r) are performed with $[\mathbf{C o ( P 5 ) ] ~ v s . ~}[\mathbf{C o ( P 4 ) ]}$ (cf. Fig. 3A and 3B).
(4) We tested the conformational preference in absence of a bridge (Scheme S4), since we hypothesized that it is very likely that the herein identified least strained conformation will also play a significant role in the real systems with the bridge (Schemes S2 and S3). This is sought to further support the finally proposed stereochemical model.

## 3. Various conformers for HAA transition states after optimization with M06L/LANL2DZ

With the $[\boldsymbol{C o}(\mathbf{P} 4)]_{\text {model }}$ system. The conformer distributions for various HAA modes with $[\mathbf{C o}(\mathbf{P 4})]_{\text {model }}$ at the $\omega \mathrm{B} 97 \mathrm{XD} / \mathrm{Def} 2 \mathrm{TZVPP}_{\text {benzene }(\mathrm{SMD})} / \mathrm{M} 06 \mathrm{~L} / \mathrm{LANL} 2 \mathrm{DZ}$ are shown in Fig. S10-1 (left side). Modes A1-B1 lead to generation of the major enantiomer with $[\mathbf{C o ( P 4 )}]_{\text {model }}$, whereby $\mathbf{A 1}$ and $\mathbf{A 2}$ are used to denote conformations wherein both aryl-containing moieties are on one side of the bridge (i.e. nearby-the-bridge) and B1 is applied to conformations wherein phenyl ring $\mathbf{A}$ is behind and phenyl ring $\mathbf{B}$ is in front of the bridge (i.e., underneath-the-bridge; Scheme S2). The nomenclature for HAA modes, which lead to the corresponding minor enantiomer is $\mathbf{C 1}$ and $\mathbf{C} 2$ (aryl rings on same side) and D1 (aryl rings on opposite sides). Qualitatively very similar results to $\omega$ B97XD are obtained with other investigated density functionals [M06 (Fig. S10-2), MN12SX (Fig. S10-3) and M06L (Fig. S10-4)]. For images of the most stable conformers for each mode, see Fig. S11-1. We find that mode D1 emerges as the most favored pathway with $[\mathbf{C o}(\mathbf{P} 4)]_{\text {model }}(1.2 \mathrm{kcal} / \mathrm{mol}$ lower in energy than mode A1, Fig. S10-1).

With the $[\mathbf{C o}(\mathbf{P 5})]_{\text {model }} \boldsymbol{s y s t e m}$. In case of the larger $[\mathbf{C o ( P 5 )}]_{\text {model }}$ system the energy difference between modes D1 and A1 is larger ( $3.6 \mathrm{kcal} / \mathrm{mol}$ in favor of D1, Fig. S10-1, right side). Qualitatively very similar results to $\omega$ B97XD are obtained with other investigated density functionals [M06 (Fig. S102), MN12SX (Fig. S10-3) and M06L (Fig. S10-4)]. For images of the most stable conformers for each mode, see Figs. S12-1/S12-2.

Initial analysis of the results. The above energies are only in agreement with the experimentally observed trend for the system with the 8 -carbon bridge $\left([\mathbf{C o}(\mathbf{P 5})]_{\text {model }}\right)$, however, mode $\mathbf{A 1}$, which leads to formation of the correct enantiomer with $[\mathbf{C o}(\mathbf{P} 4)]_{\text {model }}$ is energetically disfavored by $1.2 \mathrm{kcal} / \mathrm{mol}$ relative to D1 (Fig. S10-1). We initially thought such discrepancy might either be attributed to the computational uncertainty associated with the DFT method and/or the uncertainty arising from the high conformational flexibility. It has to be stated at this point that reinvestigation of modes A1 and D1 at the higher M06L/Def2TZVPP benzene(SMD) $^{1} /$ M06L/Def2SVP $_{\text {benzene(SMD) }}$ level (data not shown) did not lead to a significant qualitative as well as quantitative change in the computed preference. Alternatively, a more intriguing mechanistic scenario, which would nonetheless be in agreement with the seemingly inconsistent computational results, is proposed below (see Scheme S5; cf. Fig. 4B) and the following mechanistic investigations are provided in support of the latter hypothesis (see next paragraph).


Fig. S10-1. Conformer distribution ( $\Delta \mathrm{G}$ in $\mathrm{kcal} / \mathrm{mol}$ at the $\omega \mathrm{B} 97 \mathrm{XD} / \mathrm{Def}^{2 T Z V P P} \mathrm{~b}_{\text {benzene(SMD) }} / /$ M06L/LANL2DZ level) for HAA transition states with $[\mathbf{C o}(\mathbf{P 4})]_{\text {model }}$ (left) and $[\mathbf{C o ( P 5 )}]_{\text {model }}$ (right); for the corresponding mode of additions A1-D2, see Schemes S2-S3.


Fig. S10-2. Conformer distribution ( $\Delta \mathrm{G}$ in $\mathrm{kcal} / \mathrm{mol}$ at the M06/Def2TZVPP benzene(SMD) $^{\text {b }} / / \mathrm{M} 06 \mathrm{~L} / \mathrm{LANL} 2 \mathrm{DZ}$ level) for HAA transition states with $[\mathbf{C o}(\mathbf{P 4})]_{\text {model }}$ (left) and $[\mathbf{C o ( P 5 )}]_{\text {model }}$ (right); for the corresponding mode of additions A1-D2, see Schemes S2-S3.


Fig. S10-3. Conformer distribution ( $\Delta \mathrm{G}$ in $\mathrm{kcal} / \mathrm{mol}$ at the MN12SX/Def2TZVPP ${ }_{\text {benzene }(\mathrm{SMD})} / /$ M06L/LANL2DZ level) for HAA transition states with $[\mathbf{C o}(\mathbf{P 4})]_{\text {model }}$ (left) and $[\mathbf{C o}(\mathbf{P 5})]_{\text {model }}$ (right); for the corresponding mode of additions A1-D2, see Schemes S2-S3.


Fig. S10-4. Conformer distribution ( $\Delta \mathrm{G}$ in $\mathrm{kcal} / \mathrm{mol}$ at the M06L/Def2TZVPP ${ }_{\text {benzene(SMD) }} / /$ M06L/LANL2DZ level) for HAA transition states with $[\mathbf{C o ( P 4 )}]_{\text {model }}$; for the corresponding mode of additions A1-D1, see Scheme S2.


Mode A1


Mode B1


Mode C2


Mode A2


Mode C1


Mode D1

Fig. S11-1. Lowest free energy conformers for various HAA modes with $[\mathbf{C o ( P 4 )}]_{\text {model }}$ at the $\omega$ B97XD/Def2TZVPP ${ }_{\text {benzene(SMD) }} / / \mathrm{M} 06 \mathrm{~L} / \mathrm{LANL} 2 \mathrm{DZ}$ level (Fig. S10-1, Scheme S2); ball and stick model, most hydrogen atoms have been omitted for clarity.

## Front view:



Side view:


Mode A1_C6


Mode D1_C6

Fig. S11-2. Lowest free energy conformers for HAA modes $\mathbf{A 1}$ and $\mathbf{D 1}$ with $[\mathbf{C o ( P 4})]_{\text {model }}$ at the $\omega$ B97XD/Def2TZVPP benzene(SMD) $^{(/ M 06 L / L A N L 2 D Z ~ l e v e l ~(F i g . ~ S 10-1, ~ S c h e m e ~ S 2) ; ~ s p a c e ~ f i l l i n g ~ m o d e l . ~}$


Mode A1


Mode B1


Mode A2


Mode B2

Fig. S12-1. Lowest free energy conformers for various HAA modes with $[\mathbf{C o ( P 5 )}]$ model at the $\omega$ B97XD/Def2TZVPP ${ }_{\text {benzene(SmD) }} /$ /M06L/LANL2DZ level (Fig. S10-1, Scheme S3); ball and stick model, most hydrogen atoms have been omitted for clarity.


Mode C1


Mode D1


Mode C2


Mode D2

Fig. S12-2. Lowest free energy conformers for various HAA modes with $[\mathbf{C o ( P 5})]_{\text {model }}$ at the $\omega$ B97XD/Def2TZVPP ${ }_{\text {benzene(SMD) }} / / \mathrm{M} 06 \mathrm{~L} / \mathrm{LANL} 2 \mathrm{DZ}$ level (Fig. S10-1, Scheme S3); ball and stick model, most hydrogen atoms have been omitted for clarity.

## Front view:



Side view:


Fig. S12-3. Lowest free energy conformers for HAA modes A1 and D1 with $[\mathbf{C o ( P 5 )}]_{\text {model }}$ at the $\omega$ B97XD/Def2TZVPP ${ }_{\text {benzene(SmD) }} /$ M06L/LANL2DZ level (Fig. S10-1, Scheme S3); space filling model.

## 4. Energetically most stable HAA transition state in model system without a bridge

The experimentally obtained results with isotopically labeled substrates clearly indicate that HAA is stereochemistry determining (cf. Fig. 4A). In contrast, the DFT results suggest that it is likely not the energetically most stable HAA transition state that is relevant to the outcome of the reaction (Fig. S10-1). Additional calculations on a model system without a bridge have been performed to shed light onto possible reasons ([Col $]_{\text {model01 }}$; Scheme S 4 ).
$\boldsymbol{S c h e m e} \boldsymbol{S 4}$. Investigated transition state conformations for HAA with $[\mathbf{C o}]_{\text {model01 }}$


HAA transtion state (Mode E)


HAA transtion state (Mode F)


HAA transtion state (Mode H)

The free energy surfaces and images of computed structures associated with Scheme S4 are shown in Figs. S13-1 and S14-1, respectively. These calculations suggest that mode F out of 4 possible modes $(\mathbf{E}-\mathbf{H})$ is preferred in absence of a bridge $(1.8 \mathrm{kcal} / \mathrm{mol}$ lower in energy than mode $\mathbf{E}$ at the $\omega B 97 X D / D e f 2 T Z V P P_{\text {benzene(SMD) }}$ level; Fig. S14-1). Mode F is furthermore the same conformation that is also operative in modes B2 and D1 (cf. Schemes S2 and S3). Modes E and F are distinguished by whether oxygen atom $\mathrm{O}^{1}$ or $\mathrm{O}^{2}$ on the substrate engages in an H -bonding interaction with the amide group on the catalyst (Scheme S4). Additionally, the lone pair on $\mathrm{N}^{1}$ is antiperiplanar with respect to the $\mathrm{S}-\mathrm{N}^{\cdot}$ bond in $\mathbf{F}$, reducing electronic repulsion with the $\mathrm{N}^{\cdot}$ radical. The alternative modes $\mathbf{G}$ and $\mathbf{H}$, relevant to modes $\mathbf{A 1}$, A2, C1 and C2 in Schemes S2 and S3, are 3.2 and $2.9 \mathrm{kcal} / \mathrm{mol}$ above mode F, respectively (at the $\omega$ B97XD/Def2TZVPP ${ }_{\text {benzene(SMD) }}$ level; Fig. S14-1). For instance, mode G, relevant to mode A1, suffers from steric strain that arises from the close proximity between the phenyl ring on the substrate and the amide moiety on the catalyst.


Fig. S13-1. Conformer distribution $(\Delta \mathrm{G})$ after geometry optimization with M06L/Def2SVP for HAA transition states with catalyst systems without a bridge $[\mathbf{C o}]_{\text {model01 }}$ and $[\mathbf{C o}]_{\text {model02 }}$; for the corresponding modes of additions E-J, see Schemes S4 and S6 (below).


Mode_E01
(model for Modes B1 and D2)
1.8


Mode_F01
(model for Modes B2 and D1)
0.0


Mode_H01
(model for Mode C2)
2.9

Fig. S14-1. Lowest free energy conformers for various HAA modes (E-H) with catalyst systems without a bridge at the $\omega$ B97XD/Def2TZVPP benzene(SMD) $^{\text {/ M }}$ (M6L/Def2SVP level (Fig. S13-1, Scheme S4); ball and stick model, most hydrogen atoms have been omitted for clarity.

## 5. The free energy surface: kinetic vs thermodynamic control (M06L/Def2SVP)

Although mode D1 (= TS(I) ${ }^{\text {under }}$ ) "underneath-the-bridge" appears to be the thermodynamically favored pathway for both of the real catalyst systems $([\mathbf{C o}(\mathbf{P} 4)]$ and $[\mathbf{C o}(\mathbf{P 5})])$, in agreement with the calculations performed on the model system without a bridge (Scheme S4), a more complex mechanism might be operative with $[\mathbf{C o}(\mathbf{P} 4)]$, wherein kinetic control prevails over thermodynamic factors (Scheme S5).

Scheme S5. Proposed rationale for HAA with $[\mathbf{C o ( P 4 )}]_{\text {model }}$ (kinetic control) vs $[\mathbf{C o ( P 5 )}]_{\text {model }}$ (thermodynamic control)


Kinetic control. In case of $[\mathbf{C o}(\mathbf{P 4})]_{\text {model }}$, the energy difference $(1.8 \mathrm{kcal} / \mathrm{mol})$ between the most stable mode $\mathbf{D 1}\left(=\mathrm{C}_{6}-\mathrm{TS}(\mathbf{I})^{\text {under }}\right)$ and the second most stable mode A1 $\left(=\mathrm{C}_{6}-\mathrm{TS}(\mathbf{I})^{\text {near }}\right)$ is smaller than that with $[\mathbf{C o}(\mathbf{P 5})]_{\text {model }}(6.6 \mathrm{kcal} / \mathrm{mol})$. This may be attributed to the reduced available space underneath the bridge as well as a repulsive interaction between $\mathrm{O}^{1}$ on the substrate and the methoxy group on the catalyst (cf. $\mathrm{C}_{6}-\mathrm{TS}(\mathbf{I})^{\text {under }}$; right side in Scheme S5). However, the thermodynamically favored mode D1 $\left(=\mathrm{C}_{6}-\mathrm{TS}(\mathbf{I})^{\text {under }}\right)$ may not be kinetically accessible in the smaller $[\mathbf{C o}(\mathbf{P 4})]_{\text {model }}$ system. The following alternative scenario is proposed: It is plausible that the two aryl-containing moieties on the substrate ( $\mathbf{A}$ and $\mathbf{B}$ ) are situated on the same side of the bridge in the initially generated nitrogen-centered radical $\mathbf{I}^{\text {near }}$. Conformational reorganization ( $\mathbf{I}^{\text {near }} \rightarrow \mathbf{I}^{\text {under }}$ ) to access mode D1 (= TS(I) ${ }^{\text {under }}$ ) may, however, involve a significant kinetic barrier (i.e., it is slow), leaving mode A1 ( $\left.=\mathrm{TS}(\mathbf{I})^{\text {near }}\right)$ as the only possible choice (kinetic control). The exact barrier for such a conformational change ( $\mathbf{I}^{\text {near }} \rightarrow \mathbf{I}^{\text {under }}$ ) is difficult to determine with certainty through DFT due to a flat potential energy surface (approximated by dashed line). Nonetheless, comparison of the space-filling images for modes A1 ( $\left.=\mathrm{TS}(\mathbf{I})^{\text {near }}\right)$ and $\mathbf{D 1}\left(=\mathrm{TS}(\mathbf{I})^{\text {under }}\right)$ illustrates the steric demand that may be associated with such a process. That is, phenyl ring $\mathbf{A}$ is slightly above the top of the bridge in $\mathbf{A 1}$ (see Mode A1- $\mathbf{C}_{6}\left(=\mathrm{C}_{6}-\mathrm{TS}(\mathbf{I})^{\text {near }}\right)$ in Fig. S11-2).

Thermodynamic control. In case of the larger $[\mathbf{C o}(\mathbf{P} 5)]_{\text {model }}$ system, the conformational change from ( $\mathbf{I}^{\text {near }} \rightarrow \mathbf{I}^{\text {under }}$ ) may not involve a significant barrier. Again, the space-filling images for modes A1 and D1 support this proposal (i.e., the phenyl ring $\mathbf{A}$ is lower than the top of the bridge in A1, see Mode A1-C $\mathbf{8}\left(=\mathrm{C}_{8}-\mathrm{TS}(\mathbf{I})^{\text {near }}\right)$ in Fig. $\left.\mathrm{S} 12-3\right)$. Therefore, the most stable HAA mode $\mathbf{D} 1\left(=\mathrm{TS}(\mathbf{I})^{\text {under }}\right)$ is likely operative in the latter case, leading to the prochiral $(R)$ HAA (thermodynamic control).

Furthermore, taking into account the above kinetic factors, mode $\mathbf{C 1}$ (cf. Scheme S2) is likely the kinetically accessible pathway through which the minor enantiomer of the product is generated with $[\mathbf{C o}(\mathbf{P 4})](1.9 \mathrm{kcal} / \mathrm{mol}$ above mode A1; Fig. S10-1). In both modes, A1 and $\mathbf{C 1}$, the two substituents on the substrate (phenyl ring $\mathbf{A}$ and $\mathbf{B}$ ) are also on the same side of the bridge (Scheme S2).

For a more detailed description of the potential energy surface shown in Scheme S5, see Section 8 below.

## 6. Rationale regarding enantioselectivity trends based on variations of the substrate

Taking into consideration the above investigations, the following rationale might be given for the experimentally observed trends.
(1) Assuming that the energetic barrier associated with conformational change en route to mode D1 is a critical factor for enantiodetermination could explain why reactions with substrates containing small moieties ( $\mathbf{1 i} \mathbf{i} \mathbf{1} \mathbf{j}$ and $\mathbf{1 r}$ ) are highly enantioselective when promoted by $[\mathbf{C o ( P 5 ) ]}$ (cf. Fig. 3A). That is, the less sterically demanding substrates could possibly facilitate the conformational change that has to occur during transition between modes A1 and D1 (I ${ }^{\text {near }} \rightarrow \mathbf{I}^{\text {under }}$; cf. Scheme S5). For the same reason, reactions with $\mathbf{1 i}$ and $\mathbf{1 j}$ are only moderately stereoselective when promoted by $[\mathbf{C o ( P 4 ) ]}$ (cf. Fig. 3A), likely because the interchange between modes A1 and D1 is not completely prohibited. With substrate $\mathbf{1 r}$ bearing the small cyclopropyl group the opposite enantiomer (same sense as with $[\mathbf{C o ( P 5 ) ]}$ ) is generated, suggesting that $\mathbf{I}^{\text {near }} \rightarrow \mathbf{I}^{\text {under }}$ isomerization is more facile. It may also be plausible to account for the results with $[\mathbf{C o}(\mathbf{P 5})]$ solely on the basis of mode D1. In mode D1 (Scheme S5) aryl ring B is pointing toward the front, which is only possible due to the absence of ortho substituents on the 3,5-di-tertbutylaryl ring, a fact that allows the latter aryl moiety to tilt, thereby creating the necessary space to accommodate the substrate.
(2) When reaction of sterically relatively unhindered azide $\mathbf{1 r}$ is catalyzed by $[\mathrm{Co}(\mathbf{P 5})]$, the $(R)$ product is formed with high enantioselectivity (cf. Fig 3B). The same substrate also leads to product $(R)$ $2 \mathbf{r}$ with a small $(R)$-preference (58:42 er) when the reaction is performed with $[\mathrm{Co}(\mathbf{P} 4)]$. Such anomalous $(R)$-selectivity with $[\mathrm{Co}(\mathbf{P 4})]$ agrees well with a thermodynamically more stable but kinetically less accessible "underneath-the-bridge" transition state $\mathrm{C}_{6}-\mathrm{TS}(\mathbf{I})^{\text {under }}$ in cases when the substituent on the substrate is small.
(3) Substrates containing additional functional groups with heteroatoms ( $\mathbf{1 0}, \mathbf{1 p}$ and $\mathbf{1 q}$ ) result in low yields in presence of catalyst $[\mathbf{C o ( P 4 ) ]}$ (cf. Fig. 3B). This trend may be rationalized with increased electron-electron repulsion that exists between the substrate's heteroatom and the methoxy group on the catalyst (cf. mode D1 ( $=\mathrm{C}_{6}-\mathrm{TS}(\mathbf{I})^{\text {under }}$ ) in Scheme S5).
(4) Substrates $\mathbf{1 s}$, $\mathbf{1 t}$ and $\mathbf{1 u}$ carrying bulky units undergo reactions non-selectively with catalyst $\left[\mathbf{C o ( P 5 ) ]}\right.$ (cf. Fig. 3C). It is plausible that the generally favored mode D1 (cf. $\mathrm{C}_{8}-\mathrm{TS}(\mathbf{I})^{\text {under }}$ in Scheme S5) will either be destabilized due to the steric repulsion between the additional bulk and the bridge (with
substrate 1s) or the bulky group might slow down the conformational change that is required for $\mathbf{I}^{\text {near }} \rightarrow$ $\mathbf{I}^{\text {under }}$ isomerization (Scheme S5), so that mode A1 $\left(=\mathrm{C}_{8}-\mathrm{TS}(\mathbf{I})^{\text {near }}\right)$ will become competitive.

## 7. Kinetic selectivity for HAA leading to 5- or 6-membered ring products

To shed light onto the selective formation of the 5 -membered ring product with catalysts $[\mathbf{C o}(\mathbf{P} 4)]$ and $[\mathbf{C o}(\mathbf{P 5})]$, we considered model system $[\mathbf{C o}]_{\text {model02 }}$ without benzylic hydrogen atoms (Scheme S6) and compared the HAA barriers that would lead to the 5 - and 6 -membered ring products, respectively. The results indicate that in absence of any possible strain induced by the catalyst bridge and when no benzylic hydrogen atoms are present, HAA through mode $\mathbf{J}$ is preferred by $3.2 \mathrm{kcal} / \mathrm{mol}$ over mode $\mathbf{I}$. For the corresponding free energies and images of computed structures, see Figs. S13-1 and S14-2. The low strain of the 7-membered ring transition state in J permits HAA to occur in an almost linear trajectory from the carbon to the nitrogen atom (167.4 ${ }^{\circ}$; Fig. S14-2), whereas this angle (among others) is significantly contracted in the 6-membered ring transition state in I (156.6 ; Fig. S14-2). The strain associated with the 6 -membered ring transition state is likely the reason why significant amounts of 6membered ring product are formed with the non-bridged catalysts (cf. Table S2), albeit generation of the 5 -membered ring product is still preferred entropically. That formation of the 5 -membered ring product is exclusive with catalysts $[\mathbf{C o}(\mathbf{P} 4)]$ and $[\mathbf{C o}(\mathbf{P 5})]$ may be attributed to the steric pressure induced by the bridge which likely facilitates angle contraction and enforces close proximity between the hydrogen atom in $\beta$ position and the nitrogen-centered radical.

Scheme S6. Investigated transition state conformations for HAA leading to 5- and 6-membered ring products with $[\mathbf{C o}]_{\text {model02 }}$


HAA transtion state (Mode I) leading to 5 -membered ring product

major
HAA transtion state (Mode J) leading to 6 -membered ring product


Fig. S14-2. Lowest free energy conformers for various HAA modes (I-J) with catalyst systems without a bridge at the $\omega$ B97XD/Def2TZVPP benzene(SMD) $^{/ / M 06 L / D e f 2 S V P ~ l e v e l ~(F i g . ~ S 13-1, ~ S c h e m e ~ S 6) ; ~ b a l l ~ a n d ~}$ stick model, most hydrogen atoms have been omitted for clarity.

## 8. Captions for movies (SI-C and SI-D) to illustrate the major pathways leading to the enantiodifferentiative HAA and stereoretentive RS by [ $\mathrm{Co}(\mathrm{P} 4)]$ and $[\mathrm{Co}(\mathrm{P} 5)]$ :

From the structures generated through the IRC calculations, we created two animations in PyMOL v1.5.0.4. for the most preferred pathways leading to the major enantiomer with $[\mathbf{C o}(\mathbf{P} 4)]$ and $[\mathbf{C o}(\mathbf{P 5})]$, respectively. They are appended as separate.mp4 files (See SI-C and SI-D).

SI-C: Animation of pro-(S) selective HAA via "nearby-the-bridge" transition state and stereoretentive RS with $[\mathrm{Co}(\mathbf{P 4})]$; duration: 17 seconds. The following time points provide a short description of the animated content; 0:00-0:06 seconds: a $360^{\circ}$ rotation of structure $\mathbf{I}^{\text {near }}$ (cf. Scheme S5); 0:06-0:09 seconds: HAA abstraction sequence $\mathbf{I}^{\text {near }} \rightarrow \mathrm{TS}(\mathbf{I})^{\text {near }} \rightarrow(S i)-\mathbf{I I}^{\text {near }}$ (cf. Scheme S5); 0:09-0:11 seconds: conformational adjustment of the bridge performed at the structure of ( Si )-II ${ }^{\text {near }}$ (not shown in Scheme S5); 0:11-0:12 seconds: dihedral angle rotation $(\mathrm{H}-\mathrm{N}-\mathrm{Co}-\mathrm{N})$ of the newly generated $\mathrm{N}-\mathrm{H}$ bond around the $\mathrm{N}-\mathrm{Co}$ bond $\left[(\mathrm{Si})-\mathbf{- I I}{ }^{\text {near }} \rightarrow \mathrm{TS}(\mathbf{I I})^{\text {near. }}\right.$; in $\mathrm{TS}(\mathbf{I I})^{\text {near }}$ the nitrogen centered singly occupied orbital is of p character $\mathrm{vs} \mathrm{sp}^{3}$ in (Si)-II $\left.{ }^{\text {near }}\right]$, followed by radical substitution $\left[\mathrm{TS}(\mathbf{I I})^{\text {near }} \rightarrow\left[(S)\right.\right.$-III $\left.{ }^{\text {near }}\right] ; 0: 13-0: 17$ seconds: dissociation of the product (not shown in Scheme S5).

SI-D: Animation of pro-(R) selective HAA via "underneath-the-bridge" transition state and stereoretentive RS with $[\mathrm{Co}(\mathbf{P 5})]$; duration: 19 seconds. The following time points provide a short description of the animated content; 0:00-0:06 seconds: a $360^{\circ}$ rotation of structure $\mathbf{I}^{\text {under }}$ (cf. Scheme S5); 0:06-0:09 seconds: HAA abstraction sequence $\mathbf{I}^{\text {under }} \rightarrow \mathrm{TS}(\mathbf{I})^{\text {under }} \rightarrow$ (Re)-II ${ }^{\text {under }}$ (cf. Scheme S5); 0:09-0:14 seconds: dihedral angle rotation $(\mathrm{H}-\mathrm{N}-\mathrm{Co}-\mathrm{N})$ of the newly generated $\mathrm{N}-\mathrm{H}$ bond around the $\mathrm{N}-\mathrm{Co}$ bond $\left[(R e)-\mathbf{I I}{ }^{\text {under }} \rightarrow \mathrm{TS}(\mathbf{I I})^{\text {under }}\right.$; in $\mathrm{TS}(\mathbf{I I I})^{\text {under }}$ the nitrogen centered singly occupied orbital is of p character vs $\mathrm{sp}^{3}$ in (Re)-II $\left.{ }^{\text {under }}\right]$, followed by radical substitution $\left[\mathrm{TS}(\mathbf{I I})^{\text {under }} \rightarrow\left[(R)-\mathbf{I I I}{ }^{\text {under }}\right] ; 0: 14-0: 19\right.$ seconds: dissociation of the product (not shown in Scheme S5).

## References

1. Y. Chen, K. B. Fields, X. P. Zhang, Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation. $J$. Am. Chem. Soc. 126, 14718-14719 (2004).
2. Y. Chen, J. V. Ruppel, X. P. Zhang, Cobalt-catalyzed asymmetric cyclopropanation of electrondeficient olefins. J. Am. Chem. Soc. 129, 12074-12075 (2007).
3. R. M. Lanigan, P. Starkov, T. D. Sheppard, Direct synthesis of amides from carboxylic acids and amines using $\mathrm{B}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{3}$. J. Org. Chem. 78, 4512-4523 (2013).
4. R. K. Kawade, P.-H. Huang, S. N. Karad, R.-S. Liu, Gold-catalyzed annulations of allenes with Nhydroxyanilines to form indole derivatives with benzaldehyde as a promoter. Org. Biomol. Chem. 12, 737-740 (2014).
5. S. R. Shengule, G. Ryder, A. C. Willis, S. G. Pyne, Highly diastereoselective N-acyliminium ion cyclization reactions of a tethered furan. Tetrahedron 68, 10280-10285 (2012).
6. M. Wenzel, D. Preiss, G. Gunther, Synthese von ferrocen- bzw. rutthenocen-amphetamin-analoga und ihre markierung mit ${ }^{2} \mathrm{H}$ bzw. ${ }^{103} \mathrm{Ru}$. J. Labelled Comp. Radiopharm 25, 121-131 (1988).
7. H. Lu, H. Jiang, L. Wojtas, X. P. Zhang, Selective intramolecular C-H amination through the metalloradical activation of azides: synthesis of 1,3-diamines under neutral and nonoxidative conditions. Angew. Chem., Int. Ed. 49, 10192-10196 (2010).
8. E. Sathiyaraj, S. Thirumaran, Synthesis and spectral studies on $\mathrm{Pb}(\mathrm{II})$ dithiocarbamate complexes containing benzyl and furfuryl groups and their use as precursors for PbS nanoparticles. Spectrochim Acta A 97, 575-581 (2012).
9. X. Xu et al., Highly asymmetric intramolecular cyclopropanation of acceptor-substituted diazoacetates by Co(II)-based metalloradical catalysis: iterative approach for development of new-generation catalysts. J. Am. Chem. Soc. 133, 15292-15295 (2011).
10. M. N. Alberti, G. Vassilikogiannakis, M. Orfanopoulos, Stereochemistry of the singlet oxygenation of simple alkenes: a stereospecific transformation. Org. Lett. 10, 3997-4000 (2008).
11. C. J. Cramer, D. G. Truhlar, Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 11, 10757-10816 (2009).
12. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456-1465 (2011).
13. R. Peverati, D. G. Truhlar, Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil. Trans. R. Soc. A 372:20120476 (2014).
14. N. Mardirossian, M. Head-Gordon, How accurate are the minnesota density functionals for noncovalent interactions, isomerization energies, thermochemistry, and barrier heights involving molecules composed of main-group elements? J. Chem. Theory Comput. 12, 4303-4325 (2016).
15. N. Mardirossian, M. Head-Gordon, $\omega$ B97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 144, 214110 (2016).
16. B. Brauer, M. K. Kesharwani, S. Kozuch, J. M. Martin, The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory. Phys. Chem. Chem. Phys. 18, 20905-20925 (2016).
17. T. Weymuth, E. P. A. Couzijn, P. Chen, M. Reiher, New benchmark set of transition-metal coordination reactions for the assessment of density functionals. J. Chem. Theory Comput. 10, 30923103 (2014).
18. W. Zhang, D. G. Truhlar, M. Tang, Tests of exchange-correlation functional approximations against reliable experimental data for average bond energies of 3d transition metal compounds. J. Chem. Theory Comput. 9, 3965-3977 (2013).
19. H. S. Yu, X. He, S. L. Li, D. G. Truhlar, MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 7, 5032-5051 (2016).
20. M. Steinmetz, S. Grimme Benchmark study of the performance of density functional theory for bond activations with (Ni,Pd)-based transition-metal catalysts. ChemistryOpen 2, 115-124 (2013).
21. L. Goerigk, H. Kruse, S. Grimme, Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions. ChemPhysChem 12, 3421-3433 (2011).
22. M. J. Frisch et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
23. Y. Zhao, D. G. Truhlar, Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157-167 (2008).
24. A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378-6396 (2009).
25. F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 32973305 (2005).
26. S. Torker, D. Merki, P. Chen, Gas-phase thermochemistry of ruthenium carbene metathesis catalysts. J. Am. Chem. Soc. 130, 4808-4814 (2008).
27. Y. Minenkov, G. Occhipinti, A. Singstad, V. R. Jensen, The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase. Dalton Trans. 41, 5526-5541 (2012).
28. Y. Minenkov, G. Occhipinti, V. R. Jensen, Complete reaction pathway of ruthenium-catalyzed olefin metathesis of ethyl vinyl ether: Kinetics and mechanistic insight from DFT. Organometallics 32, 20992111 (2013).
29. R. K. M. Khan, S. Torker, A. H. Hoveyda, Reactivity and selectivity differences between catecholate and catechothiolate Ru complexes. Implications regarding design of stereoselective olefin metathesis catalysts. J. Am. Chem. Soc. 136, 14337-14340 (2014).
30. S. Torker, M. J. Koh, R. K. M. Khan, A. H. Hoveyda, Regarding a persisting puzzle in olefin metathesis with Ru complexes: Why are transformations of alkenes with a small substituent Z-selective? Organometallics 35, 543-562 (2016).
31. M. S. Mikus, S. Torker, A. H. Hoveyda, Controllable ROMP tacticity by harnessing the fluxionality of stereogenic-at-ruthenium complexes. Angew. Chem., Int. Ed. 55, 4997-5002 (2016).
32. J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atomatom dispersion corrections. Phys. Chem. Chem. Phys., 10, 6615-6620 (2008).
33. R. Peverati, D. G. Truhlar, Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys. Chem. Chem. Phys. 14, 16187-16191 (2012).
34. M. Page, J. W. McIver Jr., On evaluating the reaction path Hamiltonian. J. Chem. Phys. 88, 922-935 (1988).
35. M. Page, C. Doubleday Jr., J. W. McIver Jr., Following steepest descent reaction paths. The use of higher energy derivatives with ab initio electronic structure methods. J. Chem. Phys. 93, 5634-5642 (1990).
36. D. L. Lichtenberger, J. A. Gladysz, New author guidelines for 2014: A format for computational structural data that can be opened with freely available programs such as "Mercury"1. Organometallics 33, 835-835 (2014).

[^0]:    O ALERT level A - Most likely a serious problem - resolve or explain
    0 ALERT level B - A potentially serious probles, consider carefully

[^1]:    7 ALBRT level $A=$ Data missing that is essential or data in wrong format
    0 ALBRT level $G=$ General alerts. Data that may be required is missing

[^2]:    0 ALBRT level $A=$ Most likely a serious problem - resolve or explain
    0 ALBRT level $B=A$ potentially serious problem, consider carefully
    1 ALBRT level $C=$ Check. Ensure it is not caused by an omission or oversight
    2 ALBRT level $G=$ General information/check it is not something unexpected
    0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
    0 ALERT type 2 Indicator that the structure model may be wrong or deficient
    1 ALERT type 3 Indicator that the structure quality may be low
    2 ALERT type 4 Improvement, methodology, query or suggestion
    0 ALERT type 5 Informative message, check

[^3]:    7 ALERT level A - Data missing that 1 a essential or data 1 n wrong format
    0 ALERT level G - General alerts. Data that may be required $1 s$ missing

[^4]:    7 ALERT level A - Data missing that 1 s essential or data 1 n wrong format
    0 ALERT level G - General alerts. Data that may be required $1 s$ missing

[^5]:    7 ALERT level A - Data missing that $1 s$ essential or data 1 n wrong format

[^6]:    7 ALBRT level $\mathrm{A}=$ Data missing that is essential or data in wrong format
    0 ALBRT level $G=$ General alerts. Data that may be required is missing

