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Theoretical Analysis of excitation of guided-mode reso-

nances in the proposed 2D- grating

To shed some light on the physics behind this behavior, when the device is off-resonant,

none of the diffracted wave orders from the grating can satisfy the conditions to become a

guided-mode of the waveguide. So, the device essentially behaves as a multilayer film that

mostly transmits the incoming wave, and some part is reflected due to Fresnel reflection. At

resonance, however, a diffracted order can excite a guided-mode of the waveguide core. As

the guided-mode propagates, the periodicity in the waveguide core causes it to continually

radiate and leak energy to far-field. Accordingly, the phenomenon can be named as terms

leaky-mode or quasi-guided mode resonance, as well.1 The sharp increase in the reflection is

due to the fact that the re-radiated waves interfere destructively with the directly transmitted

waves, but constructively with the reflected waves. A more rigorous analysis is given in the

Supporting Information.

To make the analysis more rigorous, the phase difference, Φ between directly transmit-

ted waves, and secondary transmitted waves that after the guided-mode is re-diffracted is

given by Eq.S1.2 On the other hand, a waveguide mode is supported if it satisfies the self-

consistency constraint, given in Eq.S2.3? ? Comparing these two equations shows that if

Eq.S2 (properly exciting a guided-mode) is satisfied, then Φ needs to be an odd integer

multiple of π by Eq.S1, so the transmitted waves to interfere destructively, and transmission

is suppressed.

Φ = 2htSi3N4
+ Φw,sub + Φw,super − π (S1)

m2π = 2htSi3N4
+ Φw,sub + Φw,super (S2)

where h = k0
√
n2
w − n2

eff is the transverse component of the wavevector in the waveguide-

grating, k0 = 2π/λ0 is free-space wavenumber, λ0 is the free-space wavelength, nw is the
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refractive index of the GWS, neff is the effective refractive index of the guided-mode in the

core, and m is the order of the mode. The first term in both equations is due to the phase

accumulated as guided-mode travels propagates inside the waveguide. The π term in Eq.S1

is because, each diffraction causes π/2 phase difference.4 Φw,sub and Φw,super come from the

total-internal reflection at the waveguide-substrate, and waveguide-superstrate boundaries,

and the expressions for these are given in Eqns.S3 and S4, respectively.2,5?

Φw,sub = −2 tan−1[(
nw
nsub

)2ρ ∗ p
h

] (S3)

Φw,super = −2 tan−1[(
nw
nsuper

)2ρ ∗ q
h

] (S4)

where p = k0
√
n2
eff − n2

sub q = k0
√
n2
eff − n2

super and are the exponential decay constants in

substrate (SiO2) and superstrate regions, respectively. ρ is 0 for TE, 1 for TM modes; nsuper

and nsub = nSiO2
are the refractive indices of the superstrate and substrate.

The effective index of refraction associated with the guided-mode inside the waveguide is

not only controlled by Eq.S2, but also with the phase-matching condition. In other words,

the real part of the complex wavevector component of the guided-mode in the direction of its

propagation is equal to the components coming from the reciprocal lattice vector of grating

and the incident wave.2,6–10 Eq.S3 provides the phase-matching condition for the devices

with 2D grating,11 such as Device I in the main text, under normally incident light.

kx,g = mKx = n
2π

Λx

= n
2π

P
√

3

ky,g = mKy = l
2π

Λy

= l
2π

P

β = |kx,gx̂ + ky,gŷ|

neff =
βλ0
2π

(S5)

where β is the propagation wavenumber along the guiding direction, Λx (Kx) and Λy (Ky)

is the grating periods (reciprocal lattice vectors) along x and y-directions, respectively. n (l)
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is the diffraction orders along x (y)-direction, and kx,g (ky,g) is the wavevector component of

the guided-mode along x (y)-direction.

Plugging-in Eqns. S3 and S4 inside Eq. S2 results in the well-known transcendental

mode equations for TE and TM modes, given by Eqns. S6 and S7, respectively.

tan(htSi3N4
) =

p+ q

h(1− pq
h2

)
(S6)

tan(htSi3N4
) =

p+ q

h(1− pq
h2

)
(S7)

where p̄ and q̄ are defined as p ∗ n2
w/n

2
sub, q ∗ n2

w/n
2
super, respectively.
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