Accessing Chelating Extended Linker Bis(NHC) Palladium(II) Complexes: Sterically Triggered Divergent Reaction Pathways

Tanita S. Wierenga, Catriona R. Vanston, Alireza Ariafard, Michael G. Gardiner, Curtis C. Ho* School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
email: curtis.ho@utas.edu.au

Supporting Information

Table of Contents
I. NMR spectra for compound VII S-2
II. X-Ray Crystallographic Data S-4
III. Density Functional Theory S-9
IV. References S-13

I．NMR Spectra for Compound VII

MesIm）（1，2－Me ${ }_{2}$ Im－4H） $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{PdBr}_{4}\right]$（VII） ${ }^{1} \mathrm{H}$ NMR（DMSO－$d_{6}, 400 \mathrm{MHz}$ ）

$\begin{array}{llllll}\bullet & 6 & \bullet & \sim & \sim & 0 \\ \infty & \infty & \infty & \infty & \infty & \infty\end{array}$

なみみみ み
$\stackrel{\stackrel{n}{r}}{\stackrel{\sim}{r}} \stackrel{+0}{\sim}$

$\mathrm{CH}_{3} \mathrm{C}$

DMSO

Figure S1 ${ }^{1} \mathrm{H}$ NMR spectrum of compound VII in DMSO－d_{6}
${ }^{13} \mathrm{C}$ NMR (DMSO-d6, 400 MHz)

Figure S2 ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{V I I}$ in DMSO- d_{6}

II. X-Ray Crystallographic Data

Crystallographic data for compounds la, Ic, Ila, Ilb, IIIb, IVc, V, VI and VII.
Crystal data for compound la: $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{Br}_{2}, M=532.32$, orthorhombic, $a=17.472(4), b=$ $6.4620(13) c=21.226(4) \AA, U=2396.5(8) \AA^{3,} T=100 \mathrm{~K}$, space group $P n a 2_{1}$ (no. 33), $Z=4$, 46094 reflections measured, 6990 unique ($R_{\text {int }}=0.0662$), $5971>4 \sigma(F), R=0.0522$ (observed), $R_{w}=0.1461$ (all data). CCDC Number: 1915454

Figure S3. Structural representation of compound la. Thermal ellipsoids are shown at 50\% probability level. Br^{-}counteranions and N -substituent hydrogen atoms have been omitted for clarity

Crystal data for compound Ic: $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{Br}_{2} \mathrm{Cl}_{4}, M=775.24$, triclinic, $a=8.8660(18), b=$ $9.4750(19) c=12.860(3) \AA, \alpha=99.02(3), \beta=99.32(3), \gamma=113.93(3)^{\circ} U=944.3(4) \AA^{3}, T=100$ K , space group $P-1$ (no. 2), $Z=1,15531$ reflections measured, 4064 unique ($R_{\text {int }}=0.0737$), $3440>4 \sigma(F), R=0.0751$ (observed), $R_{w}=0.2208$ (all data). CCDC Number: 1915452

Figure S4. Structural representation of compound Ic (' denotes symmetry operator: $-x,-y,-z$). Thermal ellipsoids are shown at 50% probability level. Br^{-}counteranions, lattice $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules and N -substituent hydrogen atoms have been omitted for clarity.

Crystal data for compound Ila: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Pd}, M=636.71$, triclinic, $a=7.9690(16), b=$ 15.138(3), $c=19.963(4) \AA, \alpha=89.51(3), \beta=89.98(3), \gamma=83.31(3)^{\circ}, U=2391.8(8) \AA^{3,} T=100$ K, space group $P-1$ (no 2), $Z=4,50914$ reflections measured, 13311 unique ($R_{\text {int }}=0.1154$), $10264>4 \sigma(F), R=0.0566$ (observed), $R_{w}=0.1546$ (all data). CCDC Number: 1915457

Figure S5. Structural representation of compound Ila. Thermal ellipsoids are shown at 50\% probability level. N-substituent hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): Pd1-C1,C6 1.973(6), 1.977(5), Pd1-Br1,Br2 2.477(1), 2.504(1), C1-Pd1-C6 85.5(2), Br1-Pd1-Br2 94.91(2), Pd1-C1-N2 120.6(4), Pd1-C6-N3 127.6(4).

Crystal data for complex Ilb: $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{Pd}, M=749.68$, monoclinic, $a=11.631(3), b=$ $14.050(9) c=17.964(2) \AA, \alpha=90, \beta=99.88(7), \gamma=90^{\circ}, U=2982.1(10) \AA^{3,} T=100 \mathrm{~K}$, space group $P 2_{1} / n$ (no. 14), $Z=4,43671$ reflections measured, 6345 unique ($R_{\text {int }}=0.0347$), $6204>$ $4 \sigma(F), R=0.0795$ (observed), $R_{w}=0.2145$ (all data). CCDC Number: 1915459

Figure S6. Structural representation of complex llb. Thermal ellipsoids are shown at 50% probability level. Lattice $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecules and N -substituent hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): Pd1-C1,C6 2.002(7), 1.992(7), Pd1-Br1,Br2 2.4996(13), 2.4907(12), C1-Pd1-C6 87.5(3), Br1-Pd1-Br2 90.66(4)

Crystal data for complex IIIb: $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{Br}_{3} \mathrm{~N}_{4} \mathrm{Pd}, \mathrm{M}=743.67$, monoclinic, $a=16.659(3), b=$ $11.386(2), c=17.142(3) \AA, \beta=104.31(3)^{\circ}, U=3150.7(12) \AA^{3,} T=100 \mathrm{~K}$, space group $\mathrm{P} 2{ }_{1} / n$ (no. 14), $Z=4,48236$ reflections measured, 6952 unique ($R_{\text {int }}=0.0496$), $5715>4 \sigma(F), R=$ 0.0395 (observed), $R_{w}=0.1003$ (all data). CCDC Number: 1915458

Figure S7. Structural representation of complex IIIb. Thermal ellipsoids are shown at 50\% probability level. N-substituent hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): Pd1-C1 1.954(4), Pd1-Br1,Br2,Br3 2.4497(8), 2.4914(8), 2.4451(8), C1-Pd1-Br1,Br3 89.19(14), 85.57(14), $\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{Br} 2$ 90.59(3), $\mathrm{Br} 2-\mathrm{Pd} 1-\mathrm{Br} 395.35(3)$.

Crystal data for complex IVc: $\mathrm{C}_{33.79} \mathrm{H}_{45.6825} \mathrm{Br}_{3} \mathrm{~N}_{4.895} \mathrm{Pd}, M=866.57$, triclinic, $a=10.417(2), b=$ 13.912(3), $c=27.084(5) \AA, \quad \alpha=83.16(3), \beta=79.93(3), \gamma=74.26(3)^{\circ} U=3709.1(15) \AA^{3}, T=$ 100 K , space group $P-1$ (no. 2), $Z=4,62580$ reflections measured, 16270 unique ($R_{\text {int }}=$ 0.1123), $10207>4 \sigma(F), R=0.0701$ (observed), $R_{w}=0.2004$ (all data). CCDC Number: 1915453

Figure S8. Structural representation of complex IVc. Thermal ellipsoids are shown at 50% probability level. N-substituent hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): Pd1-C1 1.993(1), Pd1-Br1, Br2, Br 3 2.429(1), 2.518(1), 2.424(1), C1-Pd1-Br1, Br 3 86.1(2), 92.4(2), $\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{Br} 1, \mathrm{Br} 3$ 92.63(3), 88.82(4).

Crystal data for compound VI: $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{4}, M=470.26$, monoclinic, $a=10.451(2), b=$ $8.0570(16), c=24.629(5) \AA, \beta=101.11(3)^{\circ}, U=2035.0(7) \AA^{3}, T=100 \mathrm{~K}$, space group $P 12_{1} / c_{1}$ (no. 14), $Z=4,33377$ reflections measured, 4567 unique ($R_{\text {int }}=0.0384$), $3924>4 \sigma(F), R=$ 0.0427 (observed), $R_{w}=0.1124$ (all data). CCDC Number: 1915455

Figure S9. Structural representation of compound VI. Thermal ellipsoids are shown at 50% probability level. Br^{-}counteranions and N-substituent hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): C1-C9 1.479(5), N1-C1-C9 125.3(3), N2-C1-C9 125.3(3).

Crystal data for compound VII: $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{Br}_{4} \mathrm{~N}_{5} \mathrm{Pd}, M=775.51$, monoclinic, $a=19.980(4), b=$ $8.0800(16), c=16.845(3) \AA, \beta=103.24(3)^{\circ}, U=2647.2(10) \AA^{3}, T=100 \mathrm{~K}$, space group $C 121$ (no. 5), $Z=4,22260$ reflections measured, 6256 unique ($R_{\text {int }}=0.1044$), $4454>4 \sigma(F), R=$ 0.0684 (observed), $R_{w}=0.1815$ (all data). CCDC Number: 1915456

Figure S10. Structural representation of compound VII. Thermal ellipsoids are shown at 50% probability level. $\left[\mathrm{PdBr}_{4}\right]^{2-}$ counteranion, lattice acetonitrile solvent molecules and N -substituent hydrogen atoms have been omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$): C1-C9 1.501 (3), C3-C6 1.417(2), N1-C1-C9 124.92(1), N2-C1-C9 126.29(1), N2-C3-C6 117.08(1) N4-C6-C3 130.30(1), C2-C3-C6 135.98(1).

II. Density Functional Theory Computational Data

Table S1. Total energies for all of the calculated structures 1
$E(B 3 L Y P / B S 1$, Solvent $=$ DiMethylSulfoxide $)=-6726.643269 \mathrm{au}$ H(B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-6726.024656 \mathrm{au}$ G(B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-6726.144782 \mathrm{au}$ E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethyISulfoxide) $=-6733.782326$ au E(M06/BS2//B3LYP/BS1, Solvent $=$ DiMethyISulfoxide $)=-6732.420723$ au

```
2
E (B3LYP/BS1, Solvent = DiMethylSulfoxide) =-6726.629585 au
H(B3LYP/BS1, Solvent = DiMethyISulfoxide) = -6726.011068 au
G(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6726.130683 au
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6733.769807 au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6732.411312 au
```

3
$E(B 3 L Y P / B S 1$, Solvent $=$ DiMethylSulfoxide $)=-4155.037211$ au
H(B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-4154.421327 \mathrm{au}$
G(B3LYP/BS1, Solvent = DiMethyISulfoxide) $=-4154.536051 \mathrm{au}$
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethyISulfoxide) $=-4159.430358$ au
E(M06/BS2//B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-4158.195471 \mathrm{au}$
Br^{-}
E (B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-2571.574251 \mathrm{au}$
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-2571.57189 \mathrm{au}$
G(B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-2571.590426 \mathrm{au}$
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-2574.334887 \mathrm{au}$
$E(M 06 / B S 2 / / B 3 L Y P / B S 1$, Solvent $=$ DiMethylSulfoxide $)=-2574.192852$ au

TS_{3-4}

$E($ B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-4154.998951$ au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-4154.387613 \mathrm{au}$
G(B3LYP/BS1, Solvent = DiMethyISulfoxide) $=-4154.497913 \mathrm{au}$
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethyISulfoxide) $=-4159.389883$ au
$E(M 06 / B S 2 / / B 3 L Y P / B S 1$, Solvent $=$ DiMethylSulfoxide $)=-4158.168610 \mathrm{au}$

4

$E(B 3 L Y P / B S 1$, Solvent $=$ DiMethylSulfoxide $)=-4155.034072 \mathrm{au}$
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-4154.417272 \mathrm{au}$
G(B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-4154.530056 \mathrm{au}$
E(B3LYP/BS2//B3LYP/BS1, Solvent $=$ DiMethyISulfoxide $)=-4159.427097$ au
E(M06/BS2//B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-4158.208287$ au
HOAc
$E(B 3 L Y P / B S 1$, Solvent $=$ DiMethylSulfoxide $)=-229.0841903 \mathrm{au}$
H(B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-229.016870$ au
G(B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-229.049876 \mathrm{au}$
$E(B 3 L Y P / B S 2 / / B 3 L Y P / B S 1$, Solvent $=$ DiMethyISulfoxide $)=-229.1773463 \mathrm{au}$

E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -229.0428887 au

Ilb

E (B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-6497.533325$ au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide $)=-6496.983482 \mathrm{au}$
G(B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-6497.089445 \mathrm{au}$
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-6504.587073 \mathrm{au}$
E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide $)=-6503.367574 \mathrm{au}$
$\mathrm{TS}_{\text {Ilb-5 }}$
E (B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-6497.463818 \mathrm{au}$
H(B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-6496.916318$ au
G(B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-6497.021610 \mathrm{au}$
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-6504.513993 \mathrm{au}$
E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6503.304191 au

```
5
E (B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6497.484825 au
H(B3LYP/BS1, Solvent = DiMethyISulfoxide) = -6496.93521 au
G(B3LYP/BS1, Solvent = DiMethyISulfoxide) =-6497.04155 au
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6504.531484 au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6503.333456 au
TS 3-6
E (B3LYP/BS1, Solvent = DiMethyISulfoxide) =-4155.002023 au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -4154.390321 au
G(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -4154.504281 au
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -4159.396974 au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -4158.165245 au
```

6
$E($ B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-4155.037687$ au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-4154.421085 \mathrm{au}$
G(B3LYP/BS1, Solvent = DiMethyISulfoxide) $=-4154.539709 \mathrm{au}$
E(B3LYP/BS2//B3LYP/BS1, Solvent $=$ DiMethyISulfoxide $)=-4159.432364$ au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethyISulfoxide) $=-4158.20112 \mathrm{au}$
TS_{7-8}
E (B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-4154.997825$ au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-4154.383230 \mathrm{au}$
G(B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-4154.500969 \mathrm{au}$
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-4159.388634 \mathrm{au}$
E(M06/BS2//B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-4158.169080 \mathrm{au}$
7
$E(B 3 L Y P / B S 1$, Solvent $=$ DiMethylSulfoxide $)=-6497.536145 \mathrm{au}$
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) $=-6496.986118 \mathrm{au}$
G(B3LYP/BS1, Solvent = DiMethyISulfoxide) $=-6497.096433 \mathrm{au}$
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethyISulfoxide) $=-6504.591777$ au
E(M06/BS2//B3LYP/BS1, Solvent $=$ DiMethylSulfoxide $)=-6503.360605 \mathrm{au}$

```
10
E (B3LYP/BS1, Solvent = DiMethyISulfoxide) = -4155.035824 au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -4154.419086 au
G(B3LYP/BS1, Solvent = DiMethyISulfoxide) =-4154.53718 au
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -4159.424799 au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -4158.209986 au
9
E (B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3925.92642 au
H(B3LYP/BS1, Solvent = DiMethyISulfoxide) = -3925.378951 au
G(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3925.482678 au
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3930.237161 au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3929.130504 au
8
E (B3LYP/BS1, Solvent = DiMethylSulfoxide) =-6497.532579 au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6496.983249 au
G(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6497.089835 au
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6504.583353 au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6503.367654 au
11
E (B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3925.936520 au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3925.388417 au
G(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3925.490384 au
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3930.240865 au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethyISulfoxide) = -3929.153446 au
TS9-11
E (B3LYP/BS1, Solvent = DiMethyISulfoxide) = -3925.898613 au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3925.352545 au
G(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3925.453324 au
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -3930.205896 au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethyISulfoxide) = -3929.111058 au
TS
E (B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6497.492139 au
H(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6496.944052 au
G(B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6497.052391 au
E(B3LYP/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6504.545011 au
E(M06/BS2//B3LYP/BS1, Solvent = DiMethylSulfoxide) = -6503.323169 au
```


Figure S11. Energy profile calculated for the formation of abnormal and normal carbenes promoted by Pd". The relative Gibbs and electronic energies (in parentheses) obtained from the M06/BS2//B3LYP/BS1 calculations in dimethylsulfoxide are given in kcal/mol.

Computational details: Gaussian 09^{1} was used to fully optimize all the structures reported in this paper at the B3LYP level of density functional theory (DFT) in dimethylsulfoxide using the CPCM solvation model. ${ }^{2,3}$ The effective-core potential of Hay and Wadt with a double- ξ valence basis set (LANL2DZ) ${ }^{4}$ was chosen to describe Pd. The $6-31 \mathrm{G}(\mathrm{d})$ basis set was used for other atoms. ${ }^{5}$ A Polarization function of $\xi_{f}=1.472$ were also added for Pd. ${ }^{6}$ This basis set combination will be referred to as BS1. Frequency calculations were carried out at the same level of theory as those for the structural optimization. Transition states were located using the Berny algorithm. Intrinsic reaction coordinate (IRC) ${ }^{7}$ calculations were used to confirm the connectivity between transition structures and minima. To further refine the energies obtained from the B3LYP/BS1 calculations, we carried out single-point energy calculations for all of the structures with a larger basis set (BS2) at the B3LYP and M06 ${ }^{8}$ levels with inclusion of the solvent effect. BS2 utilizes the quadruple- ζ valence def2-QZVP ${ }^{9}$ basis set on Pd and the 6$311+G(2 d, p)$ basis set on other atoms. We have used the potential and Gibbs free energies obtained from the M06/BS2//B3LYP/BS1 calculations in dimethylsulfoxide throughout the paper unless otherwise stated. The atomic orbital populations were calculated on the basis of natural bond orbital (NBO) analyses. ${ }^{10}$

IV. References

1. Frisch, M. J.; et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
2. Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A. 1998, 102, 1995-2001.
3. (a) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B. 1988, 37, 785; (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200206; (c) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.
4. (a) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270; b) Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284.
5. Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213-222.
6. (a) Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. A set of f-polarization functions for pseudo-potential basis sets of the transition metals $\mathrm{Sc} \rightarrow \mathrm{Cu}, \mathrm{Y} \rightarrow \mathrm{Ag}$ and $\mathrm{La} \rightarrow \mathrm{Au}$ Chem. Phys. Lett. 1993, 208, 111-114; (b) Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmenn, Veldkamp, R. A.; Frenking, G. A set of d-polarization functions for pseudo-potential basis sets of the main elements $\mathrm{Al} \rightarrow \mathrm{Bi}$ and f-type polarization functions for $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$. Chem. Phys. Lett. 1993, 208, 237-240.
7. (a) Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 41614163; (b) Fukui, K. The path of chemical reactions - the IRC approach. Acc. Chem. Res. 1981, 14, 363-368.
8. Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157-167.
9. Weigend, F.; Furche, F.; Ahlrichs, R. Gaussian basis sets of quadruple zeta valence quality for atoms H-Kr. J. Chem. Phys. 2003, 119, 12753.
10. Glendening, E. D.; Read, A. E.; Carpenter, J. E.; Weinhold, F. NBO, version 3.1; Gaussian, Inc.: Pittsburgh, PA, 2003.
