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Note 1. The Young’s modulus determination

To quantify the indentation depth in the AFM-based elasticity measurements, in parallel to the 
measured sample, force-distant curves are recorded on stiff, non-deformable reference surface 
like glass or silicon. In such a case, the deflection of the cantilever registered after the probing 
tip touches the surface is linear, since the deformation caused by the AFM tip does not occur.  
By subtracting the reference force-distance curve from that recorded on sample surface, the 
force-indentation curves can be determined.
The analysis of the force-indentation curves using the Hertz-Sneddon model leads to the 
determination of the Young’s modulus (i.e. elasticity modulus). Based on the Hertz contact 
mechanics, Sneddon derived a model assuming a rigid, axisymmetric probe indenting a soft, 
elastic, flat surface. As the AFM tip is frequently a four-sided pyramid, its shape is often 
assumed to be a cone. In such a case, the Hertz-Sneddon model delivers the following relation 
between applied load force F and indentation depth δ: 

(1)𝐹(𝛿) =
2tan 𝛼

𝜋  𝐸′𝛿2

Where α is the open angle of the cone [⁰], E’ is the reduced Young’s modulus that depends on 
elastic properties of the cantilever and the sample, as described by the following equation:

(2)
1

𝐸′ =
1 ― 𝜇2

𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟

𝐸𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟
+

1 ― 𝜇2
𝑠𝑎𝑚𝑝𝑙𝑒

𝐸𝑠𝑎𝑚𝑝𝑙𝑒

where μcantilever and μsample represent the Poisson ratios of the cantilever and a sample. In the case 
of living cells, Ecell << Ecantilever, and thus the reduced Young’s modulus can be re-written as:

(3)𝐸′ =  
𝐸𝑐𝑒𝑙𝑙

1 ―  𝜇2
𝑐𝑒𝑙𝑙

It is difficult to determine the exact value of μcell, thus it is often assumed to be 0.5, bearing in 
mind that a cell which is mainly composed of water, which is an incompressible material. 

Finally, the relation between applied load force F and indentation depth δ can be written as 
follows:

(4)𝐹 =  
2tan 𝛼

𝜋  
𝐸𝑐𝑒𝑙𝑙

1 ― 𝜇2
𝑐𝑒𝑙𝑙

𝛿2

Using this equation, the Young’s modulus for all studied cells was calculated. Force curves 
were analysed with the aim to determine the Young’s modulus using Origin 8.0 and self-made 
software 1,2.

In Figure S1 the results of Young’s modulus distribution for each melanoma cell line is 
presented.



3

Figure S1. Elastic properties of melanocytes and melanoma cells obtained based on AFM 
measurements.

Figure S1. The Young’s modulus of melanocytes and all studied melanoma cells, 
calculated from more than 50 cells measured for each cell line. The indentation depth 600nm, 
model cone.

Table 1 presents mean (± log standard error) and median determined from lognormal 
distribution together with Mann-Whitney test verifying statistical significance of the 
differences among cell lines. 
 
Table S1. Summary of elastic properties of melanoma cells in regards to melanocytes. a) mean, 
median and left & right standard deviation (SD) calculated from log SD, b) Mann-Whitney 
test verifying statistically the differences among cell lines. 
a)

Cell line Mean
(kPa)

left SD
(kPa)

right SD
(kPa)

Median 
(kPa)

HEMa-PL 14.28 6.11 11.44 12.0
WM793 10.18 3.71 6.51 9.9
WM115 9.68 3.47 6.00 9.2
WM239 6.95 2.71 5.03 6.6

WM266-4 8.84 3.15 5.41 8.7
1205Lu 7.29 3.11 6.24 7.1
A375P 5.00 1.81 3.13 4.9
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b) 
*** - p<0.05
ns – not significant differences

Note 2. Details of PCA applied to ToF SIMS mass spectra.

As mass spectra of biological materials are very complex there is a need to use statistical 
analysis in order to look for alterations between investigated samples. PCA is one of the 
established methods to analyse large data sets 3,4. The principle of PCA is to reduce the 
dimensionality of a data set, while retaining as much as possible the variation present in the 
original predictor variables 5. In mathematical terms, PCA maximizes the variance of a linear 
combination of the original predictor variables. Principal components are orthogonal to each 
other and are defined in such a way that the first principal component is the direction that 
describes the highest degree of variance, the 2nd principal component describes the second 
highest degree of remaining variance, and so on. If we are considering a matrix of spectra, 
where each spectrum is a vector in a n-dimensional space (n is the number of masses in this 
case), PCA is basically a matrix rotation into a new set of axes, based on a combination of the 
original data set, that best describes the spread of the data. The new axes are called loadings 
and they are a measure of the importance of the original variables to the new direction. When a 
particular peak has high magnitude of a loading then it means that this peak was significant in 
defining the new direction of maximum difference. The original mass spectrum can be projected 
on to the new directions of principal components by means of scores – the distances along these 
directions of that spectrum for the particular principal components. In the presented work, the 
PCA was applied to analyze spectra recorded by ToF SIMS. The mass spectra were analyzed 
within the range 0–500 Da. In the presented approach, for all the collected spectra the same 
method of data analysis, without predefining of any particular masses, was applied. Firstly, each 
recorded spectrum was normalized to the sum of intensities for all peaks. Then, autoscaling was 
applied as a pre-processing method. In autoscaling, after mean-centering, each variable is 
divided by the corresponding variable standard deviation. Such a way of pre-processing results 
in scaling of each variable in a way providing an equal impact on a final result of multivariate 
analysis. After pre-processing, the PCA was carried out using the PLS Toolbox 7.5.2 
(Eigenvector Research, Manson, WA) for MATLAB 8.1.0.604 R2013a (MathWorks, Inc., 
Natick, MA) software. Original data were analysed with the same weights. The cross-validation 
algorithm was applied to select the number of components in PCA.  From PCA analyses, both 
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scores and loading plots were obtained. First, the scores plots were reviewed to find the best 
separated PCs. To visualize ellipsoids in the 3D scores plot double SD range along the axes of 
PC1, PC2, PC3 were calculated and ellipsoids were constructed by means of MATLAB 
8.1.0.604 R2013a software. 

Figure S2. Exemplary mass spectra recorded for all studied cell lines.

Figure S2. Exemplary mass spectra of investigated cell lines obtained with Bi3+ primary ion 
gun in the range 0-500Da: a) HEMa-LP – human melanocytes; b) WM793 – cell line derived 
from a vertical growth phase (VGP) in the primary melanoma site; c) WM115 – cell line derived 
from a vertical growth phase (VGP) in the primary melanoma site; d) WM239 – cell line derived 
from a cutaneous skin metastasis; e) WM266-4 cell line derived from a cutaneous skin 
metastasis; f) 1205Lu cell line originated from a lung metastasis; g) A375P cell line originated 
from a lung metastasis; h) RPMI-1640 – culture medium for melanoma cells; i) MEDIUM 254 
– culture medium for melanocytes.

Figure S3. Scores and loading plots for PCA obtained for all cells

Below, in Figures S3-S6 the 2D distributions of PCA scores plots (a-c) and loadings (d) 
are presented, corresponding to the Figures 2 and 3.
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Figure S3. a-c) 2D scores plot of PCA calculated for the cellular spectra together with the 
spectra of silicon treated with culture media. d) loadings plot for the presented principal 
components.
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Figure S4. Scores and loading plots for PCA during a comparison between cells 
originating from a) VGP melanoma and skin metastasis, and b) VGP melanoma and lung 
metastasis.

a)

b)

Figure S4. a) PCA outcome for a comparison of melanoma cells from VGP primary melanoma 
and metastatic sites in skin (The corresponding scores and loading plots for PC1, PC2 and 
PC3). b) PCA outcome for a comparison of melanoma cells from VGP primary melanoma and 
metastatic sites in lung (the corresponding scores and loadings plots for PC1, PC2 and PC3).
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Figure S5. Loading plots for PCA outcome obtained for cells originating from two pairs 
of cells derived from the same patient.

Figure S5. (a) Loadings plot for PC1, PC2 and PC3 components resulted from PCA of ToF 
SIMS mass spectra recorded for WM115 (primary melanoma site, VGP cells)and WM266-4 
(secondary tumor site, skin metastasis). (b) Loadings plot for PC1, PC2 and PC3 components 
resulted from PCA outcome of ToF SIMS mass spectra recorded for WM793 (primary tumor 
site, VGP cells) and 1205Lu (secondary tumor site, lung metastasis).

Table S2. Molecular masses that contribute to largest separation between cells from skin and 
lung metastasis. 

Molecular mass
(u)

Proposed assigment

104.11 sphingomyelin or phosphatidylcholine
124.99 sphingomyelin or phosphatidylcholine
184.10 sphingomyelin or phosphatidylcholine
224.11 phosphatidylcholine
206.09 sphingomyelin or phosphatidylcholine
246.11 sphingomyelin or phosphatidylcholine

Assignment was performed based on:
1. Adams et al. JVST B - Nanotechnology and Microelectronics: Materials, Processing, 
Measurement, and Phenomena, 34, 051804 (2016); doi: 10.1116/1.4961461 
2. Yang et al. Med. Mol. Morphol., 43, 158, (2010); doi: 10.1007/s00795-009-0487-2
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