Supporting Information

Exploring the natural piericidins as anti-renal cell carcinoma agents targeting peroxiredoxin 1

Xuefeng Zhou,** Zhi Liang, \# Kunlong Li, Wei Fang, Yuanxin Tian, Xiaowei Luo, Yulian Chen, Zhikun Zhan, Tao Zhang, Shengrong Liao, Shuwen Liu, Yonghong Liu, William Fenical, and Lan Tang* \# These authors contributed equally to this work.
* X. Zhou (E-mail: xfzhou@scsio.ac.cn)
* L. Tang (E-mail: t1405@smu.edu.cn).

Contents

Supplementary Tables and Figures

Table S1. mRNA sequencing
Table S2. Volcano
Table S3. Intersection of DEGs from three groups (PA50_Control, PA25_Control, PA50_PA25)
Table S4. KEGG enrichment analysis
Table S5. CytoscapeInput-edges-PA-turquoise.txt default edge
Table S6. CytoscapeInput-edges-PA-turquoise.txt default node
Table S7. Deduced ORFs of piericidin A biosynthetic gene cluster of SCSIO NS126
Table S8. 16S rRNA sequence of the strain Streptomyces psammoticus SCSIO NS126
Table S9. RT-qPCR primer sequence
Table S10. Baseline clinical characteristics of human kidney samples.
Figure S1. HPLC/MS spectra of the extract of strain NS126.
Figure S2. Cell apoptosis of ACHN cells induced by 1.
Figure S3. Cell cycle of ACHN cells treated with 1.
Figure S4. Weighted gene co-expression network of 63 DEGs genes analyzed in GSE40435.
Figure S5. Representative images of immunofluorescence staining of shPRDX1 ACHN cells
Figure S6. Antioxidant activities of PRDX1 after treated with PA/GPA.
Figure S7. The structure of decameric form of PRDX1 (PDB entry 2Z9S).

Supplementary Structure Elucidation

Structure elucidation of compounds 1-27.
Figure S8. Key HMBC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY correlations of 2-5.
Figure S9. ECD spectrum of $\mathbf{3 , 4}$ and the calculated ECD curve of $(13 S, 19 R)$-3.

Figure S10. Key HMBC, COSY and NOESY correlations of 12-20.
Figure S11. Anomeric protons analysis of 14 in before and after NMR tube degradation.
Figure S12. Comparison of the sugar moieties of $\mathbf{1 4}$ and 16 in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum.
Figure S13. Key HMBC, COSY and NOESY correlations of 21-26.
Figure S14. ECD spectrum of $\mathbf{1 0 - 2 6}$.
Table S11. ${ }^{1} \mathrm{H}$ NMR (700 MHz) Spectroscopic Data for 2-5.
Table S12. ${ }^{13}$ C NMR (175 MHz) Spectroscopic Data for 2-5.
Table S13. ${ }^{1} \mathrm{H}$ NMR (700 MHz) Spectroscopic Data for 12-19.
Table S14. ${ }^{1} \mathrm{H}$ NMR (700 MHz) Spectroscopic Data for 20-26.
Table S15. ${ }^{13}$ C NMR (175 MHz) Spectroscopic Data for 12-26.
Methods of the Glycosides Hydrolyzation.

References

Spectra of the Compounds

Figure SS-1. HRESIMS, ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT spectra of $\mathbf{1}$.
Figure SS-2. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMBC, COSY, NOESY spectra of $\mathbf{2}$.
Figure SS-3. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, ~ D E P T, ~ H S Q C, ~ H M B C, ~ C O S Y, ~ N O E S Y ~ s p e c t r a ~ o f ~ 3 . ~$
Figure SS-4. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMBC, COSY, NOESY spectra of 4.
Figure SS-5. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMBC, COSY, NOESY spectra of 5.
Figure SS-6. ESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT spectra of $\mathbf{1 0}$.
Figure SS-7. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMBC, COSY, NOESY spectra of $\mathbf{1 2}$.
Figure SS-8. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMBC, COSY, NOESY spectra of $\mathbf{1 3}$.
Figure SS-9. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMBC, COSY, NOESY spectra of $\mathbf{1 4}$.
Figure SS-10. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, ~ D E P T, ~ H S Q C, ~ H M B C, ~ C O S Y, ~ N O E S Y ~ s p e c t r a ~ o f ~ 15 . ~$ Figure SS-11. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMBC, COSY, NOESY spectra of $\mathbf{1 6}$. Figure SS-12. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMBC, COSY, NOESY spectra of 17.
 Figure SS-14. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, ~ D E P T, ~ H S Q C, ~ H M B C, ~ C O S Y, ~ N O E S Y ~ s p e c t r a ~ o f ~ 19 . ~$.

 Figure SS-17. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, ~ D E P T, ~ H S Q C, ~ H M B C, ~ C O S Y, ~ N O E S Y ~ s p e c t r a ~ o f ~ 22 . ~$ Figure SS-18. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-NMR, DEPT, HSQC, HMBC, COSY, NOESY spectra of 23. Figure SS-19. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, ~ D E P T, ~ H S Q C, ~ H M B C, ~ C O S Y, ~ N O E S Y ~ s p e c t r a ~ o f ~ 24 . ~$ Figure SS-20. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}, ~ D E P T, ~ H S Q C, ~ H M B C, ~ C O S Y, ~ N O E S Y ~ s p e c t r a ~ o f ~ 25 . ~$ Figure SS-21. IR, HRESIMS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{NMR}$, DEPT, HSQC, HMBC, COSY, NOESY spectra of 26.

Supplementary Figures and Tables

Tables S1~S6, about the Transcriptome data and bioinformatic analysis (xls files), are submitted as a compressed file (.rar) as Supporting Information 2 (SI2).

Table S1. mRNA sequencing.
Table S2. Volcano.
Table S3. Intersection of DEGs from three groups (PA50_Control, PA25_Control, PA50_PA25).
Table S4. KEGG enrichment analysis.
Table S5. CytoscapeInput-edges-PA-turquoise.txt default edge.
Table S6. CytoscapeInput-edges-PA-turquoise.txt default node.

Table S7. Deduced ORFs of Piericidin A Biosynthetic Gene Cluster of SCSIO NS126

Query_name	Query_ length	Description	Protein Homolog and Origin	Identity/ Similarity $(\%)$	GenBank Accession Number
Query_1522	199	PieR	Streptomyces piomogenus	81.9	AEZ54373.1
Query_1523	2482	PieA1	Streptomyces piomogenus	73.5	AEZ54374.1
Query_1524	3379	PieA2	Streptomyces piomogenus	79.6	AEZ54375.1
Query_1525	1725	PieA3	Streptomyces piomogenus	79.2	AEZ54376.1
Query_1526	2161	PieA4	Streptomyces piomogenus	80.2	AEZ54377.1
Query_1527	1860	PieA5	Streptomyces piomogenus	79.9	AEZ54378.1
Query_1528	2354	PieA6	Streptomyces piomogenus	79.7	AEZ54379.1
Query_1529	228	PieB1	Streptomyces piomogenus	84.6	AEZ54380.1
Query_1530	170	PieC	Streptomyces piomogenus	89.4	AEZ54381.1
Query_1531	613	PieD	Streptomyces piomogenus	87.2	AEZ54382.1
Query_1532	257	PieB2	Streptomyces piomogenus	89.4	AEZ54383.1
Query_1533	589	PieE	Streptomyces piomogenus	89.4	AEZ54384.1

Table S8. 16S rRNA sequence of the strains Streptomyces psammoticus SCSIO NS126 TCGGGGTAACCTTCGACGGCTCATCCCTTACGGGTTAGGCCACCGGCTTCGGGTGTTACCGACTTTCGTGACGTGACGG GCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCATGCTGATCTGCGATTACTAGCAACTCCAACTTCATGGGGT CGAGTTGCAGACCCCAATCCGAACTGAGGCCGGCTTTTTGGGATTCGCTCCGCCTCACGGCATCGCAGCCCTTTGTACC GACCATTGTAGCACGTGTGCAGCCCAAGACATAAGGGGCATGATGATTTGACGTCGTCCCCACCTTCCTCCGAGTTGAC CCCGGCAGTCTCCTGTGAGTCCCCGACATTACTCGCTGGCAACACAGAACAAGGGTTGCGCTCGTTGCGGGACTTAAC CCAACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTATACCGACCACAAGGGGGCACCCATCTCTGGAT GTTTCCGGCATATGTCAAGCCTTGGTAAGGTTCTTCGCGTTGCGTCGAATTAAGCCACATGCTCCGCTGCTTGTGCGGG CCCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGAACTTAATGCGTTAGCTGCGGCACCG ACGACGTGGAATGTCGCCAACACCTAGTTCCCAACGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCC CACGCTTTCGCTCCTCAGCGTCAGTAATGGCCCAGAGATCCGCCTTCGCCACCGGTGTTCCTCCTGATATCTGCGCATTT CACCGCTACACCAGGAATTCCGATCTCCCCTACCACACTCTAGCCTGCCCGTATCGAATGCAGACCCGGGGTTAAGCCC CGGGCTTTCACATCCGACGCGACAGGCCGCCTACGAGCTCTTTACGCCCAATAATTCCGGACAACGCTCGCACCCTACG TATTACCGCGGCTGCTGGCACGTAGTTAGCCGGTGCTTCTTCTGCAGGTACCGTCACTTGCGCTTCTTCCCTGCTGAAA GAGGTTTACAACCCGAAGGCCGTCATCCCTCACGCGGCGTCGCTGCATCAGGCTTTCGCCCATTGTGCAATATTCCCCA CTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCCGGTCGCCCTCTCAGGCCGGCTACCCGTCG TCGCCTTGGTAGGCCATTACCCCACCAACAAGCTGATAGGCCGCGGGCTCATCCTGCACCGCCGGAGCTTTCCACCAA CCCCCATGCGGAGGAAGGTCATATCCGGTATTAGACCCCGTTTCCAGGGCTTGTCCCAGAGTGCAGGGCAGATTGCCC ACGTGTTACTCACCCGTTCGCCACTGATCCACCCCGAAGGGCTTCACCGTTCGACTGCAGGGTAAGCAGCT

Table S9. RT-qPCR primer sequence

Gene	Forward primer	Reverse primer
$P R D X 1$	TCCTTTGGTATCAGACCCGA	TAAAAAGGCCCCTGAACGAG
$E G F R$	GACGCAGATAGTCGCCCAAA	ACGGTAGAAGTTGGAGTCTGTAGGA
$E T S 1$	AGGAGATGGGGAAAGAGGAA	GTGTACCCCAGCAGGCTCT
$S O D 2$	CTGATTTGGACAAGCAGCAA	CTGGACAAACCTCAGCCCTA
$H K 2$	GATTTCACCAAGCGTGGACT	CCACACCCACTGTCACTTTG
$S L C 2 A 1$	AAGGTGATCGAGGAGTTCTACA	ATGCCCCCAACAGAAAAGATG
$L D H A$	CAGCTTGGAGTTTGCAGTTAC	TGATGGATCTCCAACATGG
$M E T$	GAGAAGCCCAAGCCCATCC	GCCCAGGGCTCAGAGCTT
$V H L$	CGTAGCGGTTGGTGACTTG	CCCTGGTTTGTTCCTCTGAC
β-ACTIN	ACGTGGACATCCGCAAAGAC	CAAGAAAGGGTGTAACGCAACTA

Table S10. Baseline clinical characteristics of human kidney samples

Characteristics	Group	number	Percentage (\%)
Gender	Male	3	50
	Female	3	50
Age (years)	$18-37$	1	16.7
	$37-65$	5	83.3
Cancer	Clear cell carcinoma	6	100
	Non-cancer	0	0

Figure S1. HPLC/MS spectra of the extract of strain NS126.
Piericidins present characteristic UV/vis spectra, one strong absorbance peak at 220-235 nm, and one weak absorbance peak at 260-270 nm. Aglycones or glycosides of piericidins could be determined by MS data. Peak e (7.6 min) of the TIC (total ion chromatogram) with molecular ion peak ($\mathrm{m} / \mathrm{z} 416.6$ $[\mathrm{M}+\mathrm{H}]^{+}$) suggested that it is possibly piericidin A or its isomer. Moreover, peaks a (5.1 min), d (6.1 $\mathrm{min})$, and $\mathbf{g}(4.9 \mathrm{~min})$ of the TIC were suggested to be monoglycosides, while peaks $\mathbf{b}(5.2 \mathrm{~min}), \mathbf{c}$ $(5.3 \mathrm{~min})$, and $\mathbf{f}(4.6 \mathrm{~min})$ were diglycosides of piericidin.

FITC-Annexin V

Figure S2. Cell apoptosis of ACHN cells induced by 1.

Figure S3. Cell cycle of ACHN cells treated with $\mathbf{1 .}$

Figure S4. Weighted gene co-expression network of 63 DEGs genes analyzed in GSE40435. Bigger circle size and blue mapping bar means higher connectivity. There are 63 genes of a total of 71 genes which were included in the analysis using Microarray data from 101 tumors (GSE40435) were belonged to the unique Turquoise Module when the minimum module size was set to 20 genes per module, which were visualized in Cytoscape.

Figure S5. Representative images of immunofluorescence staining of shPRDX1 ACHN cells with 100X magnification in 72h. Lentivirus PRDX1 shRNA was diluted in enhance infection solution (Genechem, China). After 6-hour infection, complete medium containing puromycin $(1 \mu \mathrm{~g} / \mathrm{mL})$ was add to select the PRDX1 knockdown ACHN cells. The GFP microscope (green) indicates the shPRDX1 ACHN cells, compared with light microscope.

Figure S6. Antioxidant activities of PRDX1 after treated with PA/GPA in 24h using ELISA assay.

Figure S7. The structure of decameric form of PRDX1 (PDB entry 2Z9S).

Supplementary Structure Elucidation

Structure elucidation of compounds 1-27.

Compound 1, the main metabolism of the strain SCSIO NS104, was established with its molecular formula $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}_{4}$, by HPLC/HRESIMS analysis in the extract of the fermentation. The structure of the purified 1 was characterized by comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with literature data ${ }^{[1]}$ and was determined to be piericidin A ($\mathbf{1}$, also piericidin A 1).

Compound 2 was isolated as pale yellow oil. Its molecular formula was established by HRESIMS $\left(m / z 402.2649[\mathrm{M}+\mathrm{H}]^{+}\right)$to be $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{4}$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of piericidin A (1) indicated that they shared the piericidin skeleton. The only difference was the absence of the $14-\mathrm{Me}$ in 2 , which was confirmed by the HMBC correlations from $\mathrm{H}-10\left(\delta_{\mathrm{H}} 3.75\right.$, dd, $J=7.6,7.6 \mathrm{~Hz})$ to $\mathrm{C}-11\left(\delta_{\mathrm{C}} 132.2\right), \mathrm{H}-11\left(\delta_{\mathrm{H}} 5.46, \mathrm{dd}, J=7.6,15.2 \mathrm{~Hz}\right)$ to C-13 ($\delta_{\mathrm{C}} 18.1$), H-12 $\left(\delta_{\mathrm{H}}\right.$ 5.70 , dq, $J=15.2,6.4 \mathrm{~Hz}$) to $\mathrm{C}-10\left(\delta_{\mathrm{C}} 77.5\right)$, and $\mathrm{H}_{3}-13\left(\delta_{\mathrm{H}} 1.72, \mathrm{~d}, J=6.4 \mathrm{~Hz}\right)$ to $\mathrm{C}-12\left(\delta_{\mathrm{C}} 129.1\right)$, together with COSY correlations $\mathrm{H}_{3}-13 / \mathrm{H}-12 / \mathrm{H}-11 / \mathrm{H}-10 / \mathrm{H}-9 / \mathrm{H}-8\left(\mathrm{H}_{3}-15\right)$ (Figure S8). The $2 E, 5 E$, $7 E$ and $11 E$ configurations of the double bonds were also deduced by the NOESY correlations (Figure S8). Thus, compound 2 was identified as 11-demethyl-piericidin A (2).

- 15

$\mathrm{HMBC} \rightleftharpoons \mathrm{COSY} \sim$ NOESY

Figure S8. Key HMBC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOESY correlations of 2-5.
Compound $\mathbf{3}$ was isolated as pale yellow oil. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of IT-143-A ${ }^{[2]}$ and piericidin $\mathrm{C}_{8}{ }^{[3]}$ indicated that they shared the piericidins skeleton. The only difference was an additional oxygenated methine ($\delta_{\mathrm{C}} 75.1, \delta_{\mathrm{H}} 3.66, \mathrm{CH}-19$) and oxygenated quaternary carbon ($\delta_{\mathrm{C}} 76.5, \mathrm{C}-13$) in $\mathbf{3}$, instead of the olefinic bond in IT-143-A. Two hydroxyl groups on C-13 and C-19, confirmed by the HMBC correlations from $\mathrm{H}-12\left(\delta_{\mathrm{H}} 5.46, \mathrm{~s}\right), \mathrm{H}-20\left(\delta_{\mathrm{H}} 1.28, \mathrm{~s}, 3 \mathrm{H}\right), \mathrm{H}-21$ $\left(\delta_{\mathrm{H}} 1.14, \mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right)$ to $\mathrm{C}-13$ and $\mathrm{C}-19$ (Figure $\mathbf{S 8}$), were also supported by molecular formula $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NO}_{6}$ established by HRESIMS, rather than the epoxide moiety. All of the double bonds and C$9 / \mathrm{C}-10$ in $\mathbf{3}$ were deduced to be the same configurations ($2 E, 5 E, 7 E, 11 E, 9 R, 10 R$) with those reported piericidins, by the NOESY correlations, coupling constants, and also a biosynthetic point of view.

Compound 4 has a same molecular formula $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{NO}_{6}$ with $\mathbf{3}$, as deduced from its HRESIMS. Its 1D and 2D NMR spectra showed resonances exactly similar with those of 3, meanwhile the configurations ($2 E, 5 E, 7 E, 11 E, 9 R, 10 R$) of the four double bonds and C-9/C-10 were also the same. The small difference of $\mathrm{C}-12\left(\delta_{\mathrm{C}} 132.8\right.$ in $\mathbf{3}$, and $\delta_{\mathrm{C}} 132.0$ in $\left.\mathbf{4}\right)$ and $\mathrm{H}-19\left(\delta_{\mathrm{H}} 3.83\right.$ in $\mathbf{3}$, and $\delta_{\mathrm{H}} 3.77$ in 4) chemical shifts, by comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (in CDCl_{3}) date of $\mathbf{3}$ and $\mathbf{4}$ (Tables S11, S12), as well as their different ECD curves (Figure S9), suggested $\mathbf{4}$ as a C-13/C-19 epimer of 3. The absence of NOESY correlation between $\mathrm{H}_{3}-20$ and $\mathrm{H}-19$ of $\mathbf{3} / 4$ suggested an anti-relationship between $13-\mathrm{OH}$ and $19-\mathrm{OH}$. The Boltzmann-weighted ECD curve of $(13 S, 19 R)-\mathbf{3}$ was calculated and compared with the experimental ECD curves of $\mathbf{3} / \mathbf{4}$ (Figure $\mathbf{S} 9$), which led to the determination of $13 S, 19 R$ absolute configuration of $\mathbf{3}$, and $13 R, 19 S$ absolute configuration of 4 . Consequently, compounds $\mathbf{3}(13 S, 19 R)$ and $4(13 R, 19 S)$ were identified as a pair of epimers of $\left(2 E, 5 E, 7 E, 11 E, 9 R, 10 R, 13 S^{*}, 19 R^{*}\right)-13,19-$ dihydroxyl-IT-143-A.

Figure S9. ECD spectrum of 3, $\mathbf{4}$ and the calculated ECD curve of $(13 S, 19 R)$-3.
Compound 5 was isolated as clear oil. Its molecular formula was established by HR-ESIMS to be $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{4}$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of piericidin $\mathrm{A}(\mathbf{1})$ (Tables S11, S12) showed that, the only difference was the replacement of the $\mathrm{CHOH}-10$ in $\mathbf{1}$ by a ketone carbonyl group in 5, which was confirmed by the HMBC correlations showed in Figure S8. C-10 ketone piericidin A was previously reported as a synthetic analogue of $\mathbf{1} .^{[4]}$ The specific rotations $\left(5:[\alpha]_{D}^{20}-\right.$ 5.5, $c 0.2, \mathrm{CHCl}_{3}$; C-10 ketone piericidin $\mathrm{A}^{[4]}:[\alpha]_{\mathrm{D}}^{25}-14, c 0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) indicated that 5 shared the same absolute configuration $(9 R)$ as those synthetic $\mathrm{C}-10$ ketone piericidin A . Thus, $(9 R) 10$-ketone piericidin $\mathrm{A}(5)$ was obtained in this study as a new natural product.

The structures of the other five known piericidin aglycones (6-9) were characterized by comparison of their NMR and MS data with literature data and were determined to be piericidins C2 (6), C1(7), and A2 (8) ${ }^{[1 \mathrm{a}]}$, and 7-demethylpiericidin A1 (9). ${ }^{[5]}$

Compound 10 was suggested to be a piericidin glycoside, with molecular weight 577 and similar UV curve with piericidin A (molecular weight 415), by HPLC/HRESIMS analysis in the extract of the strain SCSIO NS126 fermentation. The structure of the purified $\mathbf{1 0}$ was characterized by comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with literature data ${ }^{[6]}$ and was determined to be glucopiericidin $\mathrm{A}(\mathbf{1 0})$.

Compound 11 was suggested to be an oxidative product of $\mathbf{1 0}$ because of its molecular weight 593 given by HPLC/HRESIMS. It was determined to be 13-hydroxyglucopiericidin A (11) by comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with literature data. ${ }^{[7]}$

Compound 12 was obtained with its molecular formula $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{NO}_{9}$, established by HR-ESIMS $\left(\mathrm{m} / z 564.3185[\mathrm{M}+\mathrm{H}]^{+}\right)$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of $\mathbf{1 0}$ indicated that they shared the piericidin glycoside skeleton. The only difference was the absence of the $16-\mathrm{Me}$ linked to C-7 in 12, which was confirmed by the HMBC correlations like from $\mathrm{H}-5\left(\delta_{\mathrm{H}} 5.54, \mathrm{dt}, J=13.9,7.1\right.$ Hz) to C-7 ($\delta_{\mathrm{C}} 131.0$), and from H-9 ($\delta_{\mathrm{H}} 2.45, \mathrm{~m}$) to C-7, together with $\mathrm{H}_{2}-4 / \mathrm{H}-5 / \mathrm{H}-6 / \mathrm{H}-7 / \mathrm{H}-8 / \mathrm{H}-9 / \mathrm{H}-$ 10 COSY correlations (Figure S10). Compound 12 was suggested to be the glycoside of 7demethylpiericidin $\mathrm{A} 1(9)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ showed signals due to a Dglucose group $\left[\delta_{\mathrm{H}} 4.20\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right) ; 3.19\left(\mathrm{~d}, J=8.9,7.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right) ; 3.30(\mathrm{dd}, J=8.9,8.7 \mathrm{~Hz}\right.$, H-3"); 3.29 (dd, $J=9.1,8.7 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}$); 3.11 (ddd, $J=9.1,5.3,2.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}$); 3.62 (dd, $J=11.8,5.4$ Hz, H-6"a); 3.74 (dd, $J=11.8,2.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime} \mathrm{b}$); $\delta_{\mathrm{C}} 104.2$ (C-1"), 75.7 (C-2"), 78.3 (C-3"), 71.6, (C-4"), 77.7 (C-5"), and $62.8\left(\mathrm{C}-6^{\prime \prime}\right)$], which was also confirmed by the acid hydrolysis of $\mathbf{1 2}$. The coupling constant of the anomeric proton ($\delta_{\mathrm{H}} 4.20, \mathrm{~d}, J=7.8 \mathrm{~Hz}$) indicated that the glycosyl linkage is of β configuration, and the $10-O$-D-glucoside linkage was determined by the down-field shift of $\mathrm{C}-10\left(\delta_{\mathrm{C}}\right.$
93.7) and the HMBC correlations from $\mathrm{H}-1$ " to $\mathrm{C}-10 .{ }^{[6]}$ The double bonds in side chain and C-9/C-10 were deduced to be the same configurations $(2 E, 5 E, 7 E, 11 E, 9 R, 10 R)$ with those of obtaned piericidin aglycones, by the NOESY correlations, coupling constants, and also a biosynthetic point of view. Thus, 12 was characterized as 7-demethylglucopiericidin A (12).

$12 \mathrm{R}=\mathrm{H}$
$13 \mathrm{R}=\mathrm{OH}$

$16 \mathrm{R}=\mathrm{H}$
$17 \mathrm{R}=\mathrm{OH}$

$15 \mathrm{R}=\mathrm{OH}$

$19 \mathrm{R}=\mathrm{OH}$

$4.64\left(\mathrm{H}-1^{\prime \prime \prime}\right.$ of Gal) to $\delta_{\mathrm{C}} 67.2$ (C-6" of Glu). Thus, compound 14 was characterized as piericidin A 10O - α-D-galactose $(1 \rightarrow 6)$ - β-D-glucoside (14). This structure was reported recently without clear determination. ${ }^{[9]}$

Figure S11. Anomeric protons analysis of $\mathbf{1 4}$ before and after NMR tube degradation.
Compound 15 was obtained with its molecular formula $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{NO}_{15}$, established by HR-ESIMS $\left(m / z 754.3646[\mathrm{M}-\mathrm{H}]^{-}\right)$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of $\mathbf{1 4}$ indicated that they shared the piericidin diglycosides skeleton. The only difference was the replacement of the 13-Me in 14 by an oxygenated methylene in 15 , which was confirmed by the HMBC correlations from (3.96, dd, $J=13.0,6.3 \mathrm{~Hz} ; 4.00$, dd, $J=13.0,6.3 \mathrm{~Hz}$) to $\mathrm{C}-11\left(\delta_{\mathrm{C}} 134.3\right)$ and C-12 ($\delta_{\mathrm{C}} 128.8$), and COSY correlations of $\mathrm{H}_{2}-13 / \mathrm{H}-12\left(\delta_{\mathrm{H}} 5.42, \mathrm{t}, J=6.3 \mathrm{~Hz}\right.$) (Figure S10). The coupling constant of the two anomeric protons ($\delta_{\mathrm{H}} 4.11, \mathrm{~d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$ of Glu; $\delta_{\mathrm{H}} 4.64, \mathrm{~d}, J=2.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}$ of Gal) indicated that the same glycosyl linkage (β-D-glucose and α-D-galactose configurations) in $\mathbf{1 5}$ as those in $\mathbf{1 4}$. Compound 15 was characterized as 13 -hydroxypiericidin A $10-O$ - α-D-galactose ($1 \rightarrow 6$)- β-D-glucoside (15).

Figure S12. Comparison of the sugar moieties of 14 and 16 in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum.
Compound 16 was also suggested to be a piericidin diglycoside, based on the molecular formula $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{NO}_{14}$ established by HR-ESIMS ($\mathrm{m} / \mathrm{z} 738.3702[\mathrm{M}-\mathrm{H}]^{-}$). The NMR data of $\mathbf{1 6}$ were similar to those of $\mathbf{1 4}$, except for some small differences of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of position $\mathrm{CH}-2^{\prime \prime \prime}$, CH-3'", CH-4"' (Figure S12, Tables S13, S15). Only glucose was yield after acid hydrolysis of 16, suggesting diglucoside of $\mathbf{1 6}$. The coupling constant of the two anomeric protons ($\delta_{\mathrm{H}} 4.10, \mathrm{~d}, J=7.8$ $\mathrm{Hz}, \mathrm{H}-1^{\prime \prime}$ of Glu-1; $\delta_{\mathrm{H}} 4.62, \mathrm{~d}, J=3.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}$ of Glu-2) indicated that the glycosyl linkage were of β - and α - configurations for two glucoses. The Glu-2 linkage was established at C- $6^{\prime \prime}$ of the Glu- 1 by an HMBC correlations from $\delta_{\mathrm{H}} 4.62$ (H-1"' of Glu-2) to $\delta_{\mathrm{C}} 67.3$ (C-6" of Glu-1) (Figure S10). Thus, compound 16 was characterized as piericidin A $10-O-\alpha$-D-glucose $(1 \rightarrow 6)-\beta$-D-glucoside (16). This structure was reported as the name BE-14324 in the Japanese patent. ${ }^{[10]}$

Compound 17 was obtained with its molecular formula $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{NO}_{15}$, established by HR-ESIMS $\left(m / z 754.3660[\mathrm{M}-\mathrm{H}]^{-}\right)$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of $\mathbf{1 6}$ indicated that they shared the piericidin diglucosides skeleton (Table S13, S15). The only difference was the replacement of the $13-\mathrm{Me}$ in $\mathbf{1 6}$ by an oxygenated methylene in $\mathbf{1 7}$, which was confirmed by the HMBC correlations from $\mathrm{H}_{2}-13(3.97, \mathrm{dd}, J=13.0,6.3 \mathrm{~Hz} ; 4.01$, dd, $J=13.0,6.3 \mathrm{~Hz})$ to $\mathrm{C}-11\left(\delta_{\mathrm{C}} 134.0\right)$ and C-12 $\left(\delta_{\mathrm{C}}\right.$ 129.0), and COSY correlations of $\mathrm{H}_{2}-13 / \mathrm{H}-12\left(\delta_{\mathrm{H}} 5.42\right.$, m) (Figure S10). The coupling constant of the two anomeric protons ($\delta_{\mathrm{H}} 4.12, \mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$ of Glu-1; $\delta_{\mathrm{H}} 4.64, \mathrm{~d}, J=3.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}$ of Glu2) indicated that the same glycosyl linkage in $\mathbf{1 7}$ as those in $\mathbf{1 6}$. Compound $\mathbf{1 7}$ was characterized as 13-hydroxypiericidin A $10-O$ - α-D-glucose $(1 \rightarrow 6)-\beta$-D-glucoside (17).

Compound 18 was also suggested to be a piericidin diglucoside, based on the molecular formula $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{NO}_{14}$ established by HR-ESIMS ($\mathrm{m} / \mathrm{z} 738.3684[\mathrm{M}-\mathrm{H}]^{-}$). Comparison of its NMR date with those of glucopiericidin $\mathrm{A}(\mathbf{1 0})$ indicated that the only difference was an additional glycosyl group linked on $\mathrm{OH}-4^{\prime}$ of the pyridine ring, which was confirmed by the HMBC correlations from $\mathrm{H}-1^{\prime \prime \prime}\left(\delta_{\mathrm{H}}\right.$ $5.09, \mathrm{~d}, J=7.4 \mathrm{~Hz})$ to $\mathrm{C}-4^{\prime}\left(\delta_{\mathrm{C}} 154.3\right)$, and NOESY correlations of $\mathrm{H}-1^{\prime \prime \prime} / \mathrm{H}-9^{\prime}\left(\delta_{\mathrm{H}} 2.07, \mathrm{~s}, 3 \mathrm{H}\right)($ Figure S10). The coupling constant of the two anomeric protons, indicated that both of the glucoses were β glucosyl linkage. So, the structure of $\mathbf{1 8}$ was characterized as $4^{\prime}-O-\beta$-D-glucose glucopiericidin A (18).

Compound 19 was obtained with its molecular formula $\mathrm{C}_{37} \mathrm{H}_{57} \mathrm{NO}_{15}$, established by HR-ESIMS $\left(m / z 756.3829[\mathrm{M}+\mathrm{H}]^{+}\right)$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of 18 indicated that they shared the piericidin diglucosides skeleton (Tables S13, S15). The only difference was the replacement of the $13-\mathrm{Me}$ in 18 by an oxygenated methylene in 19 , which was confirmed by the HMBC correlations from $\mathrm{H}_{2}-13(4.05, \mathrm{dd}, J=12.8,7.2 \mathrm{~Hz} ; 4.17, \mathrm{dd}, J=12.8,7.2 \mathrm{~Hz})$ to $\mathrm{C}-11\left(\delta_{\mathrm{C}} 139.1\right)$ and C-12 $\left(\delta_{\mathrm{C}}\right.$ 128.8), and COSY correlations of $\mathrm{H}_{2}-13 / \mathrm{H}-12\left(\delta_{\mathrm{H}} 5.58, \mathrm{t}, J=6.2 \mathrm{~Hz}\right.$) (Figure S10). The coupling constant of the two anomeric protons indicated that both of the glucoses were β glucosyl linkage. So, the structure of 19 was characterized as $4^{\prime}-O-\beta$-D-glucose 13-hydroxyglucopiericidin A (19).

Compound 20 was obtained with its molecular formula $\mathrm{C}_{43} \mathrm{H}_{67} \mathrm{NO}_{19}$, established by HR-ESIMS $\left(m / z 902.4390[\mathrm{M}+\mathrm{H}]^{+}\right)$. Its NMR date indicated three glycosyl groups in the structure, with three anomeric protons ($\delta_{\mathrm{H}} 4.25, \mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}$ of Glu- $1 ; \delta_{\mathrm{H}} 4.84, \mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}$ of Gal; $\delta_{\mathrm{H}} 5.23$, d, $J=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime \prime}$ of Glu-2). Comparison of its NMR date with those of $\mathbf{1 4}$ indicated that $\mathbf{2 0}$ had the same α-D-galactose $(1 \rightarrow 6)-\beta$-D-glucoside moiety linked on $C-10$, and comparison with those of 18 and 19 revealed a β-D-glucose group linked on $\mathrm{OH}-4^{\prime}$ of the pyridine ring in $\mathbf{2 0}$. The structure of this piericidin triglycoside was confirmed by the HMBC, COSY, and NOESY correlations (Figure S10), and characterized as $4^{\prime}-O-\beta$-D-glucose piericidin A $10-O-\alpha$-D-glucose ($1 \rightarrow 6$)- β-D-glucoside (20).

Compound 21 was obtained with its molecular formula $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{NO}_{11}$, established by HR-ESIMS $\left(m / z 626.3543[\mathrm{M}+\mathrm{H}]^{+}\right)$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of glucopiericidin $\mathrm{A}(\mathbf{1 0})$ indicated that they shared the piericidin glycoside skeleton. The only difference was the replacement of the C-5/C-6 olefinic methines in $\mathbf{1 0}$ by two oxygenated methines and another oxygenated methyl in 21. The moiety of -OH on $\mathrm{C}-5$ and -OMe on $\mathrm{C}-6$ was confirmed by the HMBC correlations from H_{2} $4(2.51$, br.d, $J=13.9 \mathrm{~Hz} ; 2.03$, dd, $J=13.9,8.9 \mathrm{~Hz})$ to C-5 ($\delta_{\mathrm{C}} 70.1$), from H-6 ($\delta_{\mathrm{H}} 3.20, \mathrm{~d}, J=8.4$ $\mathrm{Hz})$ to $\mathrm{C}-4\left(\delta_{\mathrm{C}} 43.2\right), \mathrm{C}-5, \mathrm{C}-8\left(\delta_{\mathrm{C}} 137.5\right), \mathrm{C}-16\left(\delta_{\mathrm{C}} 11.3\right)$, from $\mathrm{H}_{3}-(6-\mathrm{OMe})\left(\delta_{\mathrm{H}} 3.11, \mathrm{~s}\right)$ to $\mathrm{C}-6\left(\delta_{\mathrm{C}}\right.$ 92.3), and COSY correlations of $\mathrm{H}_{2}-4 / \mathrm{H}-5\left(\delta_{\mathrm{H}} 3.69\right.$, ddd, $\left.J=8.9,8.4,2.7 \mathrm{~Hz}\right) / \mathrm{H}-6$ (Figure S13). The NMR data (Tables S14, S15) indicated the presence of a β-D-glucose group in 21, same as in $\mathbf{1 0}-\mathbf{1 3}$. All the double bonds in side chain were deduced to be E configurations by the NOESY correlations.

The C-9/C-10 configurations were considered as $9 R, 10 R$, as same as those of all the obtaines piericidins, on a biosynthetic point of view. The relative configurations of C-5/C-6 were determined by the coupling constant $\left(J_{\mathrm{H}-5 / \mathrm{H}-6}=8.4 \mathrm{~Hz}\right)$, and the NOESY correlation of $\mathrm{H}-(6-\mathrm{OMe})$ and $\mathrm{H}-10$ indicated they were on the same side of the C-7/C-8 double bond (Figure S13). Accordingly, compound 21 was characterized as 5-hydroxy-6-hydroxymethyl glucopiericidin A (21).

21 R = H
$22 \mathrm{R}=\mathrm{OH}$

24

Figure S13. Key HMBC, COSY and NOESY correlations of 21-26.
Compound 22 was obtained with its molecular formula $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{NO}_{12}$, established by HR-ESIMS $\left(m / z 642.3481[\mathrm{M}+\mathrm{H}]^{+}\right)$. The NMR data (Tables S14, S15) of 22 were similar to those of 21, except for the replacement of the $13-\mathrm{Me}$ in 21 by an oxygenated methylene in $\mathbf{2 2}$, which was confirmed by the HMBC correlations from $\mathrm{H}_{2}-13\left(4.05, \mathrm{dd}, J=12.8,6.0 \mathrm{~Hz} ; 4.18\right.$, dd, $J=12.8,6.0 \mathrm{~Hz}$) to C-11 (δ_{C} 139.0) and $\mathrm{C}-12$ ($\delta_{\mathrm{C}} 129.2$), and COSY correlations of $\mathrm{H}_{2}-13 / \mathrm{H}-12\left(\delta_{\mathrm{H}} 5.58, \mathrm{t}, J=6.3 \mathrm{~Hz}\right)$ (Figure S13). All the configurations were determined by the NOESY correlations, coupling constants, as well as a biosynthetic point of view. Thus, compound $\mathbf{2 2}$ was characterized as 5-hydroxy-6-hydroxymethyl-13-hydroxyglucopiericidin A (22).

Compound 23 was obtained with its molecular formula $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{NO}_{10}$, established by HR-ESIMS $\left(\mathrm{m} / z 608.3444[\mathrm{M}+\mathrm{H}]^{+}\right)$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of glucopiericidin $\mathrm{A}(\mathbf{1 0})$ indicated that they shared the piericidin glycoside skeleton, but there were some differences with the chemical shifts on position 1-6 of the side chain (Tables S14, S15), together with an additional hydroxymethyl group. The hydroxymethyl was linked on C-2, and the conventional C-2/C-3 double bond was moved to $\mathrm{C}-3 / \mathrm{C}-4$ here. This usual moiety in piericidins were clearly determined by the HMBC correlations from $\mathrm{H}_{2}-1\left(\delta_{\mathrm{H}} 2.97\right.$, dd, $\mathrm{J}=13.7,8.6 \mathrm{~Hz} ; 2.73$, dd, $\left.J=13.7,8.6 \mathrm{~Hz}\right), \mathrm{H}-4\left(\delta_{\mathrm{H}} 5.93\right.$, d, $J=10.9 \mathrm{~Hz}), \mathrm{H}_{3}-17\left(\delta_{\mathrm{H}} 1.79, \mathrm{~s}\right), \mathrm{H}_{3}-(2-\mathrm{OMe})\left(\delta_{\mathrm{H}} 3.16, \mathrm{~s}\right)$ to $\mathrm{C}-2\left(\delta_{\mathrm{C}} 88.0\right)$, from $\mathrm{H}_{2}-1, \mathrm{H}-5\left(\delta_{\mathrm{H}} 6.35\right.$, dd, $J=5.2,10.9 \mathrm{~Hz}$), $\mathrm{H}_{3}-17$ to C-3 ($\delta_{\mathrm{C}} 136.9$), from $\mathrm{H}-5, \mathrm{H}-6\left(\delta_{\mathrm{H}} 6.21, \mathrm{~d}, J=15.2 \mathrm{~Hz}\right), \mathrm{H}_{3}-17$ to C-4 ($\delta_{\mathrm{C}} 129.8$), and COSY correlations of $\mathrm{H}_{2}-1 / \mathrm{H}-2\left(\delta_{\mathrm{H}} 4.08, \mathrm{t}, J=8.6 \mathrm{~Hz}\right.$), and H-4/H-5/H-6 (Figure S13). The NMR data (Tables S14, S15), especially the coupling constants of the protons in the sugar group,
indicated the presence of a β-D-glucose group in 23. The configurations of the double bonds in side chain and C-9/C-10 were deduced by the NOESY correlations and coupling constants, as illuminated in other piericidins above. The absolute configuration of C-2 was remained to be defined. Accordingly, compound $\mathbf{2 3}$ was characterized as 2-hydroxymethyl- 43 , 4-glucopiericidin A (23).

Compound 24 was obtained with its molecular formula $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{NO}_{10}$, established by HRESIMS $\left(m / z 594.3269[\mathrm{M}+\mathrm{H}]^{+}\right)$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of $\mathbf{1 0}$ indicated that they shared the piericidin glycoside skeleton. The only difference was the replacement of the C-11/C-12 olefinic methines in $\mathbf{1 0}$ by C-11/C-12 epoxy ring in 24, which was confirmed by the HRESIMS and HMBC correlations like from $\mathrm{H}-12\left(\delta_{\mathrm{H}} 2.97 \mathrm{q}, J=5.5 \mathrm{~Hz}\right)$ to C-10 ($\delta_{\mathrm{C}} 86.1$), C-11 ($\delta_{\mathrm{C}} 61.2$), C-13 (δ_{C} 13.1), and C-14 ($\delta_{\mathrm{C}} 13.4$) (Figure S13). Comparison of its NMR date with those of piericidin C 1 (7) indicated that 24 was the $10-O$-glucoside of piericidin C 1 . The configurations of the glucose, double bonds in side chain and C-9/C-10 were deduced by the NOESY correlations and coupling constants, as illuminated in other piericidins above. The NOESY correlations from $\mathrm{H}-9$ to $\mathrm{H}-14$ suggested the same side of the $\mathrm{H}-9$ and $\mathrm{CH}_{3}-14$ (Figure $\mathbf{S 1 3}$). So the configurations of the $\mathrm{C}-11 / \mathrm{C}-12$ epoxy ring were determined to be $11 S, 12 R$. So, compound 24 was characterized as $(11 S, 12 R)$ piericidin C1 10-$O-\beta$-D-glucoside (24).

Compound 25 was obtained with its molecular formula $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{NO}_{10}$, established by HRESIMS $\left(m / z 594.3288[\mathrm{M}+\mathrm{H}]^{+}\right)$. The NMR data (Table S14, S15) of $\mathbf{2 5}$ were similar to those of 24, except for some small difference of the chemical shifts of $\mathrm{CH}-10, \mathrm{C}-11, \mathrm{CH}-12, \mathrm{CH}_{3}-13$, and $\mathrm{CH}_{3}-14$. The HMBC and COSY correlations revealed 25 had the same planer structure with 24, including the C$11 / \mathrm{C}-12$ epoxy ring. The differences of the specific rotations $\left(\mathbf{2 4}:[\alpha]_{\mathrm{D}}^{20}+2.0, c 0.6, \mathrm{CHCl}_{3} ; \mathbf{2 5}:[\alpha]_{\mathrm{D}}^{20}\right.$ $+0.9, c 0.6, \mathrm{CHCl}_{3}$) and ECD curves (Figure S14) suggested $\mathbf{2 5}$ to be a C-11/C-12 epimer of 24. The NOESY correlations from $\mathrm{H}_{3}-15\left(\delta_{\mathrm{H}} 0.91, \mathrm{~d}, J=6.9 \mathrm{~Hz}\right)$ to $\mathrm{H}-14$ suggested the same side of the $\mathrm{H}_{3}-$ 15 and $\mathrm{CH}_{3}-14$ (Figure $\mathbf{S 1 3}$). So the configurations of the $\mathrm{C}-11 / \mathrm{C}-12$ epoxy ring were determined to be $11 R, 12 S$. Accordingly, compound 25 was characterized as ($11 R, 12 S$) piericidin C1 10-O- β-Dglucoside (25).

|Figure S14. ECD spectrum of 10-26.
Compound 26 was obtained with its molecular formula $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{NO}_{11}$, established by HRESIMS $\left(m / z 638.3535[\mathrm{M}+\mathrm{H}]^{+}\right)$. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with those of 11 indicated that they shared the piericidin glycoside skeleton (Tables S14, S15). The only difference was the replacement of the C-13 oxygenated CH_{2} in 11 by oxygenated $\mathrm{CH}\left(\delta_{\mathrm{H}} 5.06, \mathrm{~d}, J=6.5 \mathrm{~Hz}, \delta_{\mathrm{C}} 101.5\right)$ in $\mathbf{2 6}$, which was confirmed by the coupling constant of $\mathrm{CH}-12\left(\delta_{\mathrm{H}} 5.46, \mathrm{~d}, J=6.5 \mathrm{~Hz}\right)$. The chemical shifts of CH13 and the molecular formula suggested two methoxy groups linked on $\mathrm{C}-13$, which were supported
by HMBC correlations from $\mathrm{H}-13$ to $\mathrm{C}-11\left(\delta_{\mathrm{C}} 142.9\right)$ and $-\mathrm{OMe}\left(\delta_{\mathrm{C}} 52.0\right)$ and COSY correlation from H-13 and H-12 (Figure S13). Thus, compound 26 was characterized as 13-dimethoxy glucopiericidin A (26).

Compound 27 was obtained with its molecular formula $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{NO}_{8}$, established by HRESIMS $\left(m / z 548.3215[\mathrm{M}+\mathrm{H}]^{+}\right)$. It was determined to be glucopiericidin $\mathrm{C}(27)$ by comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR date with literature data. ${ }^{[16]}$

Methods of the Glycosides Hydrolyzation.

Compound $\mathbf{1 1}(5.0 \mathrm{mg})$ was refluxed with $2 \mathrm{M} \mathrm{HCl} / \mathrm{MeOH}(1: 1,5 \mathrm{~mL})$ for 6 h at $60^{\circ} \mathrm{C}$. The reaction mixture was evaporated to dryness and diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. After extraction with EtOAc (3×5 mL), the aqueous layer was concentrated and heated with L-cycteine methyl ester hydrochloride (5 $\mathrm{mg})$ in pyridine $(1 \mathrm{ml})$ at $60{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{[1]}$ Then O-tolyl isothiocyanate $(0.4 \mathrm{ml})$ was added to the reaction mixture, which was then stirred at $60{ }^{\circ} \mathrm{C}$ for 1 h . Sugar (D-glucose/D-galactose) standards (Sigma) were also derivatized using L-cycteine methyl ester hydrochloride in the same manner. Then O-tolyl isothiocyanate was added to the reaction mixture, stirred at $60^{\circ} \mathrm{C}$ for 1 h . The reaction mixtures were analyzed by using HPLC under the followed conditions: an YMC-Pack ODS-A column ($250 \times$ 4.6 mm); a UV detector; $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ mobile phase ($25 / 75, \mathrm{v} / \mathrm{v}$); a detection wavelength of 250 nm ; $0.8 \mathrm{ml} / \mathrm{min}$ flow rate. The retention times of the derivatized standards were as follow: D-glucose 21.5 min , D-galactose 19.0 min . By comparing the retention times with those of the standards, the sugar in compound $\mathbf{1 1}$ was determined to be D-glucose. ${ }^{[11]}$ Hydrolyzation of $\mathbf{1 2}(0.8 \mathrm{mg})$ and $\mathbf{1 6}(1.0 \mathrm{mg})$ were taken in the same way, and only D-glucose was determined in the reaction mixtures.

NMR tube degradation method for sugar analysis of $\mathbf{1 4}(1.0 \mathrm{mg})$ was taken as reported. ${ }^{[8]}$ Briefly, after measuring the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(700 \mathrm{MHz}\right.$, in DMSO- d_{6}) of $\mathbf{1 4}, 2 \mathrm{M} \mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$ (Deuterium Chloride) was added into the NMR tube and heated to $90^{\circ} \mathrm{C}$ for 3 h . The ${ }^{1} \mathrm{H}$ NMR spectrum (700 MHz) of the mixture in the tube was acquired after the hydrolyzation. The mixture of D-glucose and D-galactose was also measured in DMSO- d_{6} with a little $\mathrm{D}_{2} \mathrm{O}$. D-Glucose and D-galactose were determined in the degradation mixture of $\mathbf{1 4}$, comparing with the anomeric protons of the hydrolysis products and those of sugar (D-glucose/D-galactose) standards acquired and in reference. ${ }^{[8]}$

Table S11. ${ }^{1} \mathrm{H}$ NMR (700 MHz) Spectroscopic Data for 2-5.

	$\mathbf{2}\left(\mathrm{CDCl}_{3}\right)$	$\mathbf{3}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$	$\mathbf{3}\left(\mathrm{CDCl}_{3}\right)$	$\mathbf{4}\left(\mathrm{CDCl}_{3}\right)$	$\mathbf{5}(\mathrm{CDCl} 3)$
1	$3.37(\mathrm{~d}, 6.9) 2 \mathrm{H}$	$3.38(\mathrm{~d}, 6.9) 2 \mathrm{H}$	$3.38(\mathrm{~d}, 6.8) 2 \mathrm{H}$	$3.38(\mathrm{~d}, 6.9) 2 \mathrm{H}$	$3.36(\mathrm{~d}, 6.9) 2 \mathrm{H}$
2	$5.41(\mathrm{t}, 6.9)$	$5.33(\mathrm{t}, 6.9)$	$5.41(\mathrm{t}, 6.9)$	$5.41(\mathrm{t}, 6.9)$	$5.40(\mathrm{t}, 6.9)$
4	$2.79(\mathrm{~d}, 7.0) 2 \mathrm{H}$	$2.70(\mathrm{~s}) 2 \mathrm{H}$	$2.70(\mathrm{~s}) 2 \mathrm{H}$	$2.70(\mathrm{~s}) 2 \mathrm{H}$	$2.77(\mathrm{~d}, 6.9) 2 \mathrm{H}$
5	$5.60(\mathrm{dt}, 15.5,7.0)$	$/$	$/$	$/$	$5.59(\mathrm{~m})$
6	$6.08(\mathrm{~d}, 15.5)$	$5.68(\mathrm{~s})$	$5.69(\mathrm{~s})$	$5.69(\mathrm{~s})$	$6.03(\mathrm{~d}, 15.5)$
8	$5.21(\mathrm{~d}, 9.8)$	$5.16(\mathrm{~d}, 9.4)$	$5.06(\mathrm{~d}, 9.9)$	$5.06(\mathrm{~d}, 9.9)$	$5.35(\mathrm{~d}, 9.6)$
9	$2.56(\mathrm{~m})$	$2.66(\mathrm{~m})$	$2.65(\mathrm{~m})$	$2.65(\mathrm{~m})$	$4.14(\mathrm{~m})$
10	$3.75(\mathrm{dd}, 7.6,7.6)$	$3.66 *$	$3.59(\mathrm{~d}, 8.7)$	$3.61(\mathrm{~d}, 8.5)$	$/$
11	$5.46(\mathrm{dd}, 7.6,15.2)$	$/$	$/$	$/$	$/$
12	$5.70(\mathrm{dq}, 15.2,6.4)$	$5.46(\mathrm{~s})$	$5.46(\mathrm{~s})$	$5.43(\mathrm{~s})$	$6.73(\mathrm{q}, 7.0)$
13	$1.72(\mathrm{~d}, 6.4)$	$/$	$/$	$/$	$1.84(\mathrm{~d}, 6.9) 3 \mathrm{H}$
14	$/$	$1.87(\mathrm{~s}) 3 \mathrm{H}$	$1.91(\mathrm{~s}) 3 \mathrm{H}$	$1.92(\mathrm{~s}) 3 \mathrm{H}$	$1.77(\mathrm{~s}) 3 \mathrm{H}$
15	$0.92(\mathrm{~d}, 6.8) 3 \mathrm{H}$	$0.90(\mathrm{~d}, 6.9) 3 \mathrm{H}$	$0.87(\mathrm{~d}, 6.7) 3 \mathrm{H}$	$0.89(\mathrm{~d}, 6.7) 3 \mathrm{H}$	$1.15(\mathrm{~d}, 6.8) 3 \mathrm{H}$
			S 18		

16	$1.77(\mathrm{~s}) 3 \mathrm{H}$	$1.73(\mathrm{~s}) 3 \mathrm{H}$	$1.78(\mathrm{~s}) 3 \mathrm{H}$	$1.78(\mathrm{~s}) 3 \mathrm{H}$	$1.79(\mathrm{~s}) 3 \mathrm{H}$
17	$1.75(\mathrm{~s}) 3 \mathrm{H}$	$1.68(\mathrm{~s}) 3 \mathrm{H}$	$1.68(\mathrm{~s}) 3 \mathrm{H}$	$1.68(\mathrm{~s}) 3 \mathrm{H}$	$1.73(\mathrm{~s}) 3 \mathrm{H}$
18	$/$	$1.68(\mathrm{~s}) 3 \mathrm{H}$	$1.67(\mathrm{~s}) 3 \mathrm{H}$	$1.67(\mathrm{~s}) 3 \mathrm{H}$	$/$
19	$/$	$3.66 *$	$3.83(\mathrm{q}, 6.4)$	$3.77(\mathrm{q}, 6.3)$	$/$
20	$/$	$1.28(\mathrm{~s}) 3 \mathrm{H}$	$1.29(\mathrm{~s}) 3 \mathrm{H}$	$1.27(\mathrm{~s}) 3 \mathrm{H}$	$/$
21	$/$	$1.14(\mathrm{~d}, 6.4) 3 \mathrm{H}$	$1.14(\mathrm{~d}, 6.4) 3 \mathrm{H}$	$1.15(\mathrm{~d}, 6.4) 3 \mathrm{H}$	$/$
7^{\prime}	$3.95(\mathrm{~s}) 3 \mathrm{H}$	$3.91(\mathrm{~s}) 3 \mathrm{H}$	$3.95(\mathrm{~s}) 3 \mathrm{H}$	$3.95(\mathrm{~s}) 3 \mathrm{H}$	$3.94(\mathrm{~s}) 3 \mathrm{H}$
8^{\prime}	$3.86(\mathrm{~s}) 3 \mathrm{H}$	$3.68(\mathrm{~s}) 3 \mathrm{H}$	$3.86(\mathrm{~s}) 3 \mathrm{H}$	$3.86(\mathrm{~s}) 3 \mathrm{H}$	$3.86(\mathrm{~s}) 3 \mathrm{H}$
9^{\prime}	$2.09(\mathrm{~s}) 3 \mathrm{H}$	$2.06(\mathrm{~s}) 3 \mathrm{H}$	$2.09(\mathrm{~s}) 3 \mathrm{H}$	$2.09(\mathrm{~s}) 3 \mathrm{H}$	$2.09(\mathrm{~s}) 3 \mathrm{H}$

* overlapped

Table S12. ${ }^{13}$ C NMR (175 MHz) Spectroscopic Data for 2-5.

	$2\left(\mathrm{CDCl}_{3}\right)$	3 ($\mathrm{CD}_{3} \mathrm{OD}$)	$3\left(\mathrm{CDCl}_{3}\right)$	$4\left(\mathrm{CDCl}_{3}\right)$	$5\left(\mathrm{CDCl}_{3}\right)$
1	34.7, CH_{2}	35.3, CH_{2}	34.7, CH_{2}	34.7, CH_{2}	34.5, CH_{2}
2	122.5, CH	124.8, CH	123.8, CH	123.8, CH	122.3, CH
3	135.1, C	135.0, C	133.9, C	134.0, C	134.9, C
4	43.4, CH_{2}	49.8, CH_{2}	51.1, CH_{2}	51.3, CH_{2}	43.2, CH_{2}
5	127.0, CH	134.6, C	134.9, C	134.9, C	126.9, CH
6	136.1, CH	131.9, CH	130.9, CH	130.9, CH	135.7, CH
7	136.0, C	134.2, C	136.2, C	136.1, C	133.7, C
8	132.8, CH	133.7, CH	130.1, CH	130.1, CH	131.3, CH
9	39.7, CH	37.5, CH	37.1, CH	37.0, CH	39.7, CH
10	77.5, CH	84.5, CH	83.3, CH	83.1, CH	203.4, C
11	132.2, CH	140.2, CH	139.3, CH	139.5, CH	137.8, C
12	129.1, CH	131.6, CH	132.8, CH	132.0, CH	137.1, CH
13	18.1, CH_{3}	76.5, C	75.9, C	75.8, C	15.0, CH_{3}
14	1	12.8, CH_{3}	12.2, CH_{3}	12.4, CH_{3}	11.6, CH_{3}
15	$17.3, \mathrm{CH}_{3}$	18.5, CH_{3}	17.8, CH_{3}	17.8, CH_{3}	18.3, CH_{3}
16	13.4, CH_{3}	17.6, CH_{3}	17.5, CH_{3}	17.5, CH_{3}	12.9, CH_{3}
17	$17.0, \mathrm{CH}_{3}$	16.0, CH_{3}	16.0, CH_{3}	16.0, CH_{3}	16.8, CH_{3}
18	1	17.6, CH_{3}	17.7, CH_{3}	17.8, CH_{3}	1
19	1	75.1, CH	73.3, CH	73.7, CH	1
20	1	24.3, CH_{3}	22.9, CH_{3}	22.7, CH_{3}	1
21	1	17.8, CH_{3}	17.0, CH_{3}	$16.8, \mathrm{CH}_{3}$	1
2,	153.5,C	156.0, C	153.7,C	153.7, C	153.7, C
3 '	127.8, C	130.0, C	127.9, C	127.9, C	127.9, C
$4{ }^{\prime}$	154.3, C	156.7, C	154.1, C	154.1, C	154.1, C
5	111.8, C	114.5, C	112.1, C	112.1, C	112.1, C
6 '	150.8, C	150.3, C	151.1, C	151.1, C	151.0, C
$7{ }^{\prime}$	53.3, CH_{3}	52.0, CH_{3}	53.2, CH_{3}	53.2, CH_{3}	53.2, CH_{3}
8'	61.0, CH_{3}	60.8, CH_{3}	60.8, CH_{3}	60.8, CH_{3}	60.8, CH_{3}
$9 \times$	$10.8, \mathrm{CH}_{3}$	$10.9, \mathrm{CH}_{3}$	10.6, CH_{3}	10.6, CH_{3}	10.6, CH_{3}

Table S13. ${ }^{1} \mathrm{H}$ NMR (700 MHz) Spectroscopic Data for 12-19.

	12 ($\left.\mathrm{CD}_{3} \mathrm{OD}\right)$	13 (DMSO- d_{6})	14 (DMSO- d_{6})	15 (DMSO- d_{6})	16 (DMSO- d_{6})	17 (DMSO- d_{6})	18 (DMSO- d_{6})	19 ($\left.\mathrm{CD}_{3} \mathrm{OD}\right)$
1	3.34 (d, 6.9) 2 H	3.26 (d, 6.9) 2 H	3.28 (d, 6.9) 2 H	3.34 *	3.40 (d, 6.9) 2 H			
2	5.29 (t, 6.9)	5.28 (t, 6.9)	5.33 (t, 6.9)	5.33 (t, 6.9)	5.32 (t, 6.9)	5.32 (t, 6.9)	5.37 (t, 6.9)	5.37 (t, 6.9)
4	2.70 (d, 6.9) 2 H	2.70 (d, 7.0) 2 H	2.74 (m) 2H	2.74 (m) 2H	2.73 (m) 2H	2.73 (m) 2H	2.75 (m) 2H	2.77 (d, 7.0) 2 H
5	5.54 (dt, 13.9, 7.1)	5.54 (dt, 13.9, 7.0)	5.54 (dt, 15.5, 7.3)	5.44 (dt, 15.5, 7.3)	5.45 (dt, 15.5, 7.1)	5.47 (dt, 15.5, 7.1)	5.47 (dt, 15.5, 7.1)	5.54 (dt, 15.5, 7.1)
6	6.04 *	5.99*	6.04 (d, 15.5)	6.09 (d, 15.5)				
7	6.07 *	6.02 *	1	1	/	1		
8	5.79 (dd, 14.3, 7.1)	5.88 (dd, 14.4, 6.3)	5.42 (d, 9.0)	5.43 (d, 9.0)	5.41 (d, 9.0)	5.43 (d, 9.0)	5.40 (d, 9.0)	5.40 (d, 9.0)
9	2.45 (m)	2.37 (m)	2.66 (m)	2.67 (m)	2.66 (m)	2.67 (m)	2.67 (m)	2.81 (m)
10	3.66 (d, 8.9)	3.60 *	3.73 (d, 7.1)	3.74 (d, 7.0)	3.73 (d, 7.2)	3.75 (d, 7.0)	3.76 (d, 8.9)	3.75 (d, 8.9)
12	6.46 (q, 6.7)	5.43 (t, 6.3)	5.36 (q, 6.8)	5.42 (t, 6.3)	5.37 (q, 6.8)	5.42 (m)*	5.37 (q, 6.8)	5.58 (t, 6.2)
13	1.62 (d, 6.7) 3H	3.90 (dd, 13.0, 6.3)	1.56 (d, 6.8) 3 H	3.96 (dd, 13.0, 6.3)	1.56 (d, 6.8) 3 H	3.97 (dd, 13.0, 6.3)	1.55 (d, 6.8) 3 H	4.05 (dd, 12.8, 7.2)
		3.98 (dd, 13.0, 6.3)		4.00 (dd, 13.0, 6.3)		4.01 (dd, 13.0, 6.3)		4.17 (dd, 12.8, 7.2)
14	1.60 (s) 3H	1.52 (s) 3H	1.51 (s) 3H	1.52 (s) 3H	1.51 (s) 3H	1.53 (s) 3H	1.52 (s) 3 H	1.67 (s) 3H
15	0.85 (d, 6.9) 3H	0.82 (d, 6.9) 3 H	0.81 (d, 6.9) 3H	0.83 (d, 6.9) 3H	0.79 (d, 6.9) 3H	0.82 (d, 6.9) 3H	0.79 (d, 6.9) 3 H	0.88 (d, 6.9) 3H
16	1	/	1.65 (s) 3 H	1.66 (s) 3 H	1.65 (s) 3 H	1.65 (s) 3 H	1	1.74 (s) 3 H
17	1.74 (s) 3H	1.69 (s) 3H	1.70 (s) 3 H	1.69 (s) 3H	1.69 (s) 3H	1.70 (s) 3 H	1.70 (s) 3 H	1.74 (s) 3 H
$7{ }^{\prime}$	3.90 (s) 3H	3.78 (s) 3H	3.81 (s) 3H	3.81 (s) 3H	3.80 (s) 3H	3.80 (s) 3H	3.83 (s) 3H	3.92 (s) 3H
8^{\prime}	3.73 (s) 3H	3.62 (s) 3H	3.63 (s) 3H	3.63 (s) 3H	3.63 (s) 3H	3.62 (s) 3H	3.71 (s) 3 H	3.81 (s) 3H
9^{\prime}	2.04 (s) 3H	1.96 (s) 3H	1.98 (s) 3H	1.98 (s) 3H	1.98 (s) 3H	1.97 (s) 3H	2.07 (s) 3H	2.15 (s) 3H
$1^{\prime \prime}$	4.20 (d, 7.8)	4.07 (d, 7.8)	4.09 (d, 7.8)	4.11 (d, 8.0)	4.10 (d, 7.8)	4.12 (d, 7.8)	4.08 (d, 7.8)	4.24 (d, 7.8)
$2^{\prime \prime}$	3.19 (d, 8.9, 7.8)	2.96 (dd, 8.7, 7.8)	2.95 (dd, 8.8, 7.8)	2.96 (dd, 8.8, 7.8)	2.94 (dd, 8.8, 7.8)	2.96 (dd, 8.8, 7.8)	2.93 (m)*	3.16 (m)*
$3^{\prime \prime}$	3.30 (dd, 8.9, 8.7)	3.10 (dd, 8.7, 8.6)	3.11 (dd, 8.8, 8.8)	3.10 (dd, 8.8, 8.8)	3.10 (dd, 8.8, 8.8)	3.12 (dd, 8.8, 8.8)	3.22 (m)*	3.32 (m)*
$4^{\prime \prime}$	3.29 (dd, 9.1, 8.7)	2.99 (m)*	3.00 (dd, 9.3, 8.8)	3.02 (dd, 9.3, 8.8)	3.02 (dd, 9.6, 8.8)	3.04 (dd, 9.6, 8.8)	3.03 (dd, 9.3, 9.0)	3.22 (dd, 9.6, 8.8)

$5^{\prime \prime}$	3.11 (ddd, 9.1, 5.3,	2.98 (m)*	$3.18 \text { (ddd, 9.3, 5.3, }$	3.20 (ddd, 9.3, 5.3,	3.17 (m)	3.17 (m)	3.09 (m)*	$3.26 \text { (ddd, 9.6, 5.3, }$
	2.5)		1.8)	1.8)				1.8)
$6^{\prime \prime}$	3.62 (dd, 11.8, 5.4)	3.36 *	3.48 (dd, 10.5, 1.8)	3.48 (dd, 10.5, 1.8)	3.50 (dd, 10.8, 1.8)	3.50 (br.d 10.8)	3.62 (br.d 11.5)	3.67 (dd, 12.1, 5.3)
	3.74 (dd, 11.8, 2.5)	$3.60 \text { * }$	3.58 (dd, 10.5, 5.3)	3.58 (dd, 10.5, 5.3)	3.60 (dd, 10.8, 6.0)	3.62 (m) *	3.42 (m) *	$3.79(\mathrm{~m}) *$
$1^{\prime \prime \prime}$	/	1	4.64, d (2.2)	4.64, d (2.9)	4.62, d (3.6)	4.64, d (3.6)	5.09 (d, 7.4)	5.23 (d, 7.4)
$2^{\prime \prime \prime}$	1	1	3.58 (m)*	3.57 (m)*	3.18 (dd, 8.9, 2.0)	3.18 (m)	3.21 (m)*	3.46 (m)*
$3^{\prime \prime \prime}$	1	1	3.70 (br.s)	3.70 (br.s)	3.40 (m)	3.40 (m)	3.07 (m)*	3.46 (m)*
$4^{\prime \prime \prime}$	1	1	3.58 (m)*	3.56 (m)*	3.10 (dd, 8.8, 8.8)	3.10 (dd, 8.8, 8.8)	3.12 (dd, 9.3, 9.0)	3.40 (m)*
$5^{\prime \prime \prime}$	1	1	3.62 (m)*	3.61 (m)	3.43 (m)	3.42 (m)	2.93 (m)*	3.16 (m)*
$6^{\prime \prime \prime}$	/	1	3.43 (dd, 10.7, 6.3)	3.42 (dd, 10.7, 6.3)	3.46 (dd, 9.7, 6.6)	3.46 (dd, 11.6, 5.2)	3.56 (br.d 11.5)	$3.59 \text { (dd, 11.9, 6.1) }$
			3.51 (dd, 10.7, 6.3)	3.51 (dd, 10.7, 6.3)	3.57 (br.d, 9.7)	3.58 (br.d, 11.6)	3.42 (m)*	3.79 (m) *

* overlapped

Table S14. ${ }^{1} \mathrm{H}$ NMR (700 MHz) Spectroscopic Data for 20-26.

	20 ($\mathrm{CD}_{3} \mathrm{OD}$)	$21\left(\mathrm{CD}_{3} \mathrm{OD}\right)$	22 ($\mathrm{CD}_{3} \mathrm{OD}$)	23 ($\left.\mathrm{CD}_{3} \mathrm{OD}\right)$	$24\left(\mathrm{CDCl}_{3}\right)$	$25\left(\mathrm{CDCl}_{3}\right)$	$26\left(\mathrm{CD}_{3} \mathrm{OD}\right)$
1	3.39 (d, 6.9) 2 H	3.38 (d, 6.8) 2 H	3.28 (d, 6.8) 2 H	2.97 (dd, 13.7, 8.6)	3.37 (d, 6.8) 2 H	3.36 (d, 6.8) 2 H	3.45 (d, 6.7) 2H
				$2.73 \text { (dd, 13.7, 8.6) }$			
2	5.35 (t, 6.9)	5.37 (t, 6.8)	5.32 (t, 6.8)	4.08 (t, 8.6)	5.38 (t, 6.8)	5.38 (t, 6.8)	5.26 (t, 6.7)
4	2.77 (d, 7.0) 2 H	2.51(br.d, 13.9)	$2.51 \text { (br.d, 14.0) }$	5.93 (d, 10.9)	2.77 (d/, 6.9) 2 H	2.77 (d, 6.9) 2 H	2.78 (d, 6.9) 2 H
		$2.03 \text { (dd, 13.9, 8.9) }$	$2.04(\mathrm{dd}, 14.0,9.0)$				
5	5.54 (dt, 15.5, 6.9)	3.69 (ddd, 8.9, 8.4, 2.7)	3.68 (ddd, 9.0, 8.3, 2.7)	6.35 (dd, 15.2, 10.9)	5.61 (dt, 15.6, 6.9)	5.63 (dt, 15.6, 6.9)	5.54 (dt, 15.6, 6.9)
6	6.09 (d, 15.5)	3.20 (d, 8.4)	3.21 (d, 8.3)	6.21 (d, 15.2)	6.03 (d, 15.6)	6.04 (d, 15.6)	6.08 (d, 15.6)
OMe	/	3.11 (s) 3 H	3.13 (s) 3H	3.16 (s) 3H	1	/	3.31 (s) $6 \mathrm{H}^{*}$
8	5.41 (d, 9.0)	5.30 (d, 9.3)	5.31 (d, 9.3)	5.52 (d, 9.2)	5.26 (d, 9.8)	5.21 (d, 9.8)	5.41 (d, 9.5)
9	2.80 (m)	2.77 (m)	2.79 (m)	2.82 (m)	2.92 (m)	2.73 (m)	2.84 (m)
10	3.75 (d, 7.0)	3.60 (d, 9.3)	3.62 (d, 9.3)	3.74 *	3.11 (d, 6.6)	2.70 (d, 9.5)	3.83 (d, 6.9)
12	5.48 (q, 6.7)	5.47 (q, 6.6)	5.58 (t, 6.3)	5.48 (q, 6.5)	2.97 (q, 5.5)	2.87 (q, 5.5)	5.46 (d, 6.5)

13	1.64 (d, 6.8) 3 H	1.63 (d, 6.8) 3H
14	1.62 (s) 3H	1.60 (s) 3H
15	0.83 (d, 6.9) 3H	0.79 (d, 6.9) 3H
16	1.74 (s) 3H	1.64 (s) 3H
17	1.75 (s) 3 H	1.82 (s) 3 H
$7{ }^{\prime}$	3.92 (s) 3H	3.91 (s) 3 H
8^{\prime}	3.81 (s) 3H	3.73 (s) 3H
9^{\prime}	1.90 (s) 3H	2.07 (s) 3H
$1^{\prime \prime}$	4.25 (d, 7.8)	4.16 (d, 7.9)
$2^{\prime \prime}$	3.16 (dd, 8.8, 7.8)	3.10 (m)*
$3^{\prime \prime}$	3.32 (m)*	3.29 (m)*
$4^{\prime \prime}$	3.29 (m)*	3.27 (dd, 9.6, 8.8)
$5^{\prime \prime}$	3.37 (m)	3.10 (m)*
$6^{\prime \prime}$	3.56 (dd, 10.7, 2.2)	3.62 (dd, 12.1, 5.3)
	3.94 (dd, 10.7, 4.2)	3.73 (m) *
$1^{\prime \prime \prime}$	4.84, d (3.2)	1
$2^{\prime \prime \prime}$	3.75 (m)*	1
$3^{\prime \prime \prime}$	3.90 (br.d, 1.8)	1
$4^{\prime \prime \prime}$	3.75 (m)*	1
$5^{\prime \prime \prime}$	3.86 (m)*	1
$6^{\prime \prime \prime}$	3.68 (dd, 10.7, 6.5)	1
	3.80 (dd, 10.7, 2.3)	
$1^{\prime \prime \prime \prime}$	5.23 (d, 7.5)	1
$2^{\prime \prime \prime \prime}$	3.46 (m)*	1
$3^{\prime \prime \prime \prime}$	3.37 (m)*	1

4.05 (dd, 12.8, 6.0)	1.62 (d, 6.8) 3 H	1.22 (d, 5.5)	1.30 (d, 5.5)	5.06 (d, 6.5)
$4.18 \text { (dd, 12.8, 6.0) }$				
1.61 (s) 3H	1.63 (s) 3H	1.27 (s) 3H	1.29 (s) 3H	1.73 (s) 3H
0.84 (d, 6.9) 3H	0.83 (d, 6.9) 3H	1.05 (d, 6.9) 3 H	0.91 (d, 6.9) 3H	0.96 (d, 6.9) 3H
1.69 (s) 3H	1.81 (s) 3H	1.77 (s) 3 H	1.78 (s) 3 H	1.76 (s) 3 H
1.82 (s) 3H	1.79 (s) 3H	1.74 (s) 3H	1.74 (s) 3H	1.73 (s) 3H
3.99 (s) 3H	3.91 (s) 3 H	3.94 (s) 3H	3.95 (s) 3H	4.06 (s) 3 H
3.76 (s) 3 H	3.73 (s) 3 H	3.85 (s) 3H	3.86 (s) 3H	3.80 (s) 3 H
2.10 (s) 3 H	2.07 (s) 3 H	2.09(s) 3 H	2.09(s) 3 H	2.10 (s) 3 H
4.19 (d, 7.8)	4.21 (d, 7.9)	4.30 (d, 7.8)	4.18 (d, 7.9)	4.27 (d, 7.8)
3.11 (dd, 9.0, 7.8)	3.13 (dd, 9.0, 7.8)	3.27 (dd, 8.8, 7.8)	3.32 (dd, 8.8,7.9)	3.19 (dd, 9.0, 7.8)
3.29 (dd, 9.0, 9.0)	3.31 (dd, 9.0, 6.8)	3.51 (dd, 8.8, 8.8)	3.50 (dd, 8.8, 8.8)	3.34 (dd, 9.0, 8.7)
3.20 (dd, 9.8, 9.0)	3.29 (dd, 9.2, 6.8)	3.58 (dd, 9.6, 8.8)	3.39 (dd, 8.8, 8.7)	3.27 (dd, 8.7, 8.7)
3.15 (m)	3.11 (ddd, 9.2, 5.2, 2.5)	3.37 (m)*	3.44 (ddd, 8.7, 8.7, 2.8)	3.16 (ddd, 8.7, 5.6, 2.3)
3.57 (dd, 11.7, 6.1)	3.63 (dd, 11.8, 5.2)	3.83 (m) *	3.63 (dd, 11.8, 8.7)	3.62 (dd, 11.8, 5.6)
3.79 (dd, 11.7, 2.0)	3.75 (dd, 11.8, 2.5)	3.87 (m) *	3.92 (dd, 11.8, 2.8)	3.77 (dd, 11.8, 2.3)
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

$4^{\prime \prime \prime \prime}$	$3.42(\mathrm{~m})^{*}$	$/$	$/$	$/$	$/$
$5^{\prime \prime \prime \prime}$	$3.25(\mathrm{ddd}, 9.6,5.3,2.3)$	$/$	$/$	$/$	$/$
$6^{\prime \prime \prime \prime}$	$3.68(\mathrm{dd}, 10.7,5.3)$	$/$	$/$	$/$	$/$

$3.80(\mathrm{~m})^{*}$

* overlapped

Table S15. ${ }^{13} \mathrm{C}$ NMR (175 MHz) Spectroscopic Data for 12-26.

	$12{ }^{\text {a }}$	$13{ }^{\text {b }}$	$14{ }^{\text {b }}$	$15^{\text {b }}$	$16^{\text {b }}$	$17^{\text {b }}$	$18{ }^{\text {b }}$	$19^{\text {a }}$	$20^{\text {a }}$	$21^{\text {a }}$	$22^{\text {a }}$	$23{ }^{\text {a }}$	$24^{\text {c }}$	$25^{\text {c }}$	26
1	35.3, CH_{2}	34.2, CH_{2}	34.1, CH_{2}	34.0, CH_{2}	34.0, CH_{2}	34.2, CH_{2}	34.0, CH_{2}	35.5, CH_{2}	35.5, CH_{2}	35.3, CH_{2}	36.0, CH_{2}	39.9, CH_{2}	34.6, CH_{2}	34.6, CH_{2}	33.8, CH_{2}
2	123.6, CH	122.4, CH	121.6, CH	121.9, CH	121.8, CH	122.3, CH	121.6, CH	123.1, CH	123.1, CH	125.4, CH	124.4, CH	88.0, CH	122.5, CH	122.5, CH	121.8, CH
3	135.6, C	133.8, C	132.2, C	132.2, C	132.1, C	132.2, C	132.5, C	134.8, C	134.6, C	134.3, C	134.6, C	136.9, C	134.0, C	134.8, C	137.4, C
4	43.8, CH_{2}	42.1, CH_{2}	42.5, CH_{2}	42.5, CH_{2}	42.5, CH_{2}	42.4, CH_{2}	42.5, CH_{2}	44.1, CH_{2}	44.1, CH_{2}	43.2, CH_{2}	45.1, CH_{2}	129.8, CH	43.1, CH	43.2, CH	43.9, CH
5	133.3, CH	128.8, CH	122.0, CH	124.7, CH	121.9, CH	124.7, CH	121.8, CH	126.6, CH	126.5, CH	70.1, CH	70.1, CH	123.0, CH	127.2, CH	127.7, CH	126.3, CH
6	132.0, CH	129.5, CH	136.1, CH	136.2, CH	136.2, CH	136.1, CH	136.2, CH	137.4, CH	137.4, CH	92.3, CH	92.4, CH	139.1, CH	135.4, CH	135.0, CH	137.6, CH
OMe	1	/	1	/	1	1	1	1	1	56.0, CH_{3}	56.0, CH_{3}	56.3, CH_{3}	1	1	52.0, CH_{3}
7	131.0, CH	131.9, CH	135.4, C	134.9, C	135.3, C	134.8, C	135.4, C	136.1, C	136.2, C	133.1, C	133.4, C	135.2, C	134.8, C	134.9, C	134.3, C
8	137.0, CH	135.8, CH	134.7, CH	134.5, CH	134.8, CH	134.6, CH	134.9, CH	135.5, CH	135.9, CH	137.5, CH	137.0, CH	138.4, CH	132.7, CH	133.5, CH	134.8, CH
9	40.3, CH	38.0, CH	35.6, CH	35.5, CH	35.4, CH	35.4, CH	35.2, CH	36.8, CH	36.8, CH	36.1, CH	36.0, CH	37.0, CH	35.8, CH	36.1, CH	36.9, CH
10	93.7, CH	90.0, CH	89.8, CH	89.2, CH	89.6, CH	89.2, CH	89.5, CH	93.1, CH	93.9, CH	94.2, CH	93.6, CH	93.8, CH	86.1, CH	93.4, CH	91.7, CH
11	137.1, C	135.4, C	134.2, C	134.3, C	134.3, C	134.0, C	134.6, C	139.1, C	136.5, C	136.5, C	139.0, C	136.7, C	61.2, C	61.4, C	142.9, CH
12	124.2, CH	128.7, CH	124.7, CH	128.8, CH	124.6, CH	129.0, CH	124.6, CH	128.8, CH	124.8, CH	124.6, CH	129.2, CH	124.5, CH	57.3, CH	57.9, CH	125.9, CH
13	13.2, CH_{3}	57.2, CH_{2}	13.0, CH_{3}	57.4, CH_{2}	13.1, CH_{3}	57.5, CH_{2}	13.0, CH_{3}	59.0, CH_{2}	13.1, CH_{3}	13.2, CH_{3}	59.0, CH_{2}	13.0, CH_{3}	13.1, CH_{3}	13.3, CH_{3}	101.5, CH
14	11.7, CH_{3}	12.0, CH_{3}	$11.8, \mathrm{CH}_{3}$	12.2, CH_{3}	11.9, CH_{3}	12.3, CH_{3}	11.9, CH_{3}	12.0, CH_{3}	$11.8, \mathrm{CH}_{3}$	$11.4 \mathrm{CH}_{3}$	$11.9 \mathrm{CH}_{3}$	$11.9 \mathrm{CH}_{3}$	13.4, CH_{3}	$11.7 \mathrm{CH}_{3}$	13.5, CH_{3}
15	17.0, CH_{3}	15.9, CH_{3}	17.6, CH_{3}	17.5, CH_{3}	17.6, CH_{3}	17.5, CH_{3}	17.4, CH_{3}	17.8, CH_{3}	17.8, CH_{3}	17.7, CH_{3}	17.6, CH_{3}	17.6, CH_{3}	14.4, CH_{3}	17.1, CH_{3}	18.0, CH_{3}
16	/	/	16.4, CH_{3}	$12.3 \mathrm{CH}_{3}$	$12.0 \mathrm{CH}_{3}$	$11.3 \mathrm{CH}_{3}$	$11.3 \mathrm{CH}_{3}$	$13.2 \mathrm{CH}_{3}$	13.6, CH_{3}	13.4, CH_{3}	13.1, CH_{3}				
17	16.7, CH_{3}	16.4, CH_{3}	12.7, CH_{3}	12.7, CH_{3}	12.7, CH_{3}	12.7, CH_{3}	12.6, CH_{3}	16.7, CH_{3}	16.7, CH_{3}	17.2, CH_{3}	17.2, CH_{3}	$11.9, \mathrm{CH}_{3}$	16.7, CH_{3}	16.8, CH_{3}	16.7, CH_{3}
2^{\prime}	156.1, C	154.3, C	155.3, C	157.1, C	157.1, C	156.2, C	155.9, C	160.0, C	154.2, C	154.1, C	155.7, C				

3^{\prime}	130.4, C	128.5, C	128.4, C	128.3, C	128.3, C	128.6, C	132.1, C	134.4, C	134.4, C	129.6, C	129.9, C	130.4, C	128.0, C	127.7, C	131.3, C
4^{\prime}	158.6, C	157.6, C	155.5, C	155.1, C	155.2, C	156.3, C	154.3, C	155.9, C	155.9, C	156.6, C	159.8, C	158.2, C	153.7, C	153.7, C	162.6, C
5^{\prime}	115.0, C	113.1, C	112.9, C	112.7, C	112.7, C	113.1, C	118.1, C	120.0, C	120.0, C	118.3, C	117.9, C	116.3, C	112.2, C	112.2, C	116.3, C
6^{\prime}	151.3, C	149.5, C	149.6, C	149.7, C	149.7, C	149.4, C	149.8, C	152.1, C	152.1, C	151.2, C	150.9, C	148.4, C	134.0, C	151.0, C	149.7, C
$7{ }^{\prime}$	53.9, CH_{3}	52.4, CH_{3}	52.5, CH_{3}	52.5, CH_{3}	52.5, CH_{3}	52.5, CH_{3}	52.8, CH_{3}	53.4, CH_{3}	53.7, CH_{3}	53.7, CH_{3}	53.9, CH_{3}	53.8, CH_{3}	53.2, CH_{3}	53.3, CH_{3}	56.6, CH_{3}
8^{\prime}	$60.8, \mathrm{CH}_{3}$	59.9, CH_{3}	60.0, CH_{3}	60.0, CH_{3}	60.0, CH_{3}	59.9, CH_{3}	60.2, CH_{3}	61.2, CH_{3}	61.2, CH_{3}	60.8, CH_{3}	61.1, CH_{3}	$60.8, \mathrm{CH}_{3}$	60.8, CH_{3}	$60.8, \mathrm{CH}_{3}$	61.3, CH_{3}
9^{\prime}	$10.9, \mathrm{CH}_{3}$	10.6, CH_{3}	10.6, CH_{3}	10.6, CH_{3}	10.5, CH_{3}	10.7, CH_{3}	11.4, CH_{3}	13.2, CH_{3}	13.3, CH_{3}	11.0, CH_{3}	$10.8, \mathrm{CH}_{3}$	11.2, CH_{3}	10.6, CH_{3}	10.6, CH_{3}	10.7, CH_{3}
$1^{\prime \prime}$	104.2, CH	102.7, CH	102.5, CH	102.4, CH	102.2, CH	102.2, CH	102.0, CH	104.2, CH	104.0, CH	104.2, CH	104.6, CH	104.1, CH	103.8, CH	104.4, CH	105.1, CH
$2^{\prime \prime}$	75.7, CH	74.1, CH	74.2, CH	74.1, CH	74.1, CH	74.2, CH	74.3, CH	75.7, CH	75.8, CH	75.4, CH	75.3, CH	75.7, CH	73.2, CH	74.7, CH	75.7, CH
$3^{\prime \prime}$	78.3, CH	77.1, CH	76.8, CH	76.9, CH	76.9, CH	77.0, CH	76.5, CH	77.9, CH	78.0, CH	78.0, CH	78.1, CH	78.3, CH	76.1, CH	77.7, CH	78.1, CH
$4 \prime \prime$	71.6, CH	70.2, CH	70.4, CH	70.4, CH	70.3, CH	70.3, CH	70.0, CH	71.7, CH	71.7, CH	71.6, CH	71.8, CH	71.5, CH	70.4, CH	71.4, CH	71.5, CH
5"	77.7, CH	76.8, CH	75.2, CH	75.1, CH	75.1, CH	75.1, CH	77.4, CH	78.3, CH	78.2, CH	77.6, CH	77.8, CH	77.7. CH	75.5, CH	76.2, CH	77.9, CH
$6^{\prime \prime}$	62.8, CH_{2}	61.8, CH_{2}	67.2, CH_{2}	67.1, CH_{2}	67.3, CH_{2}	67.2, CH_{2}	60.8, CH_{2}	62.5, CH_{2}	67.2, CH_{2}	62.8, CH_{2}	63.0, CH_{2}	62.7, CH_{2}	62.4, CH_{2}	63.2, CH_{2}	62.8, CH_{2}
$1^{\prime \prime \prime}$	1	1	99.0, CH	99.0, CH	98.8, CH	98.8, CH	102.7, CH	104.6, CH	100.3, CH	1	1	1	1	1	1
$2^{\prime \prime \prime}$	1	1	69.6, CH	69.6, CH	72.0, CH	72.0, CH	74.1, CH	75.6. CH	71.3, CH	1	1	1	1	1	1
$3^{\prime \prime \prime}$	1	1	68.9, CH	68.9, CH	72.3, CH	72.4, CH	76.9, CH	78.0, CH	70.5, CH	1	1	1	1	1	1
$4^{\prime \prime \prime}$	1	1	68.4, CH	68.4, CH	70.1, CH	70.1, CH	69.8, CH	71.4, CH	71.0, CH	1	1	1	1	1	1
5"'	1	1	70.8, CH	70.9, CH	73.2, CH	73.3, CH	70.0, CH	78.2, CH	72.2, CH	1	1	1	1	1	1
$6^{\prime \prime \prime}$	1	1	60.5, CH_{2}	60.5, CH_{2}	60.8, CH_{2}	60.9, CH_{2}	61.1, CH_{2}	$62.9, \mathrm{CH}_{2}$	62.5, CH_{2}	1	1	1	1	1	1
$1^{\prime \prime \prime \prime}$	1	1	1	1	1	1	1	1	104.2, CH	1	1	1	1	1	1
$2^{\prime \prime \prime \prime}$	1	1	1	1	1	1	1	1	75.7, CH	1	1	1	1	1	1
$3^{\prime \prime \prime \prime}$	1	1	1	1	1	1	1	1	76.5, CH	1	1	1	1	1	1
$4^{\prime \prime \prime \prime}$	1	1	1	1	1	1	1	1	71.4, CH	1	1	1	1	1	1
$5^{\prime \prime \prime \prime}$	1	1	1	1	1	1	1	1	78.4, CH	1	1	1	1	1	1
$6^{\prime \prime \prime \prime}$	1	1	1	1	1	1	1	1	62.7, CH_{2}	1	1	1	1	1	1

${ }^{\mathrm{a}}$ in $\mathrm{CD}_{3} \mathrm{OD} ;{ }^{\mathrm{b}}$ in DMSO- d_{6}; ${ }^{\mathrm{c}}$ in CDCl_{3}.

References

[1] a) S. Yoshida, K. Yoneyama, S. Shiraishi, A. Watanabe, N. Takahashi, Agricultural and Biological Chemistry 1977, 41, 855-862; b) K. A. Shaaban, E. Helmke, G. Kelter, H. H. Fiebig, H. Laatsch, J Antibiot 2011, 64, 205-209.
[2] A. Urakawa, T. Sasaki, K. Yoshida, T. Otani, Y. Lei, W. Yun, J Antibiot 1996, 49, 10521055.
[3] Y. Hayakawa, S. Shirasaki, T. Kawasaki, Y. Matsuo, K. Adachi, Y. Shizuri, J Antibiot 2007, 60, 201-203.
[4] M. J. Schnermann, F. A. Romero, I. Hwang, E. Nakamaru-Ogiso, T. Yagi, D. L. Boger, J Am Chem Soc 2006, 128, 11799-11807.
[5] K. Kimura, H. Takahashi, N. Miyata, M. Yoshihama, M. Uramoto, J Antibiot 1996, 49, 697-699.
[6] M. Matsumoto, K. Mogi, K. Nagaoka, S. Ishizeki, R. Kawahara, T. Nakashima, J Antibiot 1987, 40, 149-156.
[7] H. Mori, S. Funayama, Y. Sudo, K. Komiyama, S. Omura, J Antibiot 1990, 43, 1329-1331.
[8] J. L. Giner, J. Feng, D. J. Kiemle, J Nat Prod 2016, 79, 2413-2417.
[9] N. N. Shang, Z. Zhang, J. P. Huang, L. Wang, J. Luo, J. Yang, T. Peng, Y. Yan, Y. T. Ma, S. X. Huang, J Antibiot 2018, 71, 672-676.
[10] H. Oka, K. Funaishi, K. Kawamura, S. Nakajima, A. Ookura, H. Suda, and M. Okanishi, Antitumor glycosides BE-14324 and their manufacture with Streptomyces (1991), Jpn. Kokai Tokkyo Koho, 12 pp. Japanese Patent: JP 03081283 A2 19910405 Heisei (in Japanese).
[11] T. Tanaka, T. Nakashima, T. Ueda, K. Tomii, I. Kouno, Chem Pharm Bull 2007, 55, 899901.

Spectra of the compounds

Figure SS-1-1. HRESIMS (+) spectrum of $\mathbf{1}$.

Figure SS-1-2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ (in $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).

Figure SS-1-3. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ (in $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$).

Figure SS-2-1. IR spectrum of $\mathbf{2}$.

zhouxuefeng_|kk-1_pos_5_01_3641.d
Bruker Compass DataAnalysis 4.1 printed: $9 / 28 / 20173: 21: 50$ PM \quad by: SCSIO 1 of 1
Figure SS-2-2. HRESIMS (+) spectrum of $\mathbf{2}$.

Figure SS-2-3. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 (in $\mathrm{CDCl}_{3}, 700 \mathrm{MHz}$).

Figure SS-2-4. ${ }^{13} \mathrm{C}$ NMR spectrum of $2\left(\right.$ in $\left.\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\right)$.

Figure SS-2-5. DEPT spectrum of $\mathbf{2}$ (in $\mathrm{CDCl}_{3}, 175 \mathrm{MHz}$).

Figure SS-2-6. HSQC spectrum of $\mathbf{2}$ (in CDCl_{3}).

Figure SS-2-7. HMBC spectrum of 2 (in CDCl_{3}).

Figure SS-2-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $2\left(\right.$ in CDCl_{3}).

Figure SS-2-9. NOESY spectrum of 2 (in CDCl_{3}).

Figure SS-3-1. IR spectrum of 3 .

Figure SS-3-2. HRESIMS (+) spectrum of $\mathbf{3}$.

Figure SS-3-3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ (in $\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz}$).

Figure SS-3-4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ (in $\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}$).

Figure SS-3-5. DEPT spectrum of $\mathbf{3}$ (in $\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}$).

Figure SS-3-6. HSQC spectrum of $\mathbf{3}$ (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-3-7. HMBC spectrum of $\mathbf{3}$ (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-3-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{3}$ (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-3-9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ (in $\mathrm{CDCl}_{3}, 700 \mathrm{MHz}$).

Figure SS-3-10. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ (in $\mathrm{CDCl}_{3}, 175 \mathrm{MHz}$).

Figure SS-3-11. NOESY spectrum of $\mathbf{3}$ (in CDCl_{3}).

Figure SS-4-1. IR spectrum of 4.

Mass Spectrum SmartFormula Report

likunlong_S1-c_pos_74_01_4201.d
Bruker Compass Data

Figure SS-4-2. HRESIMS (+) spectrum of 4.

Figure SS-4-3. ${ }^{1} \mathrm{H}$ NMR spectrum of 4 (in $\mathrm{CDCl}_{3}, 700 \mathrm{MHz}$).

Figure SS-4-4. ${ }^{13} \mathrm{C}$ NMR spectrum of 4 (in $\mathrm{CDCl}_{3}, 175 \mathrm{MHz}$).

Figure SS-4-5. DEPT spectrum of 4 (in $\mathrm{CDCl}_{3}, 175 \mathrm{MHz}$).

Figure SS-4-6. HSQC spectrum of $\mathbf{4}$ (in CDCl_{3}).

Figure SS-4-7. HMBC spectrum of 4 (in CDCl_{3}).

Figure SS-4-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 4 (in CDCl_{3}).

Figure SS-4-9. NOESY spectrum of 4 (in CDCl_{3}).

Figure SS-5-1. IR spectrum of 5.

Figure SS-5-2. HRESIMS (+) spectrum of 5.

Figure SS-5-3. ${ }^{1} \mathrm{H}$ NMR spectrum of 5 (in $\mathrm{CDCl}_{3}, 700 \mathrm{MHz}$).

Figure SS-5-4. ${ }^{13} \mathrm{C}$ NMR spectrum of 5 (in $\mathrm{CDCl}_{3}, 175 \mathrm{MHz}$).

Figure SS-5-5. DEPT spectrum of $\mathbf{5}$ (in $\mathrm{CDCl}_{3}, 175 \mathrm{MHz}$).

Figure SS-5-6. HSQC spectrum of 5 (in CDCl_{3}).

Figure SS-5-7. HMBC spectrum of 5 (in $\left.\mathrm{CDCl}_{3}\right)$.

Figure SS-5-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 5 (in CDCl_{3}).

Figure SS-5-9. NOESY spectrum of 5 (in CDCl_{3}).

Figure SS-6-1. ESIMS (+) spectrum of $\mathbf{1 0}$.

Figure SS-6-2. ${ }^{1} \mathrm{H}$ NMR spectrum of 10 (in DMSO- $d_{6}, 700 \mathrm{MHz}$).

Figure SS-6-3. ${ }^{13} \mathrm{C}$ NMR spectrum of 10 (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-7-1. IR spectrum of $\mathbf{1 2}$.

Figure SS-7-2. HRESIMS (+) spectrum of $\mathbf{1 2}$.

Figure SS-7-3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ (in $\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz}$).

Figure SS-7-4. ${ }^{13} \mathrm{C}$ NMR spectrum of 12 (in $\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}$).

Figure SS-7-5. DEPT spectrum of $\mathbf{1 2}$ (in $\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}$).

Figure SS-7-6. HSQC spectrum of $\mathbf{1 2}$ (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-7-7. HMBC spectrum of $\mathbf{1 2}$ (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-7-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 2}$ (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-7-9. NOESY spectrum of $\mathbf{1 2}$ (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-8-1. IR spectrum of $\mathbf{1 3}$.

Figure SS-8-2. HRESIMS (+) spectrum of 13.

Figure SS-8-3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}$ (in DMSO- $d_{6}, 700 \mathrm{MHz}$).

Figure SS-8-4. ${ }^{13} \mathrm{C}$ NMR spectrum of 13 (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-8-5. DEPT spectrum of $\mathbf{1 3}$ (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-8-6. HSQC spectrum of $\mathbf{1 3}$ (in DMSO- d_{6}).

Figure SS-8-7. HMBC spectrum of $\mathbf{1 3}$ (in DMSO- d_{6}).

Figure SS-8-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 3}$ (in DMSO- d_{6}).

Figure SS-8-9. NOESY spectrum of $\mathbf{1 3}$ (in DMSO- d_{6}).

Figure SS-9-1. IR spectrum of $\mathbf{1 4 .}$

Figure SS-9-2. HRESIMS (-) spectrum of 14.

Figure SS-9-3. HRESI-MS/MS (-) spectrum of 14.

Figure SS-9-4. ${ }^{1}$ H NMR spectrum of 14 (in DMSO- $d_{6}, 700 \mathrm{MHz}$).

Figure SS-9-5. ${ }^{13} \mathrm{C}$ NMR spectrum of 14 (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-9-6. DEPT spectrum of $\mathbf{1 4}$ (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-9-7. HSQC spectrum of $\mathbf{1 4}$ (in DMSO- d_{6}).

Figure SS-9-8. HMBC spectrum of $\mathbf{1 4}$ (in DMSO- d_{6}).

Figure SS-9-9. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 4}$ (in DMSO- d_{6}).

Figure SS-9-10. NOESY spectrum of $\mathbf{1 4}$ (in DMSO- d_{6}).

Figure SS-10-1. IR spectrum of 15.

Figure SS-10-2. HRESIMS (-) spectrum of $\mathbf{1 5}$.

Figure SS-10-3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}$ (in DMSO- $d_{6}, 700 \mathrm{MHz}$).

Figure SS-10-4. ${ }^{13} \mathrm{C}$ NMR spectrum of 15 (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-10-5. DEPT spectrum of $\mathbf{1 5}$ (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-10-6. HSQC spectrum of $\mathbf{1 5}$ (in DMSO- d_{6}).

Figure SS-10-7. HMBC spectrum of 15 (in DMSO- d_{6}).

Figure SS-10-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 5}$ (in DMSO- d_{6}).

Figure SS-10-9. NOESY spectrum of 15 (in DMSO- d_{6}).

Figure SS-11-1. IR spectrum of 16.

Figure SS-11-2. HRESIMS (-) spectrum of 16.

Figure SS-11-3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}$ (in DMSO- $d_{6}, 700 \mathrm{MHz}$).

Figure SS-11-4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}$ (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-11-5. DEPT spectrum of 16 (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-11-6. HSQC spectrum of $\mathbf{1 6}$ (in DMSO- d_{6}).

Figure SS-11-7. HMBC spectrum of 16 (in DMSO- d_{6}).

Figure SS-11-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 16 (in DMSO- d_{6}).

Figure SS-11-9. NOESY spectrum of 16 (in DMSO- d_{6}).

Figure SS-12-1. IR spectrum of $\mathbf{1 7}$.

Figure SS-12-2. HRESIMS (-) spectrum of 17.

Figure SS-12-3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}$ (in DMSO- $d_{6}, 700 \mathrm{MHz}$).

Figure SS-12-4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}$ (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-12-5. DEPT spectrum of $\mathbf{1 7}$ (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-12-6. HSQC spectrum of $\mathbf{1 7}$ (in DMSO- d_{6}).

Figure SS-12-7. HMBC spectrum of $\mathbf{1 7}$ (in DMSO- d_{6}).

Figure SS-12-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 7}$ (in DMSO- d_{6}).

Figure SS-12-9. NOESY spectrum of $\mathbf{1 7}$ (in DMSO- d_{6}).

Figure SS-13-1. IR spectrum of 18.

Figure SS-13-2. HRESIMS (+) spectrum of $\mathbf{1 8}$.

Figure SS-13-3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 8}$ (in DMSO- $d_{6}, 700 \mathrm{MHz}$).

Figure SS-13-4. ${ }^{13} \mathrm{C}$ NMR spectrum of 18 (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-13-5. DEPT spectrum of $\mathbf{1 8}$ (in DMSO- $d_{6}, 175 \mathrm{MHz}$).

Figure SS-13-6. HSQC spectrum of $\mathbf{1 8}$ (in DMSO- d_{6}).

Figure SS-13-7. HMBC spectrum of $\mathbf{1 8}$ (in DMSO- d_{6}).

Figure SS-13-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1 8}$ (in DMSO- d_{6}).

Figure SS-13-9. NOESY spectrum of 18 (in DMSO- d_{6}).

Figure SS-14-1. IR spectrum of 19.

Figure SS-14-2. HRESIMS (+) spectrum of 19.

Figure SS-14-3. ${ }^{1} \mathrm{H}$ NMR spectrum of 19 (in $\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz}$).

Figure SS-14-4. ${ }^{13} \mathrm{C}$ NMR spectrum of 19 (in $\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}$).

Figure SS-14-5. DEPT spectrum of 19 (in $\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}$).

Figure SS-14-6. HSQC spectrum of $\mathbf{1 9}$ (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-14-7. HMBC spectrum of 19 (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-14-8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 19 (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-14-9. NOESY spectrum of 19 (in $\mathrm{CD}_{3} \mathrm{OD}$).

Figure SS-15-1. IR spectrum of 20.


```
likunlong_LKL-24_pos_72_01_4462.d

Figure SS-15-2. HRESIMS (+) spectrum of 20.


Figure SS-15-3. \({ }^{1} \mathrm{H}\) NMR spectrum of \(20\left(\right.\) in \(\left.\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz}\right)\).


Figure SS-15-4. \({ }^{13} \mathrm{C}\) NMR spectrum of 20 (in \(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\) ).


Figure SS-15-5. DEPT NMR spectrum of 20 (in \(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\) ).


Figure SS-15-6. HSQC spectrum of 20.


Figure SS-15-7. HMBC spectrum of 20.


Figure SS-15-8. HMBC spectrum of 20.


Figure SS-15-9. NOESY spectrum of \(\mathbf{2 0}\).


Figure SS-16-1. IR spectrum of 21.


Figure SS-16-2. HRESIMS (+) spectrum of 21.


Figure SS-16-3. \({ }^{1} \mathrm{H}\) NMR spectrum of 21 (in \(\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz}\) ).


Figure SS-16-4. \({ }^{13} \mathrm{C}\) NMR spectrum of 21 (in \(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\) ).


Figure SS-16-5. DEPT spectrum of 21 (in \(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\) ).


Figure SS-16-6. HSQC spectrum of 21 (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-16-7. HMBC spectrum of 21 (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-16-8. \({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\) COSY spectrum of 21 (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-16-9. NOESY spectrum of 21 (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-17-1. IR spectrum of 22.


Figure SS-17-2. HRESIMS (+) spectrum of \(\mathbf{2 2}\).


Figure SS-17-3. \({ }^{1} \mathrm{H}\) NMR spectrum of 22 (in \(\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz}\) ).


Figure SS-17-4. \({ }^{13} \mathrm{C}\) NMR spectrum of 22 (in \(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\) ).


Figure SS-17-5. DEPT spectrum of 22 (in \(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\) ).


Figure SS-17-6. HSQC spectrum of 22 (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-17-7. HMBC spectrum of 22 (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-17-8. \({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\) COSY spectrum of 22 (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-17-9. NOESY spectrum of 22 (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-18-1. IR spectrum of 23.


Figure SS-18-2. HRESIMS (+) spectrum of 23.


Figure SS-18-3. \({ }^{1} \mathrm{H}\) NMR spectrum of \(\mathbf{2 3}\) (in \(\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz}\) ).


Figure SS-18-4. \({ }^{13} \mathrm{C}\) NMR spectrum of 23 (in \(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\) ).


Figure SS-18-5. DEPT spectrum of \(\mathbf{2 3}\) (in \(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\) ).


Figure SS-18-6. HSQC spectrum of \(\mathbf{2 3}\) (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-18-7. HMBC spectrum of \(\mathbf{2 3}\) (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-18-8. \({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\) COSY spectrum of \(\mathbf{2 3}\) (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-18-9. NOESY spectrum of 23 (in \(\mathrm{CD}_{3} \mathrm{OD}\) ).


Figure SS-19-1. IR spectrum of 24.


Figure SS-19-2. HRESIMS (+) spectrum of 24.


Figure SS-19-3. \({ }^{1} \mathrm{H}\) NMR spectrum of 24 (in \(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\) ).


Figure SS-19-4. \({ }^{13} \mathrm{C}\) NMR spectrum of \(\mathbf{2 4}\) (in \(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\) ).


Figure SS-19-5. DEPT spectrum of \(\mathbf{2 4}\) (in \(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\) ).


Figure SS-19-6. HSQC spectrum of \(\mathbf{2 4}\) (in \(\mathrm{CDCl}_{3}\) ).


Figure SS-19-7. HMBC spectrum of 24 (in \(\mathrm{CDCl}_{3}\) ).


Figure SS-19-8. \({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\) COSY spectrum of \(\mathbf{2 4}\) (in \(\mathrm{CDCl}_{3}\) ).


Figure SS-19-9. NOESY spectrum of \(\mathbf{2 4}\) (in \(\mathrm{CDCl}_{3}\) ).


Figure SS-20-1. IR spectrum of 25.


Figure SS-20-2. HRESIMS (+) spectrum of \(\mathbf{2 5}\).


Figure SS-20-3. \({ }^{1} \mathrm{H}\) NMR spectrum of \(\mathbf{2 5}\) (in \(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\) ).


Figure SS-20-4. \({ }^{13} \mathrm{C}\) NMR spectrum of \(\mathbf{2 5}\) (in \(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\) ).


Figure SS-20-5. DEPT spectrum of \(\mathbf{2 5}\) (in \(\mathrm{CDCl}_{3}, 175 \mathrm{MHz}\) ).


Figure SS-20-6. HSQC spectrum of \(\mathbf{2 5}\) (in \(\mathrm{CDCl}_{3}\) ).


Figure SS-20-7. HMBC spectrum of 25 (in \(\mathrm{CDCl}_{3}\) ).


Figure SS-20-8. \({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\) COSY spectrum of \(\mathbf{2 5}\left(\right.\) in \(\left.\mathrm{CDCl}_{3}\right)\).


Figure SS-20-9. NOESY spectrum of \(\mathbf{2 5}\) (in \(\mathrm{CDCl}_{3}\) ).


Figure SS-21-1. IR spectrum of 26.

Mass Spectrum SmartFormula Report


Figure SS-21-2. HRESIMS spectrum of 26.


Figure SS-21-3. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) spectrum of 26 (in MeOD, 700 MHz ).


Figure SS-21-4. \({ }^{13} \mathrm{C}-\mathrm{NMR}\) spectrum of \(\mathbf{2 6}\) (in MeOD, 175 MHz ).


Figure SS-21-5. DEPT spectrum of \(\mathbf{2 6}\) (in MeOD, 175 MHz ).


Figure SS-21-6. HSQC spectrum of 26 (in MeOD).


Figure SS-21-7. HMBC spectrum of 26 (in MeOD).


Figure SS-21-8. COSY spectrum of 26 (in MeOD).```

